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Abstract. Our aim in this paper is to study of silver Riemannian structures on manifold and bundle. An
integrability condition and curvature properties for silver Riemannian structure are investigated via the Tachibana
operator. Twin silver Riemannian metric is defined and some properties of twin silver Riemannian metric are
investigated. Examples of silver structure are given on tangent and cotangent bundles.
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1. Introduction

Artists, designers and architects throughout history have used some mathematical ratios and equations to assist them
in their work. One of these mathematical ratios is the silver ratio. The silver ratio is also known as the Japanese ratio
because it is used in Japanese architecture. They also used the silver ratio in anime characters.

Spinadel introduced the metallic means family [10, 11]. All of the metallic means family members are positive

quadratic irrational σq,r =
q+
√

q2+4r
2 which are the solutions of quadratic equation x2 − qx − r = 0. Inspired by the

metallic means family, Hretcanu and Crasmareanu introduced the metallic structure on manifold M which is determined
by a (1, 1)−type tensor fieldΘ on manifold M satisfyingΘ2 = qΘ+rI , q, r ∈ R [3]. The metallic structures are studied
by many authors [1, 2]. If q = 2 and r = 1, then a (1, 1)−type tensor field Θ is called silver structure on M which
satisfies the equation

Θ2 = 2Θ + I,
where I is the (1, 1)−type identity tensor field. Using the notion of a silver ratio Θ = 1 +

√
2 which is a positive

root of the equation x2 − 2x − 1 = 0, Özkan and Peltek have studied the notion of a silver structure on a differential
manifold [6].

Let M be a Riemannian manifold equipped with the Riemannian metric g and the silver structure Θ such that

g (ΘA, B) = g (A,ΘB) (1.1)
or equivalently to (1.1)

g (ΘA,ΘB) = g
(
Θ2A, B

)
= g ((2Θ + I) A, B) = 2g (ΘA, B) + g (A, B) ,
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for all vector fields A, B on M. The Riemannian metric g in equation (1.1) is called Θ−compatible and (M,Θ, g) is
called a Silver Riemannian manifold. Such Riemannian metrics are also referred to as pure metric [4, 12].

LetΘ be a (1, 1)−type tensor field on manifold M. A (0, r)−type tensor field k is called a pure tensor field according
to Θ if

k (ΘB1, B2, ..., Br) = k (B1,ΘB2, ..., Br)
...

= k (B1, B2, ...,ΘBr) ,
for any vector fields B1, B2, ..., Br. In 1960, Tachibana defined an operator

ΦΘ : ℑ0
r (M)→ ℑ0

r+1 (M)

which is applied to pure tensors. It is applied to (0, r)−type pure tensor field k according to Θ by

(ΦΘk) (A, B1, ..., Br) = (ΘA) k (B1, ..., Br) − Ak (ΘB1, ..., Br)

+
r∑
λ=1

k
(
B1, ...,

(
LBλΘ

)
A, ..., Br

)
,

for any A, B1, ..., Br ∈ ℑ
1
0 (M), where LB denotes the Lie derivative according to B [9, 12]. This operator is referred

as Φ−operator (Tachibana operator) in some studies [4, 7]. Silver structure has an important status on Riemannian
manifold because this structure is associated with pure Riemannian metric according to the corresponding structure.
Tachibana give the definition of decomposable via Φ− operator associated with almost product structure in his study
[12]. Since Riemannian silver and almost product structures are related to each other, we use the method ofΦ−operator
in the theory of silver structure.

The paper is organized as follows. In section 2, a new sufficient condition of integrability for Silver Rieamnnian
structures via Φ−operator is given. Some properties of twin Silver Riemannian metrics and the curvature properties
of locally decomposable Silver Riemannian manifold are studied. Section 3 is devoted to some examples of locally
decomposable Silver Riemannian manifold.

2. Locally Decomposable Silver Riemannian Structures

Let (M, g) be a Riemannian manifold endowed with almost product structure P, i.e. it called an almost product
Riemannian manifold and represented with the triple (M, g, P). The almost product Riemannian manifold is endowed
with an almost product structure P of (1, 1)−type such that

P2 = I, g (PA, B) = g (A, PB) ,

for all vector fields A, B and g is a Riemannian metric. The almost product structure P on manifold M is derived from
the polynomial structure on manifold M. A necessary and sufficient condition for P to be integrable is that ∇P = 0,
where ∇ is the Riemannian connection of g. An almost product Riemannian manifold with an integrable product
structure P is called locally product Riemannian manifold. If a pure tensor field k ensures the equivalence Φεk = 0
that ε is a (1, 1)−type tensor field and Φ is Tachibana operator, then it is called Φ−tensor. If ε is a product structure, a
Φ−tensor is a decomposable tensor [12]. The condition ΦPg = 0 means that the pure metric g is decomposable tensor,
where P is a product structure and

