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Abstract
Ultrametricity condition on bipolar metric spaces is considered and a geometric character-
ization of bipolar ultrametric spaces is given. Also embedding a bipolar ultrametric space
into a pseudo-ultrametric space is discussed and, some conditions are found to be able
to embed them into an ultrametric space. Finally, some fixed point theorems on bipolar
ultrametric spaces are proven.
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1. Introduction
Having a considerably rich structure providing a basis to form a theory of analysis on

arbitrary sets, and yet being able to represent a wide range of well-behaved topological
spaces, since their introduction by Fréchet, metric spaces have not only brought about one
of the major areas of study in mathematics, but also been subject to many generalizations,
enrichments and modifications in a wide variety of forms [1, 2, 7, 11,18,21].

Among many modifications on the notion of metric space, here we are particularly inter-
ested in ultrametric spaces and bipolar metric spaces, the former being a special subclass,
while the other is a generalization, of metric spaces. After presenting introductive infor-
mation in this chapter, we closely investigate the notion of bipolar ultrametric space in
Chapter 2, and as the main result, we give a characterization of bipolar ultrametric spaces
in terms of bipolar subspaces of pseudo-ultrametric spaces, which will be stated in Corol-
lary 2.10. This characterization, makes an important contribution to understanding the
nature of bipolar ultrametric spaces. In fact, this harmonious nature of bipolar ultrametric
spaces is proven to be useful in applications, by giving some fixed point theorems on this
structure in Chapter 3.

Ultametric spaces date back to 1970’s [21] and despite possessing many strange proper-
ties that might be seen unnatural at first glance, they have been proved to be surprisingly
useful with numerous naturally occurring applications in natural sciences [9, 15, 19, 22].
They also function as useful tools on many mathematical areas such as p-adic numbers,
non-Archimedean analysis, combinatorics, graph theory and especially trees [6, 8].
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An ultrametric space (X, d) is a metric space such that the inequality,
d(x, z) ≤ max{d(x, y), d(y, z)},

so-called the strong triangle inequality, is satisfied for all x, y, z ∈ X. More generally, a
pseudo-ultrametric space is defined to be a pseudo-metric space with the strong triangle
inequality, that is an analogue of ultrametric spaces, which allows distinct points to have
distance zero [21].

On the other hand, the recently introduced bipolar metric spaces [11], deal with the
case where a sense of natural distance available between a pair of objects of dissimilar or
somewhat opposite type, while the distances between similar objects are not well-defined,
or the case that the full set of distances is not provided for economic reasons, where a
relatively small subset of all distances is enough for some purpose, and they have been
mainly studied from the aspect of fixed point theory [4, 5, 10–14,16,17,20].

A bipolar metric space is a pair (X,Y, b), where X and Y are nonempty sets and
b : X × Y → R+ ∪ {0} is a bipolar metric on the pair (X,Y ), that is, a function having
the properties

b(x, y) = 0 ⇐⇒ x = y

b(u, v) = b(v, u)
b(x, y) ≤ b(x, y′) + b(x′, y′) + b(x′, y)

for all x, x′ ∈ X, y, y′ ∈ Y and u, v ∈ X ∩ Y . More generally, if all axioms, except the
implication b(x, y) = 0 =⇒ x = y, are satisfied, then (X,Y, b) is called a bipolar pseudo-
metric space [11].

According to the definition of a bipolar metric space, for a given metric space (X, d),
(X,X, d) is always a bipolar metric space. In fact, (X, d) and (X,X, d) are generally kept
identical, which allows considering bipolar metric spaces as a generalization of metric
spaces.

A bipolar subspace of a bipolar pseudo-metric space (X,Y, b) is the bipolar pseudo-
metric space (A,B, b), where A and B are nonempty subsets of X and Y , respectively,
and where b of (A,B, b) actually denotes the restriction of b in (X,Y, b). In particular, a
subspace of (X,Y, b) is a bipolar subspace (A,B, b), such that A = X ∩U and B = Y ∩U
for some set U ⊆ X ∪ Y [4].

Once a bipolar metric space (X,Y, b) is given, we have two pseudo-metric spaces, one
being (X, bX) where b : X ×X → R+ ∪ {0} is given by

bX(x1, x2) = sup
y∈Y

|b(x1, y) − b(x2, y)|

and the other (Y, bY ) where b : Y × Y → R+ ∪ {0} is given by
bY (y1, y2) = sup

x∈X
|b(x, y1) − b(x, y2)|.

These are called inner pseudo-metric spaces associated with (X,Y, b). If both inner pseudo-
metric spaces are in particular metric spaces, then (X,Y, b) is called to be bicharacterized
[11].

