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Abstract 

The impact of lattice frequency on the defect lattice solitons have been investigated 

in a medium with quadratic nonlinear response. Governing equation of the optical 

system has been formed by adding an external lattice to the nonlinear Schrödinger 

equation with coupling to a mean term (NLSM system), and soliton solutions of the 

system were calculated by the squared operator method. Moreover, stability of the 

fundamental solitons has been examined by the linear stability spectra and nonlinear 

evolution of the solitons. It has been demonstrated that although higher lattice 

frequency extends the existence domain of propagation constant for defective lattice 

solitons in a quadratic nonlinear medium, it has an adverse effect on stability 

dynamics of the solitons. 

 

 
1. Introduction 

 

Localized solutions of wave equations (solitons) 

have a significant importance in nonlinear optical 

systems. These nonlinear optical systems can be 

characterized by various equations such as the 

Korteweg-de Vries (KdV) equation, the nonlinear 

Schrödinger (NLS) equation or the Ginzburg-

Landau equation, and soliton solutions of these 

equations can be obtained by analytical and 

numerical methods [1]. The nonlinear Schrödinger 

(NLS) equation is used to describe wave dynamics 

in centro-symmetric (or cubic Kerr) media, and it 

is given in the (2+1) dimension as follows 

 

              𝑖𝑢𝑧 +
1

2
∆𝑢 + |𝑢|2𝑢 = 0      (1) 

 

Here, 𝑢(𝑥, 𝑦, 𝑧) denotes the slowly-varying 

envelope, ∆u = 𝑢𝑥𝑥 + 𝑢𝑦𝑦 shows the wave 

diffraction, and the cubic term |𝑢|2𝑢 shows change 

of the refractive index (Kerr effect) of the cubic 

medium. However, it has been shown that quadratic 

effects rise in many practical optical systems [2]-

[6]. Indeed, the quadratic electro-optic effect occurs 

in all crystal structures, irrespective of symmetry. A 
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nonlinear medium with quadratic and cubic 

nonlinear response can be governed by the NLS 

equation with coupling to a mean term (known as 

NLSM system) [7]-[9]. The NLSM system is 

denoted by  

 

          
𝑖𝑢𝑧 +

1

2
∆𝑢 + |𝑢|2𝑢 − 𝜌∅𝑢 = 0,

∅𝑥𝑥 + 𝜈∅𝑦𝑦 = (|𝑢|2)𝑥𝑥

             (2) 

 

where quadratic optical effects in the medium are 

shown by ∅(𝑥, 𝑦). 𝜌 represents the strength of the 

quadratic electro-optic effects and 𝜈 shows the 

anisotropy of the medium (optical material). These 

equations are emerged from the interaction between 

the fundamental and dc fields when second-

harmonic-generation is not phase matched. Thus, 

the NLSM systems were procured as the nonlocal-

nonlinear coupling between the first field (with the 

cascaded effect from the second harmonic) and a 

static field that arises from the zeroth harmonic 

(mean term) [7]-[9]. The physical equivalence of 

the NLSM system and its derivation were discussed 

in detail by Ablowitz in [1]. 

Adding saturable nonlinearity [10],[11] or 

optical lattices [12],[13] to the governing equations 
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are known methods for stabilization of unstable 

solutions. After the existence of optical lattice 

solitons has been experimentally proven [14], many 

scientific studies have been carried out in this field. 

In this direction, real periodic (crystal) 

[5],[11],[15], quasi-periodic (quasi-crystal) [16]-

[18] or complex parity-time symmetric lattices 

[19]-[23] were added to the model equations. Also, 

there were studies that investigate the nonlinear 

wave dynamics in defective lattices [24]-[27]. 

These studies generally focused on the geometric 

(crystal) shapes of the lattices and the point, linear 

or volumetric defects in the lattice structures [28]. 

It has been demonstrated that defects in the lattice 

structure have significant effects on both soliton 

profiles and soliton dynamics [24],[25]. In addition, 

it has been shown that increasing the lattice 

(potential) depth supports stability of solitons 

[5],[26],[27]. However, the impact of lattice 

frequency on soliton dynamics in a medium with 

quadratic nonlinear response has not been 

examined yet. 