(ΦPg) (A, B1, B2) = (PA) (g (B1, B2)) − A (g (PB1, B2)) + g
((

LB1 P
)

A, B2
)
+ g

(
B1,

(
LB2 P

)
A
)
. (2.1)

The condition ∇P = 0 is equavalent to the condition ΦPg = 0 on the triple (M, g, P), where ∇ is the Riemannian
connection of g [7, 9]. Then, a locally product Riemannian manifold with decomposable tensor g is called locally
decomposable Riemannian manifold [13].

We can obtain integrability condition for a silver Riemannian structure via the Tachibana operator Φ.

Theorem 2.1. Let (M, g,Θ) be a silver Riemannian manifold, where Θ is the silver structure and g is the Riemannian
metric. Then,

a ) Θ is integrable if ΦΘg = 0,
b ) The condition ΦΘg = 0 is equivalent to ∇Θ = 0, where ∇ is the Riemannian connection of g.
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Proof. By using purity of g and the condition ∇g = 0, we have

g (B1, (∇AΘ) B2) = g ((∇AΘ) B1, B2) , (2.2)

for all vector fields A, B1, B2.
By using the equation (2.2) and [A, B] = ∇AB − ∇BA, we can write the equation (2.1) in a different form as follows:

(ΦΘg) (A, B1, B2) = −g ((∇AΘ) B1, B2) + g
((
∇B1Θ

)
A, B2

)
+ g

(
B1,

(
∇B2Θ

)
A
)
. (2.3)

By replacing A and B2, we have

(ΦΘg) (B2, B1, A) = −g
((
∇B2Θ

)
B1, A

)
+ g

((
∇B1Θ

)
B2, A

)
+ g (B1, (∇AΘ) B2) . (2.4)

If we add the equations (2.3) and (2.4), we obtain

(ΦΘg) (A, B1, B2) + (ΦΘg) (B2, B1, A) = 2g
(
A,

(
∇B1Θ

)
B2

)
. (2.5)

From the equation (2.5), we reach the items a) and b) of Theorem 2.1. □

Now, we are going to give the relationships between the almost product structures and silver structures.

Proposition 2.2. If Θ is a silver structure on manifold M, then

P =
1
√

2
(Θ − I) (2.6)

is an almost product structure on M. Conversely, every almost product structure P on manifold M induces two silver
structures on manifold M, given as follows:

Θ1 =
(
I +
√

2P
)
, Θ2 =

(
I −
√

2P
)
.

Proof. Let P be an almost product structure on a Riemannian manifold (M, g), i.e. P2 = I. Then each of the structures
Θ1 =

(
I +
√

2P
)

and Θ2 =
(
I −
√

2P
)

obtained from the almost product P is a silver structure. In fact,

Θ2
1 = I2 + 2

√
2P + 2P2

= I + 2
√

2P + 2I

= 3I + 2
√

2
(

1
√

2
(Θ1 − I)

)
= 3I + 2Θ1 − 2I
= 2Θ1 + I.

Similarly, the equation Θ2
2 − 2Θ2 − I = 0 is obtained for silver structure Θ2.

Conversely, let Θ be a silver structure on a Riemannian manifold M equipped with the Riemannian metric g. Then
the structure P = 1

√
2

(Θ − I) induced by the silver structure Θ is an almost product structure. In fact,

P2 =
Θ2 − 2Θ + I

2
=

(
Θ2 − 2Θ

)
+ I

2
=

2I
2
= I.

□

A Riemannian metric g is pure according to a silver structure if and only if the Riemannian metric g is pure according
to corresponding almost product structure P. The relation between the Tachibana operators ΦPg and ΦΘg is given as

ΦPg =
1
√

2
ΦΘg. (2.7)

We know that, if the Riemannian metric g satisfies the condition ΦPg = 0, the Riemannian metric g is decomposable.
Considering Theorem 2.1, we can deduce that the Silver Riemannian structure Θ is integrable if the Riemannian metric
g is decomposable. If (M,Θ, g) is a locally Silver Riemannian manifold with decomposable Riemannian metric, then
(M,Θ, g) is called a locally decomposable Silver Riemannian manifold. So, we get following proposition