Let (X,Y, b) be a bipolar metric space, x0 ∈ X, y0 ∈ Y and r > 0. A left-centric closed
ball with center x0 and radius r is the set

CX(x0, r) = {y ∈ Y : b(x0, y) ≤ r},
and

CY (y0, r) = {x ∈ X : b(x, y0) ≤ r}
is called a right-centric closed ball with center y0 and radius r [4].

For two given bipolar metric spaces (X,Y, b) and (X ′, Y ′, b′), a covariant mapping (or
mapping for short) from (X,Y, b) to (X ′, Y ′, b′) is a function f : X ∪ Y → X ′ ∪ Y ′ such
that f(X) ⊆ X ′, f(Y ) ⊆ Y ′, and it is denoted as f : (X,Y, b) ⇒ (X ′, Y ′, b′). Contrastly,
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a contravariant mapping from (X,Y, b) to (X ′, Y ′, b′) is a function f : X ∪ Y → X ′ ∪ Y ′

such that f(X) ⊆ Y ′, f(Y ) ⊆ X ′, and this is denoted as f : (X,Y, b) ↘↗ (X ′, Y ′, b′),
or alternatively f : (X,Y, b) ↬ (X ′, Y ′, b′). In particular, a contravariant mapping f :
(X,Y, b) ↘↗ (X,Y, b) is said to be a contravariant self-mapping of (X,Y, b) [11].

2. Bipolar ultrametric spaces
We begin by introducing the notion of a bipolar ultrametric space.

Definition 2.1. Let (X,Y, b) be a bipolar metric space. If the strong quadrilateral in-
equality

b(x, y) ≤ max{b(x, y′), b(x′, y′), b(x′, y)}
holds for all x, x′ ∈ X, and y, y′ ∈ Y , then (X,Y, b) is called a bipolar ultrametric space.

Remark 2.2. If (X,Y, b) is a bipolar ultrametric space and X = Y , then (X, b) is an ultra-
metric space, and if (X, d) is an ultrametric space, then (X,X, d) is a bipolar ultrametric
space.

A high isosceles triangle is an isosceles triangle whose legs are not shorter than its base.
It is known that a metric d on a set X is an ultrametric if and only if every triangle
generated by three different points is a high isosceles triangle [3]. In analogy with this
terminology, we call a quadrilateral a high isosceles quadrilateral if it has at least two
equal sides, which are not shorter than other sides.

= = = =
= =

a high isosceles triangle
a high isosceles

quadrilateral with
opposite long edges

a high isosceles
quadrilateral with

adjecent long edges

Lemma 2.3. A bipolar metric space (X,Y, b) is an bipolar ultrametric space if and only
if the quadrilateral (possibly with zero-lenght edges) formed by the distances b(x1, y1),
b(x2, y1), b(x2, y2) and b(x1, y2) is a high isosceles quadrilateral for each x1, x2 ∈ X,
y1, y2 ∈ Y .

Proof. Let (X,Y, b) be a bipolar ultrametric space and x1, x2 ∈ X, y1, y2 ∈ Y . For
simplicity we say b(xi, yj) = aij for i = 1, 2. Then we have these inequalities:

a11 ≤ max{a12, a22, a21}
a12 ≤ max{a11, a21, a22}
a21 ≤ max{a22, a12, a11}
a22 ≤ max{a21, a11, a12}

(2.1)

Note that, a11 ≤ max{a12, a22, a21} implies at least one of the three cases: a11 ≤ a12,
a11 ≤ a22 or a11 ≤ a21. Similarly, each of the other three inequalities can be reduced to
three cases. This gives 34 possible cases in total. Grouping and analyzing these 81 cases, we
have straightforwardly seen that the quadrilateral is always a high isosceles quadrilateral.

Conversely, let (X,Y, b) be a bipolar metric space, in which distances between four
different points x1, x2 ∈ X, y1, y2 ∈ Y always form a high isosceles quadrilateral.
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In the cases where two adjacent sides are equal and not shorter than the other two, say
a11 = a12 ≥ a22, a21, all maximums at the right sides of (2.1) are equal to a11 = a12, so
that the strong quadrilateral inequality will be hold in each case.

Similarly, for the cases where two opposite sides are equal and not shorter than two
others, the inequalities in (2.1) are satisfied again. □
Definition 2.4. Let (X,Y, b) is a bipolar metric space. The left locus for given two points
x1, x2 ∈ X, is the set

LocX(x1, x2) = {y ∈ Y : b(x1, y) = b(x2, y)}
and similarly the right locus for points y1, y2 ∈ Y is defined as

LocY (y1, y2) = {x ∈ X : b(x, y1) = b(x, y2)}.

