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Abstract

The aim of this article is to investigate triple lacunary ∆-statistically convergent and triple lacunary ∆-statistically Cauchy sequences in a
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1. Introduction

The notion neutrosophy suggests impartial knowledge of thought and then neutral describes the basic difference between neutral, fuzzy,
intuitive fuzzy set and logic. The neutrosophic set (NS) was studied by F. Smarandache [1] who introduced the degree of indeterminacy
(i) as indepedent component. In [2], neutrosophic logic was firstly examined. It is a logic where each proposition is determined to have a
degree of truth (T), falsity (F), and indeterminacy (I). A Neutrosophic set (NS) is specified as a set where every component of the universe
has a degree of T, F and I. Kirişçi and Şimşek [3] considered neutrosophic metric space (NMS) with continuous t-norms and continuous
t-conorms. The theory of NNS and statistical convergence in NNS were first developed by Kirişci and Şimşek [4]. Neutrosophic set and
neutrosophic logic has utilized by applied sciences and theoretical science for instance summability theory, decision making, robotics. Some
remarkable results on this topic can be reviewed in [5, 6, 7, 8]. In [6], lacunary statistical convergence of sequences in NNS was investigated.
Also, lacunary statistically Cauchy sequence in NNS was presented and lacunary statistically completeness in connection with a NNS was
worked. In other study, Kişi [7] defined the notion of ideal convergence in NNS.
The concept of statistical convergence was defined under the name of almost convergence by Zygmund [9]. It was formally introduced by
Fast [10]. Later the idea was associated with summability theory by Fridy [11], and many others (see [12, 13, 14, 15, 16]). The studies of
triple sequences have seen rapid growth. The initial work on the statistical convergence of triple sequences was established by Şahiner et al.
[17] and the other researches continued by [18, 19, 20, 21]. Utilizing lacunary sequence, Fridy and Orhan [22] considered lacunary statistical
convergence. Some studies on lacunary statistical convergence can be examined in [23, 24]. The idea of difference sequences was given by
Kızmaz [25] where ∆x = (∆xk) = xk− xk+1. Başarır [26] investigated the ∆-statistical convergence of sequences. Bilgin [27] presented the
definition of lacunary strongly ∆-convergence of fuzzy numbers. Also, the generalized difference sequence spaces were worked by various
authors [28, 29, 30, 31].
Since sequence convergence plays a very significant role in the fundamental theory of mathematics, there are many convergence notions
in summability theory, in approximation theory, in classical measure theory, in probability theory, and the relationships between them are
discussed. The interested reader may consult Hazarika et al. [32], the monographs [33] and [34] for the background on the sequence spaces
and related topics. Inspired by this, in this study, a further investigation into the mathematical features of triple sequences will be thought.
Section 2 recalls some definitions in summability theory and NNS. In Section 3, we study the concepts of lacunary statistical convergence
and lacunary statistical Cauchy of triple difference sequences in a NNS and establish some fundamental properties of NNS.

2. Preliminaries

Now, we remember essential definitions required in this study.
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Let A⊂ N and r ∈ N. δ r
θ
(A) is named the rth partial lacunary density of A, if

δ
r
θ (A) =

|A∩ Ir|
hr

,

where Ir = (kr−1,kr].
The number δθ (A) is indicated the lacunary density (θ -density) of A if

δθ (A) = lim
r→∞

1
hr
|{k ∈ Ir : k ∈ A}|,

(
i.e.,δθ (A) = lim

r→∞
δ

r
θ (A)

)
exists. Also, Λ = {A⊂ N : δθ (A) = 0} is called to be zero density set.
A sequence (xk) is named to be lacunary statistically convergent (or Sθ -convergent) to L if for every ε > 0,

δθ ({k ∈ N : |xk−L| ≥ ε}) = 0.