Proposition 2.3. Let (M, g,Θ) be a Silver Riemannian manifold, where Θ is a silver structure and g is a Riemannian
metric. The manifold M is a locally decomposable Silver Riemannian manifold if and only if ΦPg = 0, where P is the
corresponding almost product structure associated with Θ.
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The twin silver Riemannian metric is defined by

G (B1, B2) = g (ΘB1, B2) ,

for all vector fields B1, B2 on M. It is easily seen that the twin silver Riemannian metric G is pure according to the
silver structure Θ. If we apply the ΦΘ−operator to the twin silver Riemannian metric G, we obtain

(ΦΘG) (A, B1, B2) = (ΦΘg) (A,ΘB1, B2) + g (NΘ (A, B1) , B2) ,

where NΘ is Nijenhuis tensor consructed from Θ. So, we have

Proposition 2.4. Let (M,Θ, g) be a locally decomposable Silver Riemannian manifold, where Θ is a silver structure
and g is a silver Riemannian metric. Then, the twin silver Riemannian metric G is Φ−tensor field.

Theorem 2.5. Let (M,Θ, g) be a locally decomposable silver Riemannian manifold, where Θ is a silver structure and
g is a silver Riemannian metric. The Riemannian curvature tensor field R is a Φ− tensor field.

Proof. The Riemannian curvature tensor field R of the silver Riemannian metric g is pure according to the silver
structure Θ, i.e.

R (ΘB1, B2, B3, B4) = R (B1,ΘB2, B3, B4) = R (B1, B2,ΘB3, B4) = R (B1, B2, B3,ΘB4)

for all vector fields B1, B2, B3, B4 on M. Applying the Tachibana operator to the Riemannian curvature R of (0, 4)−
type as in equation (2.1), we write

(ΦΘR) (A, B1, B2, B3, B4) = (∇ΘAR) (B1, B2, B3, B4) − (∇AR) (ΘB1, B2, B3, B4) . (2.8)

Considering the purity of R and applying Bianchi’s 2nd identity to (2.8), we obtain

(ΦΘR) (A, B1, B2, B3, B4) = g ((∇ΘAR) (B1, B2, B3) − (∇AR) (ΘB1, B2, B3) , B4)
= g ((∇ΘAR) (B1, B2, B3) − Θ ((∇AR) (B1, B2, B3)) , B4)
= g(−

(
∇B1 R

)
(B2,ΘA, B3) −

(
∇B2 R

)
(ΘA, B1, B3)

−Θ ((∇AR) (B1, B2, B3)) , B4).

(2.9)

And using ∇Θ = 0, we find(
∇B2 R

)
(ΘA, B1, B3) = ∇B2 (R (ΘA, B1, B3)) − R

(
∇B2 (ΘA) , B1, B3

)
−R

(
ΘA,∇B2 B1, B3

)
− R

(
ΘA, B1,∇B2 B3

)
=

(
∇B2Θ

)
(R (A, B1, B3)) + Θ

(
∇B2 R (A, B1, B3)

)
−R

((
∇B2Θ

)
A + Θ

(
∇B2 A

)
, B1, B3

)
−R

(
ΘA,∇B2 B1, B3

)
− R

(
ΘA, B1,∇B2 B3

)
= Θ

(
∇B2 R (A, B1, B3)

)
− Θ

(
R

(
∇B2 A, B1, B3

))
−Θ

(
R

(
A,∇B2 B1, B3

))
− Θ

(
R

(
A, B1,∇B2 B3

))
= Θ

((
∇B2 R

)
(A, B1, B3)

)
.

(2.10)

Similarly, we obtain (
∇B1 R

)
(B2,ΘA, , B3) = Θ

((
∇B1 R

)
(B2, A, B3)

)
. (2.11)

Subsituting (2.10) and (2.11) in (2.9) and using Bianchi’s 2nd identity, we obtain

(ΦΘR) (A, B1, B2, B3, B4) = g(−Θ
((
∇B1 R

)
(B2, A, B3)

)
− Θ

((
∇B2 R

)
(A, B1, B3)

)
−Θ ((∇AR) (B1, B2, B3)) , B4)

= 0.
□

By (2.6) and (2.8), we can find, in a similar way like the equation (2.7),

ΦPR =
1
√

2
ΦΘR, (2.12)

where Θ is the silver structure and P is its corresponding almost product structure. Based on Theorem 2.5 and the
equation (2.12), we obtain following proposition

Proposition 2.6. Let (M,Θ, g) be a locally decomposable silver Riemannian manifold, where Θ is a silver structure
and g is a silver Riemannian metric. The Riemannian curvature tensor field is a decomposable tensor field.