Clearly for any point x ∈ X and y ∈ Y , LocX(x, x) = Y and LocY (y, y) = X.
Moreover, a bipolar metric space is bicharacterized if and only if LocX(x1, x2) ̸= Y and
LocY (y1, y2) ̸= X for all x1, x2 ∈ X and y1, y2 ∈ Y such that x1 ̸= x2 and y1 ̸= y2. Thus,
bicharacterizedness can be thought as a seperation property on bipolar metric spoaces.

It is known that every bipolar metric space (X,Y, b) is embeddable into a pseudo-metric
space (X ∪ Y, d). In particular, it is possible to embed a bicharacterized bipolar metric
space into a metric space [11]. In the following, we obtain some similar results for the case
of bipolar ultrametric spaces.

Theorem 2.5. A bipolar ultrametric b : X × Y −→ R+ ∪ {0} can be extended to a
pseudo-ultrametric d : (X ∪ Y ) × (X ∪ Y ) −→ R+ ∪ {0}.

Proof. We need to construct a function d : (X∪Y )×(X∪Y ) −→ R+ ∪{0}, which satisfies
ultrametricity conditions on X ∪ Y , and accepts the function b : X × Y −→ R+ ∪ {0} as a
restriction. For these purpose, we need to consider the infimal distance between the parts
X and Y of the bipolar ultrametric space (X,Y, b), which clearly equals to 0 if X and Y
have a nonempty intersection, but may be equal or greater than 0, if X ∩ Y = ∅. Denote
this infimal distance by m, that is, let m = inf{b(x, y) : x ∈ X, y ∈ Y } ≥ 0. We define the
function d : (X ∪ Y )2 −→ R+ ∪ {0} as follows:

For x ∈ X, y ∈ Y , define d(x, y) := b(x, y) and d(y, x) := b(x, y).
For x1, x2 ∈ X, as x1 = x2 implies LocX(x1, x2) = Y , we have three distinct cases:

x1 = x2, x1 ̸= x2 where LocX(x1, x2) = Y and x1 ̸= x2 where LocX(x1, x2) ̸= Y . For
the case x1 = x2, we define d(x1, x2) := 0. If x1 ̸= x2 and LocX(x1, x2) = Y we define
d(x1, x2) := m, where m is the invariant of the bipolar metric space (X,Y, b), defined
above. On the other hand, if x1 ̸= x2 but LocX(x1, x2) ̸= Y ; then we pick an arbitrary
y ∈ Y such that y /∈ LocX(x1, x2), and define d(x1, x2) := max{b(x1, y), b(x2, y)}. Below,
we will show that this value is independent of the selection of y.

Similarly, for y1, y2 ∈ Y we define d(y1, y2) := 0 if y1 = y2, d(y1, y2) := m if LocY (y1, y2) =
X where y1 ̸= y2 and d(y1, y2) := max{b(y1, x), b(y2, x)} if x /∈ LocY (y1, y2) where x ∈ X.

First, we shortly deal with well-definedness of d.
For the case where y, y′ /∈ LocX(x1, x2) and y, y′ ∈ Y , we have two definitions of

d(x1, x2): d(x1, x2) = max{b(x1, y), b(x2, y)} and d(x1, x2) = max{b(x1, y
′), b(x2, y

′)}.
Hence, one have to verify that

max{b(x1, y), b(x2, y)} = max{b(x1, y
′), b(x2, y

′)}.
Since y, y′ /∈ LocX(x1, x2), we have b(x1, y) ̸= b(x2, y) and b(x1, y

′) ̸= b(x2, y
′). Thus the

high isosceles quadrilateral of these four distances has one of its longest sides from the set
{b(x1, y), b(x2, y)} and the other longest side from the set {b(x1, y