Triangular norms (t-norms) (TN) were considered by Menger [35]. TNs are utilized to generalise with the probability distribution of triangle
inequality in metric space terms. Triangular conorms (t-conorms) (TC) recognized as dual operations of TNs. TNs and TCs are significant
for fuzzy operations.

Definition 2.1. ([35]) Let ∗ : [0,1]× [0,1]→ [0,1] be an operation. If ∗ provides subsequent cases, it is named continuous TN. Take
a,b,c,d ∈ [0,1],

(a) a∗1 = a,
(b) If a≤ c and b≤ d, then a∗b≤ c∗d,
(c) ∗ is continuous,
(d) ∗ associative and commutative.

Definition 2.2. ([35]) Let ♦ : [0,1]× [0,1]→ [0,1] be an operation. If ♦ provides subsequent cases, it is named to be continuous TC.

(a) a♦0 = a,
(b) If a≤ c and b≤ d, then a♦b≤ c♦d,
(c) ♦ is continuous,
(d) ♦ associative and commutative.

Definition 2.3. ([4]) Let F be a vector space, N = {〈ϖ ,G (ϖ) ,B (ϖ) ,Y (ϖ)〉 : ϖ ∈ F} be a normed space (NS) such that N :F×R+→
[0,1]. While subsequent situations hold, V = (F,N ,∗ ,♦) is called to be NNS. For each ϖ ,κ ∈ F and λ ,µ > 0 and for all σ 6= 0,

(a) 0≤ G (ϖ ,λ )≤ 1, 0≤B (ϖ ,λ )≤ 1, 0≤ Y (ϖ ,λ )≤ 1 ∀λ ∈ R+,
(b) G (ϖ ,λ )+B (ϖ ,λ )+Y (ϖ ,λ )≤ 3 (for λ ∈ R+),
(c) G (ϖ ,λ ) = 1 (for λ > 0) iff ϖ = 0,

(d)G (σϖ ,λ ) = G
(

ϖ , λ

|σ |

)
,

(e) G (ϖ ,µ)∗G (κ,λ )≤ G (ϖ +κ,µ +λ ),
( f ) G (ϖ , .) is non-decreasing continuous function,
(g) limλ→∞ G (ϖ ,λ ) = 1,
(h) B (ϖ ,λ ) = 0 (for λ > 0) iff ϖ = 0,

(i) B (σϖ ,λ ) = B
(

ϖ , λ

|σ |

)
,

( j) B (ϖ ,µ)♦B (κ,λ )≥B (ϖ +κ,µ +λ ),
(k) B (ϖ , .) is non-decreasing continuous function,
(l) limλ→∞ B (ϖ ,λ ) = 0,
(m) Y (ϖ ,λ ) = 0 (for λ > 0) iff ϖ = 0,

(n) Y (σϖ ,λ ) = Y
(

ϖ , λ

|σ |

)
,

(o) Y (ϖ ,µ)♦Y (κ,λ )≥ Y (ϖ +κ,µ +λ ) ,
(p) Y (ϖ , .) is non-decreasing continuous function,
(r) limλ→∞ Y (ϖ ,λ ) = 0,
(s) If λ ≤ 0, then G (ϖ ,λ ) = 0,B (ϖ ,λ ) = 1 and Y (ϖ ,λ ) = 1.
Then N = (G ,B,Y ) is called Neutrosophic norm (NN).
We recall the notions of convergence, statistical convergence, lacunary statistical convergence for single sequences in a NNS.

Definition 2.4. ([4]) Take V as an NNS. Let ε ∈ (0,1) and λ > 0. Then, a sequence (xk) is converges to L ∈ F iff there is N ∈ N such that
G (xk−L,λ )> 1− ε , B (xk−L,λ )< ε , Y (xk−L,λ )< ε . That is,

lim
k→∞

G (xk−L,λ ) = 1, lim
k→∞

B (xk−L,λ ) = 0 and lim
k→∞

Y (xk−L,λ ) = 0

as λ > 0. The convergent in NNS is signified by N −limxk = L.