R. Cakan Akpınar, Turk. J. Math. Comput. Sci., 14(1)(2022), 91–97 95

3. Examples

Example 3.1. Let (M, g) be a Riemannian manifold with dimension n and T (M) be its tangent bundle with the bundle
projection π : T (M)→ M that the bundle projection defines the natural bundle structure of tangent bundle T (M) over
manifold M. Then T (M) is a 2n dimensional smooth manifold. A system of local coordinates

(
U, xi

)
in manifold M,

U ⊂ M, induces to a system of local coordinates
(
π−1 (U) , xi, xi = yi

)
i = 1, ..., n, i = n + 1, ..., 2n in tangent bundle

T (M), where
(
yi
)

are the Cartesian coordinates in each tangent space TP (M) at P ∈ M according to natural base.
Let A = Ai ∂

∂xi be the local expression in U of a vector field A. Then the vertical lift V A and horizontal lift H A of A
are given according to induced coordinates in T (M)

V A =

( V Ai

V Ai

)
=

(
0
Ai

)
,

H A =

( H Ai

H Ai

)
=

(
Ai

−AsytΓi
ts

)
,

where Γi
ts are the coefficients of the Riemannian connection ∇ of g.

The Sasaki metric S g on the tangent bundle T (M) is defined by

S g
(

V A, V B
)
= V (g (A, B)) , (3.1)

S g
(

V A, H B
)
= S g

(
H A, V B

)
= 0 , (3.2)

S g
(

H A, H B
)
= V (g (A, B)) , (3.3)

for any vector fields A, B on manifold M [14].
We define a silver structure JΘ on T (M)  JΘ

(
H A

)
= H A +

√
2 V A

JΘ
(

V A
)
= V A +

√
2 H A

(3.4)

which implies J2
Θ
− 2JΘ − I = 0.

We write

K
(
Â, B̂

)
= S g

(
JΘÂ, B̂

)
− S g

(
Â, JΘB̂

)
, (3.5)

for any vector fields Â, B̂. Replacing Â, B̂ with V A, V B or H A, H B , respectively, from (3.1)-(3.3) and (3.5) we have
K

(
Â, B̂

)
= 0. It is mean that S g is pure according to the silver structure JΘ. So we obtain:

Theorem 3.2. Let (M, g) be a Riemannian manifold and T (M) be its tangent bundle endowed with the Sasaki metric
S g and silver structure JΘ defined by (3.4). The triple

(
T (M) , JΘ,S g

)
is a silver Riemannian manifold.

We determined the Sasaki metric S g and the silver structure in equations (3.1) − (3.3) and (3.4), respectively. Using
the several properties of lifts on tangent bundle T (M) that V A V (g (B1, B2)) = 0 and H A V (g (B1, B2)) = V (Ag (B1, B2)),
we calculate (

ΦJΘ
S g

) (
Â, B̂1, B̂2

)
=

(
JΘÂ

) (
S g

(
B̂1, B̂2

))
− Â

(
S g

(
JΘB̂1, B̂2

))
+ S g

((
LB̂1

JΘ
)

Â, B̂2

)
+ S g

(
B̂1,

(
LB̂2

JΘ
)

Â
)
,
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for all vector fields A, B1, B2. Then we obtain(
ΦJΘ

S g
) (

V A, V B1,
V B2

)
= 0(

ΦJΘ
S g

) (
V A, V B1,

H B2

)
= −

√
2 S g

(
V B1,

V (R (B2, A) y)
)(

ΦJΘ
S g

) (
V A, H B1,

V B2

)
= −

√
2 S g

(
V (R (B1, A) y) , V B2

)(
ΦJΘ

S g
) (

V A, H B1,
H B2

)
= 0(

ΦJΘ
S g

) (
H A, V B1,

V B2

)
= 0(

ΦJΘ
S g

) (
H A, V B1,

H B2

)
= 0(

ΦJΘ
S g

) (
H A, H B1,

V B2

)
= 0(

ΦJΘ
S g

) (
H A, H B1,

H B2

)
=
√

2 S g
(

H (R (B1, A) y) , H B2

)
+
√

2 S g
(

H B1,
H (R (B2, A) y)

)
.

So, from Proposition 2.3 and equation (2.7), we obtain following theorem.