′), b(x2, y
′)}. This shows

that
max{b(x1, y), b(x2, y)} = max{b(x1, y

′), b(x2, y
′)},

that is d(x1, x2) is independent of the choice of y ∈ Y \ LocX(x1, x2).
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Another obstacle in the definition of the function d, arises in the case where X∩Y ̸= ∅.
For instance, let x ∈ X, and u ∈ X ∪ Y . Then, since x ∈ X and u ∈ Y , d(x, u) is defined
to be equal to b(x, u). But, since x ∈ X and u ∈ X at the same time, the definition
of d(x, u) must also agree the formula given for two elements of X. So, we must also
verify for x ∈ X and u ∈ X ∩ Y that two different definitions for d(x, u), one is given
by considering u ∈ X, and the other is given by considering u ∈ Y , coincide. Under the
consideration that x ∈ X and u ∈ Y , we have d(x, y) = b(x, y). On the other hand, if
we consider u as an element of X, then there are three cases. In the first case, where
x = u, the two definitions for d(x, u) coincide on the value zero. The second case, where
LocX(x, u) = Y and x ̸= u is impossible since u ∈ Y = LocX(x, u) contradicts with
x ̸= u by b(x, u) = b(u, u) = 0. In the third case, where there is some y ∈ Y such
that y /∈ LocX(x, u), we have b(x, y) ̸= b(u, y). Since u ∈ LocX(x, u) implies x = y
contradictorily with b(x, y) ̸= b(u, y), we have u /∈ LocX(x, u), which means that

d(x, u) = max{b(x, y), b(u, y)} = max{b(x, u), b(u, u)} = b(x, u).

Hence, both definitions for d(x, u) coincide.
Similar discussions apply for the symmetrical cases in which the roles of the sets X and

Y are interchanged. Hence, d is well-defined and clearly extends b from X×Y to (X∪Y )2.
So, it only remains to show that d is a pseudo-ultrametric on the set X ∪ Y .

If any two of three given points z1, z2 and z3 from X ∪ Y are equal, then d trivially
satisfies the strong triangle inequality for z1, z2 and z3. Herewith we suppose in all the
following cases that the three points given are different from each other.

Case 1. In this case we show that

d(x1, x3) ≤ max{d(x1, x2), d(x2, x3)} (2.2)

for x1, x2, x3 ∈ X.
Case 1.a. If d(x1, x3) = m = inf{b(x, y) : x ∈ X, y ∈ Y }, then the inequality (2.2) is

satisfied since all three points have been assumed to be different. To see this, note that
under the definition of d, the minimum possible value of d(x1, x2) for x1 ̸= x2, is m.

Case 1.b. If d(x1, x3) > m, then by the definition of d, there exists a y ∈ LocX(x1, x3)
such that d(x1, x3) = max{b(x1, y), b(x3, y)}. Then also b(x1, y) ̸= b(x3, y). This means
that also either b(x1, y) ̸= b(x2, y) or b(x2, y) ̸= b(x3, y).

Case 1.b.i. If b(x1, y) = b(x2, y), then b(x2, y) ̸= b(x3, y) so that y ∈ Y \ LocX(x1, x3)
and

d(x2, x3) = max{b(x2, y), b(x3, y)} = max{b(x1, y), b(x3, y)} = d(x1, x3)
which makes the inequality (2.2) satisfied.

Case 1.b.ii. If b(x2, y) = b(x3, y), then this leads to inequality (2.2) similarly to the
previous case.

Case 1.b.iii. If b(x1, y) ̸= b(x2, y) ̸= b(x3, y), then

d(x1, x3) ≤ max{b(x1, y), b(x3, y)}
≤ max{b(x1, y), b(x2, y), b(x3, y)}
= max{max{b(x1, y), b(x2, y)},max{b(x2, y), b(x3, y)}}
= max{d(x1, x2), d(x2, x3)}.

Case 2. In this case we show that

d(x1, x2) ≤ max{d(x1, y1), d(y1, x2)} (2.3)

for x1, x2 ∈ X, y1 ∈ Y .
Case 2.a. If y1 ∈ LocX(x1, x2), then b(x1, y1) = b(x2, y1).
Case 2.a.i. If d(x1, x2) = m, then (2.3) is easily seen, since we assume that x1, x2 and

y1 are different points.
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Case 2.a.ii. If d(x1, x2) > m then there exists a y ∈ LocX(x1, x2), that is b(x1, y) ̸=
b(x2, y) and d(x1, x2) = max{b(x1, y), b(x2, y)}. b(x1, y) ̸= b(x2, y) and b(x1, y1) = b(x2, y1)
imply that b(x1, y1) is one of the longest sides of the high isosceles quadrilateral
b(x1, y), b(x2, y), b(x2, y1), b(x1, y1), that is

d(x1, x2) ≤ max{b(x1, y), b(x2, y)}
≤ max{b(x1, y), b(x2, y), b(x1, y1), b(x2, y1)}
= b(x1, y1)
= d(x1, y1)
= max{d(x1, y1), d(x2, y1)}.

Case 2.b. If y1 /∈ LocX(x1, x2), then this leads to (2.3) since the equalities

d(x1, x2) = max{b(x1, y1), b(x2, y1)} = max{d(x1, y1), d(x2, y1)}

are satisfied.
Case 3. In this case, we want to show that

d(x1, y1) ≤ max{d(x1, x2), d(x2, y1)} (2.4)

for x1, x2 ∈ X, y1 ∈ Y . We assume the contrary that

d(x1, y1) > max{d(x1, x2), d(x2, y1)}.