Definition 2.5. ([4]) A sequence (xk) is named to be statistically convergent to L ∈ F with regards to NN (SC-NN), provided that, for each
λ > 0 and ε > 0

lim
n→∞

1
n
|{k ≤ n : G (xk−L,λ )≤ 1− ε or B (xk−L,λ )≥ ε , Y (xk−L,λ )≥ ε}|= 0.

It is demonstrated by SN -limxk = L.
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Definition 2.6. ([6]) A sequence (xk) is named to be lacunary statistically convergent to L ∈ F with regards to NN (LSC-NN), provided that,
for each λ > 0 and ε > 0 the set

Cε := {k ∈ N : G (xk−L,λ )≤ 1− ε or B (xk−L,λ )≥ ε , Y (xk−L,λ )≥ ε}

has lacunary density zero. It is signified by S(G ,B,Y )
θ

− limxk = ξ .

Now we introduce the following notions (see [17] and [18]).

Definition 2.7. A subset K of N3 is said to have natural density δ3(K) if

δ3(K) = P− lim
n,l,k→∞

|Knlk|
nlk

exists, where the vertical bars denote the number of (n, l,k) in K such that p≤ n, q≤ l, r ≤ k. Then, a real triple sequence x =
(
xpqr

)
is

said to be statistically convergent to L in Pringsheim’s sense if for every ε > 0,

δ3

({
(n, l,k) ∈ N3 : p≤ n,q≤ l,r ≤ k,

∣∣xpqr−L
∣∣≥ ε

})
= 0.

The triple sequence θ3 = θr,s,t = {(nr, ls, lt)} is named triple lacunary sequence if there exist three increasing sequences of integers such that

n0 = 0, hr = nr−nr−1→ ∞ as r→ ∞,

l0 = 0, hs = ls− ls−1→ ∞ as s→ ∞,

and

k0 = 0, ht = kt − kt−1→ ∞ as t→ ∞.

Let nr,s,t = nrlskt , hr,s,t = hrhsht and θr,s,t is determined as

Ir,s,t = {(n, l,k) : nr−1 < n≤ nr, ls−1 < l ≤ ls and kt−1 < k ≤ kt} ,

sr =
nr

nr−1
,ss =

ls
ls−1

, st =
kt

kt−1
and sr,s,t = srssst .

Let D⊂ N×N×N. The number

δθ3(D) = lim
r,s,t

1
hr,s,t

|{(n, l,k) ∈ Ir,s,t : (n, l,k) ∈ D}|

is said to be the θ3-density of D, provided the limit exists.

3. Main results

Now, we examine ∆-convergence and lacunary ∆-statistical convergence of triple sequences in NNS. Throughout the paper we consider V as
an NNS.

Definition 3.1. A triple sequence x = (xnlk) in V is named to be ∆-convergent to L ∈ F with respect to (w.r.t in short) NN (G ,B,Y ) provided
that for every λ > 0 and ε ∈ (0,1), there is a positive integer k0 such that

G (∆xnlk−L,λ )> 1− ε and B (∆xnlk−L,λ )< ε, Y (∆xnlk−L,λ )< ε

for every n ≥ k0, l ≥ k0,k ≥ k0 where n, l,k ∈ N and ∆xnlk = xnlk − xn,l+1,k − xn,l,k+1 + xn,l+1,k+1− xn+1,l,k + xn+1,l+1,k + xn+1,l,k+1−
xn+1,l+1,k+1. We indicate (G ,B,Y )− lim∆x = L or ∆x→ L((G ,B,Y )) as n, l,k→ ∞.