In this study, the stability dynamics of 

lattice solitons are investigated in a medium with 

quadratic and cubic nonlinear response. The 

external lattice is chosen as a square lattice with a 

vacancy defect [24],[25],[28]. The soliton 

solutions are obtained numerically, and the 

stability of solitons are tested by the linear spectra 

and nonlinear evolution. A vacancy defect is a 

point defect that occurs almost in all crystalline 

materials when an atom is missing from the 

location where it supposed to be [28]. It was shown 

that the defects in optical materials can be 

produced by irradiation of high energy particle 

[29], and considerable improvements has been 

made in the design and fabrication of lattice 

structures with point defects [30],[31]. In other 

words, vacancy defects in optical lattices can be 

engineered. Therefore, it is important to examine 

the impact of lattice frequency on stability of 

solitons around a vacancy defect. 

 

2. Material and Method 

 

2.1. The Model Equations 

 

In order to describe the quadratic nonlinear medium 

with an external lattice 𝑉(𝑥, 𝑦), the NLSM system 

(2) is extended as follows.  

  
𝑖𝑢𝑧 +

1

2
∆𝑢 + |𝑢|2𝑢 − 𝜌∅𝑢 − 𝑉(𝑥, 𝑦) = 0,

∅𝑥𝑥 + 𝜈∅𝑦𝑦 = (|𝑢|2)𝑥𝑥

     (3) 

The lattice 𝑉(𝑥, 𝑦) in the model is chosen as a 

square lattice with a vacancy defect and defined 

as follows [24]: 

 

𝑉(𝑥, 𝑦) =
𝑉0

25
[2 cos(𝑘𝑥𝑥) + 2 cos(𝑘𝑦𝑦) +

                          𝑒𝑖𝜃(𝑥,𝑦)]
2
                               (4) 

 

Here, the defective point is formed by the 

phase function 𝜃(𝑥, 𝑦) that is given by 

𝜃(𝑥, 𝑦) = tan−1 (
𝑦−𝑦0

𝑥
) − tan−1 (

𝑦+𝑦0

𝑥
)      (5) 

𝑉0 is the coefficient that determines the lattice 

depth. A perfect periodic lattice is obtained by 

setting 𝜃(𝑥, 𝑦) = 0. (𝑘𝑥 , 𝑘𝑦 )shows the wave 

numbers and when 𝐾 = 𝑘𝑥 = 𝑘𝑦 and 𝑦0 = 𝜋/𝐾 a 

point defect occurs in the center (0,0) of the lattice. 

Far from the center, a lattice structure with a period 

of 2𝜋/𝐾 and a frequency of 𝐾 is formed [24],[25]. 

Therefore, the frequency of the lattice can be 

controlled with the parameter 𝐾. In this study, 

lattice solitons are examined for lattice frequencies 

𝐾 = 3, 𝐾 = 4 and 𝐾 = 5. Accordingly, top views 

and diagonal cross-sections of these lattices are 

shown in Figure 1. 

As seen in Figure 1, there is a local 

minimum near the center of the lattice in all cases, 

regardless of the lattice frequency. In other words, 

the change in frequency does not change the 

structure of the lattice qualitatively, but only 

makes a quantitative difference.  

 

2.2. The squared operator method (SOM) for 

numerical solution 

 

A modification of the Squared Operator Method 

(SOM) is used to solve the system given in 

equation (3) [32]. In this method, an operator is 

defined to linearize the governing equation (3) 

around the solution, and the square of this operator 

is iterated to obtain a convergent solution. The 

algorithm of the SOM is explained below. 