Then y1 ∈ LocX(x1, x2) by b(x1, y1) = d(x1, y1) ̸= d(x2, y1) = b(x2, y1). Here

d(x1, x2) = max{d(x1, y1), d(x2, y1)} ≥ d(x1, y1)

contradics with
d(x1, y1) > max{d(x1, x2), d(x2, y1)},

so that we have (2.4).
Other cases regarding the strong triangle inequalities with three points from Y and with

one point from X, two points from Y are taken, are essentially similar to the cases taken
into account above. Hence, d is a pseudo-metric extension of b, in other words the bipolar
ultrametric space (X,Y, b) is embeddable into the pseudo-ultrametric space (X∪Y, d). □

It is not always possible to embed a bipolar ultrametric space into an ultrametric space
as illustrated in the following example.

Example 2.6. Let X = {x, x′} and Y = {yn : n ∈ N}. Let the distances on X × Y be
defined as in the following diagram:

x

y2 y1y3

x′

1
2

1
2

1
3

1
3 1

1

Clearly since all quadrilaterals are high isosceles quadrilateral, this gives a bipolar ul-
trametric space and it can be embedded into a pseudo-ultrametric space by Theorem
2.5, however it cannot be embedded into an ultrametric space since the high isosceles
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triangle characterization for ultrametric spaces, forces d(x, x′) ≤ 1
n for all n ∈ N, that is

d(x, x′) = 0.

The following corollary, which is easily seen from the construction of d in the proof of
Theorem 2.5, gives a sufficient condition for a bipolar ultrametric space to be embeddable
into an ultrametric space.

Corollary 2.7. Any bipolar ultrametric space (X,Y, b) with the property that

inf{b(x, y) : x ∈ X\Y, y ∈ Y \X} ̸= 0,

is embeddable into an ultrametric space. In particular every finite bipolar ultrametric space
is embeddable into an ultrametric space.

Example 2.8. Given two disjoint sets X = {x1, x2}, Y = {y1, y2} and a bipolar ultra-
metric b on (X,Y ) with the following diagram:

x1

y1

y2

x2

5

3

3

5

To extend b to an ultrametric d on X ∪ Y , in addition to the zero distances on the
diagonal of (X ∪ Y )2, one must also define the non-trivial distances d(x1, x2) = d(x2, x1)
and d(y1, y2) = d(y2, y1).

To make the triangle x1, y1, x2 an high isosceles, the only option for the value of
d(x1, x2) = d(x2, x1) is 5, however d(y1, y2) can get any value from the interval (0, 3].

As seen in the above example, an embedding of a bipolar ultrametric space into an
ultrametric space, doesn’t necessarily have to be unique. The following corollary express
a condition for the uniquiness of such an embedding.

Theorem 2.9. Every bicharacterized bipolar ultrametric space (X,Y, b) is embeddable into
an ultrametric space (X ∪ Y, d) in a unique way.

Proof. Since (X,Y, b) is bicharacterized, the inner pseudo-metric bX on the set X is a
metric, so that for x1, x2 ∈ X, x1 ̸= x2,

bX(x1, x2) = sup
y∈Y

|b(x1, y) − b(x2, y)| = c > 0.

This means that b(x1, y) ̸= b(x2, y) for some y ∈ Y , that is y /∈ LocX(x1, x2). Following
the construction in the proof of Theorem 2.5, we see that

d(x1, x2) = max{b(x1, y), b(x2, y)} > 0,

since b(x1, y) ̸= b(x2, y). Similar result is also true for pairs of different elements of Y .
Hence d is a metric on X ∪ Y .



192 S. Çetin, U. Gürdal

To see the uniqueness, we observe from the above discussion that for x1, x2 ∈ X, x1 ̸= x2,
there is some y ∈ Y such that

d(x1, y) = b(x1, y) ̸= b(x2, y) = d(x2, y) = d(y, x2).
Then d(x1, y) and d(y, x2) are different lengths on the triangle x1yx2, and the high isosceles
triangle characterization for ultrametric spaces, leaves only one option for the value of
d(x1, x2). □

By Theorem 2.5, we know that every bipolar ultrametric space (X,Y, b) can be embed-
ded into a pseudo-ultrametric space (X∪Y, d), so that (X,Y, b) will be equal to the bipolar
subspace (X,Y, d) of (X ∪ Y, d) = (X ∪ Y,X ∪ Y, d). On the other side, given a pseudo-
ultrametric space (Z, d) and two nonempty subsets of Z, say X and Y . It is clear that if
(X,Y, d) forms a bipolar ultrametric space, then it is embeddable in (Z, d) and d(x, y) ̸= 0
for x ̸= y, x ∈ X, y ∈ Y . Conversely, if X and Y has the property that d(x, y) ̸= 0 for all
x ∈ X, y ∈ Y such that x ̸= y, then (X,Y, d) satisfies all the requirements in Definition
2.1. Accordingly, we have a full characterization of bipolar ultrametric spaces in terms of
bipolar subspaces of pseudo-ultrametric spaces, as phrased in the following.