Definition 3.2. A triple sequence x = (xnlk) in V is said to be lacunary ∆-statistically convergent (or S(G ,B,Y )
θ3

(∆)-convergent) to L ∈ F
w.r.t NN (G ,B,Y ) provided that for every λ > 0 and ε ∈ (0,1)

δθ3 (∆)
({

(n, l,k) ∈ N3 : G (∆xnlk−L,λ )≤ 1− ε or B (∆xnlk−L,λ )≥ ε,Y (∆xnlk−L,λ )≥ ε

})
= 0,

or equivalently,

δθ3 (∆)
({

(n, l,k) ∈ N3 : G (∆xnlk−L,λ )> 1− ε and B (∆xnlk−L,λ )< ε, Y (∆xnlk−L,λ )< ε

})
= 1.

It is indicated by S(G ,B,Y )
θ3

(∆)− limx = L or xnlk→ L(S(G ,B,Y )
θ3

(∆)). Using Definition 3.2 and features of the θ3-density, we can simply
achieve the following lemma.
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Lemma 3.3. For every ε ∈ (0,1) and λ > 0, the following cases are equivalent:
(a) S(G ,B,Y )

θ3
(∆)− limx = ξ ,

(b)

δθ3 (∆)
({

(n, l,k) ∈ N3 : G (∆xnlk−L,λ )≤ 1− ε
})

= δθ3 (∆)
({

(n, l,k) ∈ N3 : B (∆xnlk−L,λ )≥ ε
})

= δθ3 (∆)
({

(n, l,k) ∈ N3 : Y (∆xnlk−L,λ )≥ ε
})

= 0,

(c)

δθ3 (∆)

({
(n, l,k) ∈ N3 : G (∆xnlk−L,λ )> 1− ε and
B (∆xnlk−L,λ )< ε, Y (∆xnlk−L,λ )< ε

})
= 1,

(d)

δθ3 (∆)
({

(n, l,k) ∈ N3 : G (∆xnlk−L,λ )> 1− ε
})

= δθ3 (∆)
({

(n, l,k) ∈ N3 : B (∆xnlk−L,λ )< ε
})

= δθ3 (∆)
({

(n, l,k) ∈ N3 : Y (∆xnlk−L,λ )< ε
})

= 1,

(e)

S(G ,B,Y )
θ3

− limG (∆xk−L,λ ) = 1, S(G ,B,Y )
θ3

− limB (∆xnlk−L,λ ) = 0

and S(G ,B,Y )
θ3

− limY (∆xnlk−L,λ ) = 0.

Theorem 3.4. If a triple sequence x = (xnlk) in V is S(G ,B,Y )
θ3

(∆)-convergent to L ∈ F w.r.t the NN (G ,B,Y ), then S(G ,B,Y )
θ3

(∆)− limx is
unique.

Proof. Let S(G ,B,Y )
θ3

(∆)− limx= L1 and S(G ,B,Y )
θ3

(∆)− limx= L2. For a given ε ∈ (0,1), we select Θ∈ (0,1) such that (1−Θ)∗(1−Θ)>

1− ε and Θ♦Θ < ε . Then, for any λ > 0, we determine the following sets:

KG 1 (Θ,λ ) =
{
(n, l,k) ∈ N3 : G

(
xnlk−L1,

λ

2

)
≤ 1−Θ

}
,

KG 2 (Θ,λ ) =
{
(n, l,k) ∈ N3 : G

(
xnlk−L2,

λ

2

)
≤ 1−Θ

}
,

KB1 (Θ,λ ) =
{
(n, l,k) ∈ N3 : B

(
xnlk−L1,

λ

2

)
≥Θ

}
,

KB2 (Θ,λ ) =
{
(n, l,k) ∈ N3 : B

(
xnlk−L2,

λ

2

)
≥Θ

}
,

KY 1 (Θ,λ ) =
{
(n, l,k) ∈ N3 : Y

(
xnlk−L1,

λ

2

)
≥Θ

}
,

KY 2 (Θ,λ ) =
{
(n, l,k) ∈ N3 : Y

(
xnlk−L2,

λ

2

)
≥Θ

}
.

Since S(G ,B,Y )
θ3

(∆)− limxnlk = L1, then utilizing Lemma 3.3, for every λ > 0, we have

δθ3 (∆)(KG 1 (Θ,λ )) = δθ3 (∆)(KB1 (Θ,λ )) = δθ3 (∆)(KY 1 (Θ,λ )) = 0.