Substituting the solution suggestion 𝑢 =
𝑈(𝑥, 𝑦)𝑒𝑖𝜇𝑧 in system (3), the following operator 

𝐿0 and the associated acceleration operator 𝑀0 are 

defined as 

 

𝐿0𝑈 = −𝜇𝑈 +
1

2
∆𝑈 + |𝑈|2𝑈 − 𝜌∅𝑈 − 𝑉(𝑥, 𝑦)𝑈,

                   𝑀0 = ℱ−1 (
ℱ(𝐿0𝑈)

𝐾2 + 𝑐
) .              (6)

 

 

Here 𝑈(𝑥, 𝑦) is a real valued function, 𝜇 is the 

propagation constant (eigenvalue), and ℱ 
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symbolizes the Fourier transform that is applied to 

second-order derivatives. 𝐾 = (𝑘𝑥, 𝑘𝑦) denotes 

wave number and 𝐾2 = 𝑘𝑥
2 + 𝑘𝑦

2. 𝑐 is a real 

positive number and chosen intuitively to scale the 

algorithm. 𝐿0𝑈 = 0 shows the general form of 

equation (3) and 𝐿1 operator is defined as 

linearization of 𝐿0 around 𝑈. The operator 𝐿1 and 

its associated operator 𝑀1 are calculated as follows  

 
Figure 1. The top views (the first row) and diagonal cross-sections (the second row) of lattices with a vacany defect 

(a1)-(a2) for 𝐾 = 3; (b1)-(b2) for 𝐾 = 4 and (c1)-(c2) for 𝐾 = 5. The lattice depth is 𝑉0 = 12.5 for all cases 

considered 

.

  

𝐿1𝑈 = −𝜇𝑀0 +
1

2
∆𝑀0 + 3|𝑈|2𝑀0

                       −𝜌∅𝑀0 − 𝑉(𝑥, 𝑦)𝑀0,

 𝑀1 = ℱ−1 (
ℱ(𝐿1𝑈)

𝐾2+𝑐
)

          (7) 

 

After calculating the acceleration operator 𝑀1, a 

convergent solution is obtained with the following 

iteration 

 

                    𝑈𝑛+1 = 𝑈𝑛 − 𝑀1∆𝑡                 (8) 

 

when the mean term  ∅(𝑥, 𝑦) is iterated as follows 

 

         ∅𝑛 = ℱ−1 (
𝑘𝑥

2

𝑘𝑥
2+𝜈𝑘𝑦

2 ℱ(|𝑈𝑛|2))         (9) 

 

∆𝑡 shows the step size of iteration, and the error 𝐸 

is calculated as follows at each iteration step by 

 

                  𝐸 = √‖𝑈𝑛+1 − 𝑈𝑛‖2               (10) 

 

and the iteration continues until 𝐸 < 10−8 to obtain 

a convergent solution. 

It has been proven that, with a convenient 

initial condition, this algorithm produces 

convergent solutions for many evolution equations 

when ∆𝑡 is less than a threshold value [32],[33]. 𝑐  

and ∆𝑡 are fixed to 3 and 0.2 in the SOM algorithm, 

and the following Gaussian initial condition is used 

to calculate fundamental soliton solutions. 

 

               𝑈0 = 𝑒−[(𝑥−𝑥0)+(𝑦−𝑦0)]                   (11) 

 

The location of the initial condition on the lattice is 

determined by the variables 𝑥0 and 𝑦0. The 

fundamental solitons are focused on the center of 

the lattice (𝑥0 = 𝑦0 = 0) near the vacancy defect, 

and the depth 𝑉0 of the lattice is fixed to 12.5 for 

comparision with previous studies [24],[26],[27].  

In addition, the quadratic term coefficient is chosen 

as 𝜌 = 0.5 and the anisotropy coefficient as 𝜈 =
1.5. These values belong to the potassium niobate 

(KNbO3) that is an optical material used in laser 

systems [34]. 

 

2.3. The Linear Stability Spectra 

 

The stability of fundamental solitons, which have 

been obtained by the SOM, are examined with 

linear eigenvalue spectra and nonlinear evolution of 

the peak amplitudes. The spectra are obtained by 

linearization of the governing equation (3) around 
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the fundamental solitons (𝑢0). To do that, the 

solution 𝑢0 is perturbed as follows. 

 

𝑈 = 𝑒𝑖𝜇𝑧[𝑢0(𝑥, 𝑦) + 𝑔(𝑥, 𝑦)𝑒𝜆𝑧 +

                                          ℎ∗(𝑥, 𝑦)𝑒𝜆∗𝑧]          (12) 

 

where 𝑔, ℎ ≪ 1 are infinitesimal perturbations. 