Theorem 3.3. Let (M, g) be a Riemannian manifold and let T (M) be its tangent bundle endowed with the Sasaki
metirc S g and the silver structure JΘ defined by (3.4). The triple

(
T (M) , JΘ, S g

)
is locally decomposable silver

Riemannian manifold if and only if the Riemannian manifold is locally flat.

Example 3.4. Let (M, g) be a Riemannian manifold with dimension n and T ∗ (M) be its cotangent bundle with the
bundle projection π : T ∗ (M) → M that the bundle projection defines the natural bundle structure of cotangent bundle
T ∗ (M) over manifold M. Then T ∗ (M) is a 2n dimensional smooth manifold. A system of local coordinates

(
U, xi

)
in manifold M, U ⊂ M, induces to a system of local coordinates

(
π−1 (U) , xi, xi = pi

)
i = 1, ..., n, i = n + 1, ..., 2n in

cotangent bundle T ∗ (M), where (pi) are the Cartesian coordinates in each cotangent space T ∗P (M) at P ∈ M according
to natural base.

Let α = α jdx j be the local expression in U of a 1−form α. Then the vertical lift Vα of 1−form α and horizontal
lift H A of vector field A are given according to induced coordinates in T ∗ (M)

Vα =

( Vα j
Vα j

)
=

(
0
α j

)

H A =

( H A j

H A j

)
=

(
A j

psΓ
s
jiA

i

)
.

The Sasaki metric S g on the cotangent bundle T ∗ (M) is defined by
S g

(
Vα, Vβ

)
= V

(
g−1 (α, β)

)
= g−1 (α, β) ◦ π, (3.6)

S g
(

Vα, H B
)
= 0, (3.7)

S g
(

H A, H B
)
= V (g (A, B)) = g (A, B) ◦ π, (3.8)

for any vector fields A, B and 1−forms α, β. The Sasaki metric S g is assigned by equations (3.6)−(3.8). The Riemannian
connection S∇ of S g compensates the following relations:

(i) S∇ Vα
Vβ = 0

(ii) S∇ Vα
H B = 1

2
H
(
p
(
g−1 ◦ R ( , B) α̃

))
(iii) S∇ H A

Vβ = V (∇Aβ) + 1
2

H (
p
(
g−1 ◦ R ( , A) β̃

))
(iv) S∇ H A

H B = H (∇AB) + 1
2

V (pR (A, B)) ,

(3.9)

for all vector fields A, B and 1−forms α, β, where α̃ = g−1 ◦α is a vector field, R ( , A) β̃ is a (1, 1)−type tensor field and
g−1 ◦ R ( , A) β̃ is a (2, 0)−type tensor field [5, 8].

We define a silver structure JΘ∗ on T ∗ (M) by JΘ∗
(

H A
)
= H A +

√
2 V Ã

JΘ∗
(

Vα
)
= Vα +

√
2 Hα̃

(3.10)
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for any vector field A and any 1−form α, where Ã = g ◦ A is a 1−form, α̃ = g−1 ◦ α is a vector field. And the Sasaki
metric is pure according to silver structure JΘ∗ . Then we obtain following theorem:

Theorem 3.5. Let (M, g) be a Riemannian manifold and let T ∗ (M) be its cotangent bundle endowed with the Sasaki
metric S g and silver structure JΘ∗ defined by (3.10). The triple

(
T ∗ (M) , JΘ∗ ,S g

)
is a silver Riemannian manifold.

We investigate the covariant derivative of JΘ∗ . Considering the equations (i) − (ii) of (3.9) and (3.10), we have(
S∇ H AJΘ∗

) (
H B

)
=

√
2

2
H
(
p
(
g−1 ◦ (R ( , A) B − R (A, B))

))(
S∇ VαJΘ∗

) (
H B

)
= −

√
2

2
V (pR ( , B) α̃)(

S∇ H AJΘ∗
) (

Vβ
)
=

√
2

2
V
(
pR

(
A, β̃

)
− pR ( , A) β̃

)(
S∇ VαJΘ∗

) (
Vβ

)
=

√
2

2
H
(
p
(
g−1 ◦ R

(
, β̃

)
α̃
))
,

(3.11)

for all vector fields A, B and 1−forms α, β. From equations (3.11) we obtain:

Theorem 3.6. Let (M, g) be a Riemannian manifold and T ∗ (M) be its cotangent bundle endowed with the Sasaki metric
S g and silver structure JΘ∗ defined by (3.10). The triple

(
T ∗ (M) , JΘ∗ ,S g

)
is locally decomposable silver Riemannian

manifold if and only if the Riemannian manifold is flat.
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