Corollary 2.10. Every bipolar ultrametric space is identical to a bipolar subspace (X,Y, b)
of a pseudo-metric space (Z, d), such that x ̸= y implies d(x, y) ̸= 0 for all x ∈ X, y ∈ Y .

3. Fixed point and coincidence point theorems
Definition 3.1. A bipolar ultrametric space is said to be spherically complete, if every
chain consisting of only left-centric or only right-centric balls has nonempty intersection.

Theorem 3.2. Let (X,Y, b) be a spherically complete bipolar ultrametric space and T :
(X,Y, b) ↘↗ (X,Y, b) be a contravariant self-mapping of (X,Y, b) such that

b(Ty, Tx) < max{b(x, y), b(x, Tx), b(Ty, y)} (3.1)
for all (x, y) ∈ X × Y . Then T has a unique fixed point.

Proof. Let Lx = CX(x, b(x, Tx)) for each x ∈ X, and L = {Lx : x ∈ X}. Then Lx1 ≲ Lx2

⇐⇒ Lx2 ⊆ Lx1 defines a partial order on L. Similarly, for y ∈ Y , we define Ry =
CY (y, b(Ty, y)).

Let C be a chain in (L,≲). Then L :=
∩

Lx∈C
Lx ̸= ∅ since (X,Y, b) is spherically complete.

Given an x ∈ X such that Lx ∈ C and let y ∈ L, z ∈ Ry. Then
b(z, y) ≤ b(Ty, y)

≤ max{b(Ty, Tx), b(x, Tx), b(x, y)}
= max{b(Ty, Tx), b(x, Tx)}

since y ∈ L ⊆ Lx implies b(x, y) ≤ b(x, Tx).
If max{b(Ty, Tx), b(x, Tx)} = b(Ty, Tx) then either b(x, Tx) ≤ b(Ty, Tx) = 0 gives

that x is a fixed point of T , or b(Ty, Tx) > 0 yields
b(z, y) ≤ b(Ty, y)

≤ b(Ty, Tx)
< max{b(Ty, Tx), b(x, Tx), b(x, y)}
= max{b(Ty, Tx), b(x, Tx)}

by (1). Since max{b(Ty, y), b(x, Tx)} = b(Ty, y) leads to the contradiction that b(Ty, y) <
b(Ty, y), we have

max{b(Ty, y), b(x, Tx)} = b(x, Tx),
thus b(z, y) ≤ b(x, Tx).
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On the other hand, also in the case that max{b(Ty, Tx), b(x, Tx)} = b(x, Tx), we have
b(z, y) ≤ b(x, Tx).

Now, let w ∈ Lz, that is b(z, w) ≤ b(z, Tz). Since z ∈ Ry implies b(z, y) ≤ b(Ty, y), we
get

b(z, w) ≤ b(z, Tz)
≤ max{b(z, y), b(Ty, y), b(Ty, Tz)}
= max{b(Ty, y), b(Ty, Tz)}.

Similarly, either y is a fixed point of T , or both max{b(Ty, y), b(Ty, Tz)} = b(Ty, y) and
max{b(Ty, y), b(Ty, Tz)} = b(Ty, Tz) lead to b(z, w) ≤ b(Ty, y).

Now, we want to see that b(Ty, y) ≤ b(x, Tx). By assuming the contrary, the inequality

b(Ty, y) ≤ max{b(Ty, Tx), b(x, Tx), b(x, y)}
= max{b(x, Tx), b(Ty, Tx)}

gives max{b(Ty, Tx), b(x, Tx)} ̸= b(x, Tx), thus b(Ty, y) ≤ b(Ty, Tx) > 0 and by (3.1) we
get the contradiction

b(Ty, y) ≤ b(Ty, Tx)
< max{b(x, y), b(Ty, y), b(x, Tx)}
= max{b(Ty, y), b(x, Tx)}
= b(Ty, y).