Also, using S(G ,B,Y )
θ3

(∆)− limxnlk = L2, we get

δθ3 (∆)(KG 2 (Θ,λ )) = δθ3 (∆)(KB2 (Θ,λ )) = δθ3 (∆)(KY 2 (Θ,λ )) = 0.

Now let

KN (Θ,λ ) := {KG 1 (Θ,λ )∪KG 2 (Θ,λ )}∩{KB1 (Θ,λ )∪KB2 (Θ,λ )}
∩{KY 1 (Θ,λ )∪KY 2 (Θ,λ )} .

Then examine that δθ3 (∆)(KN (Θ,λ )) = 0, which gives that δθ3 (∆)
(
N3 \KN (Θ,λ )

)
= 1. If (n, l,k) ∈ N3 \KN (Θ,λ ), then we acquire

three possible situations.
That is, (n, l,k) ∈ N3 \ (KG 1 (Θ,λ )∪KG 2 (Θ,λ )), (n, l,k) ∈ N3 \ (KB1 (Θ,λ )∪KB2 (Θ,λ )) or (n, l,k) ∈ N3 \ (KY 1 (Θ,λ )∪KY 2 (Θ,λ )).
First, contemplate that (n, l,k) ∈ N3 \ (KG 1 (Θ,λ )∪KG 2 (Θ,λ )). Then, we have

G (L1−L2,λ )≥ G

(
xnlk−L1,

λ

2

)
∗G
(

xnlk−L2,
λ

2

)
> (1−Θ)∗ (1−Θ)> 1− ε .

For arbitrary ε > 0, we get G (L1−K2,λ ) = 1 for all λ > 0, which yields L1 = L2. At the same time, if we take (n, l,k) ∈ N3 \
(KB1 (Θ,λ )∪KB2 (Θ,λ )), then we can write

B (L1−L2,λ )≤B

(
xnlk−L1,

λ

2

)
♦B

(
xnlk−L2,

λ

2

)
≤Θ♦Θ < ε .

Therefore, we can see that B (L1−L2,λ )< ε . For all λ > 0, we obtain B (L1−L2,λ ) = 0, which indicates that L1 = L2. Again, for the
case (n, l,k) ∈ N3 \ (KY 1 (Θ,λ )∪KY 2 (Θ,λ )), then we can write

Y (L1−L2,λ )≤ Y

(
xnlk−L1,

λ

2

)
♦Y

(
xnlk−L2,

λ

2

)
≤Θ♦Θ < ε .

For all λ > 0, we have Y (L1−L2,λ ) = 0, which yields L1 = L2. In all cases, we conclude that S(G ,B,Y )
θ3

(∆)-limit of triple sequence is
unique.
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Theorem 3.5. If (G ,B,Y )− lim∆x = L, then S(G ,B,Y )
θ3

(∆)− limx = L, but not necessarily conversely.

Proof. By hypothesis x = (xnlk) , ∆-converges to L ∈ F w.r.t NN (G ,B,Y ) . Therefore, for every λ > 0 and ε ∈ (0,1), there is a positive
integer k0 such that G (∆xnlk−L,λ )> 1− ε and B (∆xnlk−L,λ )< ε , Y (∆xnlk−L,λ )< ε for all n≥ k0, l ≥ k0,k ≥ k0. Thus the set{
(n, l,k) ∈ N3 : G (∆xnlk−L,λ )≤ 1− ε or B (∆xnlk−L,λ )≥ ε, Y (∆xnlk−L,λ )≥ ε

}
has finitely many terms. Since every finite subset of N3 has lacunary density zero, we see that

δθ3 (∆)
({

(n, l,k) ∈ N3 : G (∆xnlk−L,λ )≤ 1− ε or B (∆xnlk−L,λ )≥ ε, Y (∆xnlk−L,λ )≥ ε

})
= 0.