Substituting 𝑈 into equation (3) and neglecting 

second order terms, the following linear equation 

system is obtained 

 

                            𝐴𝑉 = 𝜆𝑉                          (13) 

 

where matrices are defined by 

 

           𝐴 = 𝑖 (
𝐴11 𝐴12

𝐴21 𝐴22
),       𝑉 = (𝑔

ℎ
)          (14) 

 

and the elements of matrix A are 

 

         

𝐴11 = 𝐴22 = 0,

𝐴12 = −𝜇 +
1

2
∆ + 𝑈2 − 𝜌𝜑 − 𝑉,

𝐴21 = −𝜇 +
1

2
∆ + 3𝑈2 − 𝜌𝜑 − 𝑉.

       (15) 

 

The eigenvalues of the matrix 𝐴 are calculated by 

the Fourier collocation method [33]. If there is a 

positive real part in the eigenvalue spectrum of the 

soliton, it will be considered as linearly unstable. It 

is also known that there is a strong relation between 

the power (𝑃 = ∬ |𝑈|2𝑑𝑥𝑑𝑦
∞

−∞
) and stability of 

solitons. Vakhitov and Kolokolov demonstrated 

that solitons can be linearly stable, only if their 

powers increase as the propagation constant (𝜇) is 

increased [35]. In other words, a necessary 

condition for the linear stability is that the slope of 

the 𝑃 − 𝜇 graph must be positive i.e., 
 

                         
𝜕𝑃

𝜕𝜇
> 0                (16) 

 

In order to confirm the results presented by 

the linear stability analysis, the nonlinear stability 

of the solitons are tested by investigating the 

evolution of peak amplitudes. For the nonlinear 

evolution, the derivatives in equation (3) are 

calculated by the finite difference method, and the 

evolution in the 𝑧 direction is performed by the 

fourth-order Runge-Kutta method. 

 

3. Results and Discussion 

 

Using the parameter values defined above, the 

fundamental solitons are obtained for 𝐾 = 3, 𝐾 =
4, 𝐾 = 5 and displayed in Figure 2. It is seen that 

the soliton amplitudes get larger as the lattice 

frequency 𝐾 increases. 

 

 

 

 

 
Figure 2. Fundamental solitons near the vacancy defect in a medium with quadratic nonlinear response (a) for 

𝐾 = 3; (b) for 𝐾 = 4 and (c) for 𝐾 = 5. 𝑉0 = 12.5 and  𝜇 = −1.6 in all cases. 

 

Before the stability analysis, the power of 

fundamental solitons are examined in Figure 3.  

As seen in Figure 3 (a1), the slope of 𝑃 − 𝜇 

diagrams are positive in all cases (𝐾 = 3, 𝐾 =
4, 𝐾 = 5). This fact reveals that the considered 

solitons met the necessary condition for linear 

stability. In order to support this result, linear 

spectra of solitons are calculated at each point of 

the existence domain, and the linear stability  

(solid line) and instability (dotted line) intervals 

are determined for 𝐾 = 3, 𝐾 = 4 and 𝐾 = 5 in 

Figure 3 (a2). As can be seen from Figure 3 (a2), 

if the lattice frequency 𝐾 = 3, solitons are 

linearly stable when the propagation constant is 

less than a critical value (𝜇 < −1.41). On the 
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other hand, solitons are linearly unstable at high 

values of the lattice frequency (𝐾 = 4 and 𝐾 =
5) everywhere on their existence domain. 

Moreover, the power of solitons are investigated 

for varied strength of the quadratic electro-optic 

effects (𝜌) in Figure 3 (b1), and linear stability 

interval of 𝜌 is determined in Figure 3 (b2) for 

𝐾 = 3, 𝐾 = 4 and 𝐾 = 5. It can be seen that the 

power of solitons grow up with increased lattice 

frequency 𝐾 (see Figure 3 (b1)), and both the 

domain of existence and stability interval of 𝜌 are 

extended as the lattice frequency is decreased (see 

Figure 3 (b2)). These results reveal that higher 

lattice frequency has an adverse effect on 

dynamics of the vacancy defect solitons in a 

medium with quadratic nonlinear response.  