Hence we have b(Ty, y) ≤ b(x, Tx).
Finally we observe from a similar reasoning that

b(x,w) ≤ max{b(x, y), b(z, y), b(z, w)}
= max{b(x, Tx), b(Ty, y)}
= b(x, Tx),

so that w ∈ Lx. Therefore, Lz ⊆ Lx, that is Lx ≲ Lz. Since Lx ∈ C is arbitrary and
independent of the choice of y and z, Lz is an upper bound of the chain C in (C,≲) and
by Zorn’s Lemma (C,≲) has a maximal element.

Let Lu be maximal in (C,≲). If u = Tu or Tu = T 2u, then T has a fixed point, namely
u or Tu. Assume that Tu ̸= T 2u. Then u ̸= Tu. So by (3.1)

b(T 2u, Tu) < max{b(u, Tu), b(u, Tu), b(T 2u, Tu)}

gives b(T 2u, Tu) < b(u, Tu), and

b(T 2u, T 3u) < max{b(T 2u, Tu), b(T 2u, T 3u), b(T 2u, Tu)}

gives b(T 2u, T 3u) < b(T 2u, Tu).
If v ∈ LT 2u, then

b(T 2u, v) ≤ b(T 2u, T 3u) < b(T 2u, Tu) < b(u, Tu),

and
b(u, v) < max{b(u, Tu), b(T 2u, Tu), b(T 2u, v)} = b(u, Tu),

which gives v ∈ Lu. Thus LT 2u ⊆ Lu and Lu ≲ LT 2u. However, we also have Tu ∈ Lu since
b(u, Tu) ≤ b(u, Tu), and Tu /∈ LT 2u since b(T 2u, Tu) ≤ b(T 2u, T 3u). So Lu ̸= LT 2u and
this contradicts with the maximality of Lu. Consequently, our assumption that Tu ̸= T 2u
is false, which proves that Tu is a fixed point of T .

Now we show the uniqueness of the fixed point of T . Assume that u1 and u2 are two
fixed points of T , such that u1 ̸= u2. Since u1 = Tu1 and u2 = Tu2, we have u1, u2 ∈ X∩Y .
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Also u1 ̸= u2 gives Tu1 ̸= Tu2 so that b(Tu1, Tu2) > 0. Then by (3.1),
b(u1, u2) = b(Tu1, Tu2)

< max{b(u2, u1), b(u2, Tu2), b(Tu1, u1)}
= max{b(u2, u1), b(u2, u2), b(u1, u1)}
= b(u2, u1)
= b(u1, u2)

gives a contradiction. Hence the fixed point is unique. □
In the folllowing, F stands for the set of all functions f : (0,∞) −→ R such that

(i) x < y =⇒ f(x) < f(y), for all x, y ∈ (0,∞),
(ii) (an) → 0 ⇐⇒ (f(an)) → −∞, for all sequences (an) on (0,∞),
(iii) ∃k ∈ (0, 1), lim

x→0+
xkf(x) = 0.

Theorem 3.3. Let (X,Y, b) be a spherically complete bipolar ultrametric space and T :
(X,Y, b) ↘↗ (X,Y, b) be a contravariant self-mapping of (X,Y, b) such that

b(Ty, Tx) > 0 =⇒ f(b(Ty, Tx)) + c ≤ f(max{b(x, y), b(x, Tx), b(Ty, y)}) (3.2)
for all (x, y) ∈ X × Y , where f ∈ F and c > 0. Then T has a unique fixed point.

Proof. Let Lx = CX(x, b(x, Tx)) for each x ∈ X, and L = {Lx : x ∈ X}. Then Lx1 ≲ Lx2

⇐⇒ Lx2 ⊆ Lx1 defines a partial order on L. Similarly, for y ∈ Y , we define Ry =
CY (y, b(Ty, y)). Let C be a chain in (L,≲). Then L :=

∩
Lx∈C

Lx ̸= ∅ since (X,Y, b) is

spherically complete.
Given an x ∈ X such that Lx ∈ C and let y ∈ L, z ∈ Ry. Then

b(z, y) ≤ b(Ty, y)
≤ max{b(Ty, Tx), b(x, Tx), b(x, y)}
= max{b(Ty, Tx), b(x, Tx)}

since y ∈ L ⊆ Lx implies b(x, y) ≤ b(x, Tx).
If max{b(Ty, Tx), b(x, Tx)} = b(Ty, Tx) then either b(x, Tx) ≤ b(Ty, Tx) = 0 gives

that x is a fixed point of T , or b(Ty, Tx) > 0 yields
b(z, y) ≤ b(Ty, y)

≤ b(Ty, Tx)
< max{b(Ty, Tx), b(x, Tx), b(x, y)}
= max{b(Ty, Tx), b(x, Tx)}

by (1). Since max{b(Ty, y), b(x, Tx)} = b(Ty, y) leads to the contradiction that b(Ty, y) <
b(Ty, y), we have

max{b(Ty, y), b(x, Tx)} = b(x, Tx),
thus b(z, y) ≤ b(x, Tx).