This ends the proof.

Theorem 3.6. Take NNS as V. Then, S(G ,B,Y )
θ3

(∆)− limxnlk = L iff there is a subset

K =
{
(n, l,k) ∈ N3 : n, l,k = 1,2,3, ...

}
⊂ N3

such that δθ3 (∆)(K) = 1 and (G ,B,Y )− lim(n,l,k)∈K,n,l,k→∞ ∆xnlk = L.

Proof. Presume that S(G ,B,Y )
θ3

(∆)− limxnlk = L. Then, for every λ > 0 and j ≥ 1,

K ( j,λ ) =
{
(n, l,k) ∈ N3 : G (∆xnlk−L,λ )> 1− 1

j
and B (∆xnlk−L,λ )<

1
j
, Y (∆xnlk−L,λ )<

1
j

}
and

M ( j,λ ) =
{
(n, l,k) ∈ N3 : G (∆xnlk−L,λ )≤ 1− 1

j
or B (∆xnlk−L,λ )≥ 1

j
, Y (∆xnlk−L,λ )≥ 1

j

}
.

Then δθ3 (∆)(M ( j,λ )) = 0 since

K ( j,λ )⊃ K ( j+1,λ ) (3.1)

and

δθ3 (∆)(K ( j,λ )) = 1 (3.2)

for λ > 0 and j ≥ 1. Now we need to show that for (n, l,k) ∈ K ( j,λ ) the triple sequence x = (xnlk) is ∆-convergent to L ∈ F w.r.t
NN (G ,B,Y ). Suppose x = (xnlk) be not ∆-convergent to L ∈ F w.r.t NN (G ,B,Y ). Therefore, there are β > 0 and k0 > 0 such that
G (∆xnlk−L,λ )≤ 1−β or B (∆xnlk−L,λ )≥ β , Y (∆xnlk−L,λ )≥ β for all n≥ k0, l ≥ k0,k ≥ k0. Let β > 1

j and

K (β ,λ ) =
{
(n, l,k) ∈ N3 : G (∆xnlk−L,λ )> 1−β and B (∆xnlk−L,λ )< β , Y (∆xnlk−L,λ )< β

}
.

Then, we have δθ3 (∆)(K (β ,λ )) = 0. Since β > 1
j , by (3.1) we get δθ3 (∆)(K ( j,λ )) = 0, which contradicts by (3.2). Therefore x = (xnlk)

is ∆-convergent to L ∈ F w.r.t NN (G ,B,Y ).
Conversely presume that there is a subset K =

{
(n, l,k) ∈ N3 : n, l,k = 1,2,3, ...

}
⊂ N3 such that δθ3 (∆)(K) = 1 and (G ,B,Y )−

lim(n,l,k)∈K,n,l,k→∞ ∆xnlk = L. Then for every λ > 0 and ε ∈ (0,1), there is k0 ∈N such that G (∆xnlk−L,λ )> 1−ε and B (∆xnlk−L,λ )< ε ,
Y (∆xnlk−L,λ )< ε for all n≥ k0, l ≥ k0,k ≥ k0. Let

M (ε,λ ) :=
{
(n, l,k) ∈ N3 : G (∆xnlk−L,λ )≤ 1− ε or B (∆xnlk−L,λ )≥ ε, Y (∆xnlk−L,λ )≥ ε

}
⊆ N3−

{(
nk0+1, lk0+1kk0+1

)
,
(
nk0+2, lk0+2kk0+2

)
, ...
}

and as a consequence δθ3 (∆)(M (ε,λ ))≤ 1−1 = 0. Hence S(G ,B,Y )
θ3

(∆)− limxnlk = L. Then, the desired result has been acquired.