It is noted that in Figure 3 (a2), the 

marked points ‘a’, ‘b’ and ‘c’ correspond to the 

fundamental solitons that are shown in Figure 2 

(a), (b) and (c), respectively. The eigenvalue 

spectra of these solitons are displayed in Figure 

4.  

 

 
Figure 3. Power of solitons (a1) for varied eigenvalue (𝜇) and (b1) for varied strength of the quadratic electro-

optic effects 𝜌 when 𝐾 = 3, 𝐾 = 4 and 𝐾 = 5. Stability intervals of solitons (a2) for 𝜇 and (b2) for 𝜌 when 𝐾 =
3, 𝐾 = 4 and 𝐾 = 5. The points ‘a’, ‘b’, ‘c’ correspond to the fundamental solitons shown in Figure 2 (a), (b), 

(c), respectively. 

 

Figure 4. Linear spectra of fundamental solitons that are obtained at points ‘a’, ‘b’ and ‘c’ in Figure 3 (a2). 
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For the point ‘a’, there is no real part of the 

eigenvalue in the spectrum of the fundamental 

soliton that is obtained with a low lattice 

frequency (𝐾 = 3). On the contrary, at the points 

‘b’ and ‘c’, there are positive real parts in the 

eigenvalue spectra of the solitons that are 

obtained for 𝐾 = 4 and 𝐾 = 5, respectively. This 

analysis indicates the linear instability of the 

solitons that are generated with higher 

frequencies at points ‘b’ and ‘c’. 

In order to cofirm the linear stability 

results, the nonlinear evolution of fundamental 

solitons, that are obtained at points ‘a’, ‘b’ and ‘c’ 

in Figure 3 (a2), are examined in Figure 5. As 

seen in Figure 5, value of the peak amplitude 

oscillates with relatively small amplitudes for the 

soliton obtained with the low lattice frequency 

(𝐾 = 3) at the point ‘a’. This result shows the 

nonlinear stability of the soliton considered. The 

amplitudes of solitons obtained at ‘b’ and ‘c’ 

points show a significant increase during the 

evolution. Therefore solitons obtained with high 

lattice frequencies (𝐾 = 4 and 𝐾 = 5) are 

nonlinearly unstable. Furthermore, it is observed 

that results of the linear and nonlinear stability 

analysis are consistent. 

 

 
Figure 5. The nonlinear evolution of the peak amplitudes for the fundamental solitons that are obtained at points 

‘a’, ‘b’ and ‘c’ in Figure 3 (a2). Here, the step size in the 𝑧 direction is 𝑑𝑧 = 0.01. 

 
4. Conclusion and Suggestions 

 

The effects of lattice frequency on defect lattice 

solitons have been investigated in a quadratic 

medium. An external lattice was added to the 

NLSM system to describe the optical system, and 

convergent soliton solutions were obtained by the 

squared operator method. Stability analyses of 

the calculated solitons have been examined by the 

linear spectra and nonlinear evolutions. After 

performing power analysis in the domain of 

existence for the solitons with varied frequencies, 

the linear stability intervals were determined by 

eigenvalue spectra.  

The linear spectra analysis showed that 

solitons obtained with low lattice frequency can 

be stable when the propagation constant is less 

than a certain threshold value (𝜇 < −1.41), 

whereas solitons obtained with high lattice 

frequency are unstable everywhere on their 

existence domain. These results were confirmed 

by examining the nonlinear evolutions of the 

solitons considered. Furthermore, the stability of 

solitons has been investigated for varied strength 

of the quadratic electro-optic effects (𝜌) by 

variation of lattice frequency and, it has been 

observed that higher lattice frequency has an 

adverse effect on dynamics of the vacancy defect 

solitons in a medium with quadratic nonlinear 

response.  

As a result, it has been observed that 

although higher lattice frequency extends the 

existence domain of propagation constant 𝜇 for 

vacancy defect solitons in a quadratic nonlinear 

medium, it negatively affects the stability 

properties of the solitons.  
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