On the other hand, also in the case that max{b(Ty, Tx), b(x, Tx)} = b(x, Tx), we have
b(z, y) ≤ b(x, Tx).

Now, let w ∈ Lz, that is b(z, w) ≤ b(z, Tz). Since z ∈ Ry implies b(z, y) ≤ b(Ty, y), we
get

b(z, w) ≤ b(z, Tz)
≤ max{b(z, y), b(Ty, y), b(Ty, Tz)}
= max{b(Ty, y), b(Ty, Tz)}.

Similarly, either y is a fixed point of T , or both max{b(Ty, y), b(Ty, Tz)} = b(Ty, y) and
max{b(Ty, y), b(Ty, Tz)} = b(Ty, Tz) lead to b(z, w) ≤ b(Ty, y).
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Now, we want to see that b(Ty, y) ≤ b(x, Tx). By assuming the contrary, the inequality

b(Ty, y) ≤ max{b(Ty, Tx), b(x, Tx), b(x, y)}
= max{b(x, Tx), b(Ty, Tx)}

gives max{b(Ty, Tx), b(x, Tx)} ̸= b(x, Tx), thus b(Ty, y) ≤ b(Ty, Tx) > 0 and by (3.1) we
get the contradiction

b(Ty, y) ≤ b(Ty, Tx)
< max{b(x, y), b(Ty, y), b(x, Tx)}
= max{b(Ty, y), b(x, Tx)}
= b(Ty, y).

Hence we have b(Ty, y) ≤ b(x, Tx).
Finally we observe that

b(x,w) ≤ max{b(x, y), b(z, y), b(z, w)}
= max{b(x, Tx), b(Ty, y)}
= b(x, Tx),

so that w ∈ Lx. Therefore, Lz ⊆ Lx, that is Lx ≲ Lz. Since Lx ∈ C is arbitrary and
independent of the choice of y and z, Lz is an upper bound of the chain C in (C,≲) and
by Zorn’s Lemma (C,≲) has a maximal element.

Let Lu be maximal in (C,≲). If u = Tu or Tu = T 2u, then T has a fixed point, namely
u or Tu. Assume that Tu ̸= T 2u. Then u ̸= Tu. So by (3.2)

f(b(T 2u, Tu)) + c ≤ f(max{b(u, Tu), b(u, Tu), b(T 2u, Tu)})

gives f(b(T 2u, Tu)) < f(b(u, Tu)), and since f is strictly increasing we also have b(T 2u, Tu) <
b(u, Tu). Similarly

f(b(T 2u, T 3u)) + c ≤ f(max{b(T 2u, Tu), b(T 2u, T 3u), b(T 2u, Tu)})

gives b(T 2u, T 3u) < b(T 2u, Tu). If v ∈ LT 2u, then

b(T 2u, v) ≤ b(T 2u, T 3u) < b(T 2u, Tu) < b(u, Tu),

and
b(u, v) < max{b(u, Tu), b(T 2u, Tu), b(T 2u, v)} = b(u, Tu),

which gives v ∈ Lu. Thus LT 2u ⊆ Lu and Lu ≲ LT 2u. However, we also have Tu ∈ Lu since
b(u, Tu) ≤ b(u, Tu), and Tu /∈ LT 2u since b(T 2u, Tu) ≤ b(T 2u, T 3u). So Lu ̸= LT 2u and
this contradicts with the maximality of Lu. Consequently, our assumption that Tu ̸= T 2u
is false, which proves that Tu is a fixed point of T .

Now we show the uniqueness of the fixed point of T . Assume that u1 and u2 are two
fixed points of T , such that u1 ̸= u2. Since u1 = Tu1 and u2 = Tu2, we have u1, u2 ∈ X∩Y .
Also u1 ̸= u2 gives Tu1 ≠ Tu2 so that b(Tu1, Tu2) > 0. Then by (3.2),

f(b(u1, u2)) + c = f(b(Tu1, Tu2)) + c

≤ f(max{b(u2, u1), b(u2, Tu2), b(Tu1, u1)})
= f(max{b(u2, u1), b(u2, u2), b(u1, u1)})
= f(b(u2, u1))
= f(b(u1, u2))

gives a contradiction. Hence the fixed point is unique. □
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