Theorem 3.7. Let V be an NNS. Then S(G ,B,Y )
θ3

(∆)− lim∆xnlk = L iff there are sequences y = (ynlk) and z = (znlk) in V such that

∆xnlk = ∆ynlk +∆znlk for all n,k, l ∈ N where (G ,B,Y )− lim∆ynlk = L and S(G ,B,Y )
θ3

(∆)− lim∆znlk = L.

Proof. Assume that S(G ,B,Y )
θ3

(∆)− limx = L. By Theorem 3.6, there is an increasing sequence

K =
{
(n, l,k) ∈ N3 : n, l,k = 1,2,3, ...

}
⊂ N3

such that δθ3 (∆)(K) = 1 and (G ,B,Y )− lim(n,l,k)∈K,n,l,k→∞ ∆xnlk = L.
Determine the sequences y = (ynlk) and z = (znlk) as follows:

∆ynlk =

{
∆xnlk, if (n, l,k) ∈ K
L, otherwise

and

∆znlk =

{
0, if (n, l,k) ∈ K
∆xnlk−L, otherwise.

Then, y = (ynlk) and z = (znlk) serves our aim.
Conversely if such two sequences y = (ynlk) and z = (znlk) exist with the required features, then the consequence follows immediately from
Theorem 3.5 and Lemma 3.3.
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Definition 3.8. A triple sequence x= (xnlk) in V is named to be ∆-Cauchy w.r.t the NN (G ,B,Y ) provided that for every ε ∈ (0,1) and λ > 0,
there exist positive integers k0,k1,k2 such that G

(
∆xnlk−∆xmpq,λ

)
> 1− ε and B

(
∆xnlk−∆xmpq,λ

)
< ε, Y

(
∆xnlk−∆xmpq,λ

)
< ε for

all n,m≥ k0, l, p≥ k1, k,q≥ k2.

Definition 3.9. A triple sequence x = (xnlk) in V is named to be lacunary ∆-statistically Cauchy or S(G ,B,Y )
θ3

(∆)-Cauchy w.r.t the NN
(G ,B,Y ) provided that, for every ε ∈ (0,1) and λ > 0, there exist positive integers N,M,P such that

δθ3 (∆)

(
(n, l,k) ∈ N3 : G

(
∆xnlk−∆xmpq,λ

)
≤ 1− ε or

B
(
∆xnlk−∆xmpq,λ

)
≥ ε , Y

(
∆xnlk−∆xmpq,λ

)
≥ ε

)
= 0

for all n,m≥ N, l, p≥M, k,q≥ P.

Theorem 3.10. If a triple sequence x = (xnlk) is lacunary ∆-statistically convergent w.r.t the NN (G ,B,Y ) iff it is lacunary ∆-statistically
Cauchy w.r.t the NN (G ,B,Y ) .

Proof. Let x = (xnlk) be a lacunary ∆-statistically convergent sequence which converges to L. For a given ε ∈ (0,1) select s > 0 such that
(1− ε)∗ (1− ε)> 1− s and ε♦ε < s. Let

A(ε,λ ) =

{
(n, l,k) ∈ N3 : G

(
∆xnlk−L,

λ

2

)
≤ 1− ε or B

(
∆xnlk−L,

λ

2

)
≥ ε, Y

(
∆xnlk−L,

λ

2

)
≥ ε

}
.

Then, for any λ > 0,

δθ3 (∆)(A(ε,λ )) = 0, (3.3)

which gives that δθ3 (∆)(A
c (ε,λ )) = 1.

Let (m, p,q) ∈ Ac (ε,λ ). Then

G

(
∆xmpq−L,

λ

2

)
> 1− ε and B

(
∆xmpq−L,

λ

2

)
< ε, Y

(
∆xmpq−L,

λ

2

)
< ε.

Now, take

B(s,λ ) =
{

(n, l,k) ∈ N3 : G
(
∆xnlk−∆xmpq,λ

)
≤ 1− s or

B
(
∆xnlk−∆xmpq,λ

)
≥ s, Y

(
∆xnlk−∆xmpq,λ

)
≥ s

}
.

We have to prove that B(s,λ )⊂ A(ε,λ ). Let (n, l,k) ∈ B(s,λ )∩Ac (ε,λ ).

Hence G
(
∆xnlk−∆xmpq,λ

)
≤ 1− s, G

(
∆xnlk−L, λ

2

)
≥ 1− ε , in particular, G

(
∆xmpq−L, λ

2

)
≥ 1− ε . Then

1− s≥ G
(
∆xnlk−∆xmpq,λ

)
≥ G

(
∆xnlk−L,

λ

2

)
∗G
(

∆xmpq−L,
λ

2

)
> (1− ε)∗ (1− ε)> 1− s

which is not possible. On the other hand, B
(
∆xnlk−∆xmpq,λ

)
≥ s and B

(
∆xnlk−L, λ

2

)
< ε , B

(
∆xmpq−L, λ

2

)
< ε . Hence,

s≤B
(
∆xnlk−∆xmpq,λ

)
≤B

(
∆xnlk−L,

λ

2

)
♦B

(
∆xmpq−L,

λ

2

)
< ε♦ε < s,

which is not possible. Hence B(s,λ )⊂ A(ε,λ ) and by (3.3), we acquire δθ3 (∆)(B(s,λ )) = 0. In the last case, again we obtain B(s,λ )⊂
A(ε,λ ). This proves that x = (xnlk) is lacunary ∆-statistically Cauchy with regards to the NN (G ,B,Y ) .
Conversely, let x = (xnlk) is lacunary ∆-statistically Cauchy but not lacunary ∆-statistically convergent w.r.t the NN (G ,B,Y ). For a given
ε ∈ (0,1), select s > 0 such that (1− ε)∗ (1− ε)> 1− s and ε♦ε < s. Since x is not lacunary ∆-statistically convergent

G
(
∆xnlk−∆xmpq,λ

)
≥ G

(
∆xnlk−L, λ

2

)
∗G
(

∆xmpq−L, λ

2

)
> (1− ε)∗ (1− ε)> 1− s,

B
(
∆xnlk−∆xmpq,λ

)
≤B

(
∆xnlk−L, λ

2

)
♦B

(
∆xmpq−L, λ

2

)
< ε♦ε < s,

Y
(
∆xnlk−∆xmpq,λ

)
≤ Y

(
∆xnlk−L, λ

2

)
♦Y

(
∆xmpq−L, λ

2

)
< ε♦ε < s.

Therefore δθ3 (∆)(B
c (s,λ )) = 0, where

B(s,λ ) =
{

(n, l,k) ∈ N3 : G
(
∆xnlk−∆xmpq,λ

)
≤ 1− s or

B
(
∆xnlk−∆xmpq,λ

)
≥ s, Y

(
∆xnlk−∆xmpq,λ

)
≥ s

}
and so δθ3 (∆)(B(s,λ )) = 1, which is a contradiction, since x was lacunary ∆-statistically Cauchy w.r.t the NN (G ,B,Y ). Hence, x have to
be lacunary ∆-statistically convergent w.r.t the NN (G ,B,Y ) .

Theorem 3.11. For any triple sequence x = (xnlk) in NNS, the subsequent cases are equivalent:
(i) x is S(G ,B,Y )

θ3
(∆)-convergent w.r.t the NN (G ,B,Y ) .

(ii) x is S(G ,B,Y )
θ3

(∆)-Cauchy sequence w.r.t the NN (G ,B,Y ) .

(iii) There is an increasing index sequence K = {(k1,k2,k3)} of N3 such that δθ3 (∆)(K) = 1 and the subsequence
{(

xk1,k2,k3

)}
(k1,k2,k3)∈K

is a S(G ,B,Y )
θ3

(∆)-Cauchy sequence w.r.t the NN (G ,B,Y ) .
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[16] M. Gürdal, A. Şahiner, Extremal I -limit points of double sequences, Appl. Math. E-Notes, 8 (2008), 131–137.
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