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Abstract

In this article, we perform computer searches for pedal sets of all known unitals in the
known planes of order 16. Special points of unitals having at least one special tangent
are studied in detail. It is shown that unitals without special points exist. Open problems
regarding the computational results presented in this study are discussed. A conjecture
about the numbers of line types of a unital U and its dual unital U⊥ is formulated.

1. Introduction

We assume familiarity with the basic facts from finite geometries and combinatorial design theory [1]- [3].
A t-(v,k,λ ) design is a pair D={X ,B} of a set X of cardinality v, called points, and a collection B of k-subsets of X , called
blocks, such that every t points appear together in exactly λ blocks. A parallel class of a design D is a collection of blocks that
partitions the point set of D. A resolution of D is a partition of the collection of blocks of D into disjoint parallel classes. A
design D is resolvable if it has at least one resolution.
Let π be a projective plane of order q2. A unital embedded in π is defined to be a set U of q3 +1 points of π meeting lines
of the plane in either one point or q+1 points. The sets of the intersections of the lines of π with U at q+1 points form a
2-(q3 +1,q+1,1) design.
A classical example of a unital is the Hermitian unital H(q) defined by the absolute points of a unitary polarity in PG(2,q2).
In 1976, Buekenhout provided two methods for constructing unitals [4]. In 1979, Metz used one of Buekenhout’s method
to construct a non-classical unital in a Desarguesian plane of order q2 [5], and in 1994, Barwick showed that any unitals
constructed by the other method of Buekenhout is a classical unital [6]. In 1988, for every odd prime power q, Rosati
constructed a unital in Hughes planes of order q [7], and in 1990, Kestenband generalized Rosati’s construction [8]. Some
other studies of unitals can be found in [9]- [12].
There exist q3 +1 lines meeting a unital U at one point, called tangent lines to U , and q2(q2−q+1) lines meeting U at q+1
points, called secant lines to U . For any point P /∈U , the number of tangents and secants through P are q+ 1 and q2− q,
respectively [1]. The set of the q+ 1 intersections of tangents through P with U is called the pedal set of P. P is called a
special point if its pedal set is collinear. A special tangent is defined to be a tangent having q2 special points.
In this study, pedal sets of all known unitals in the known projective planes of order 16 are computed. Special points of unitals
having at least one special tangent are studied in detail. It is shown that unitals without special points exist. Details of the
numbers of pedal sets for each possible line type are reported.
Through the paper, a line with p points will be denoted by p-line.

2. Pedal sets of unitals in planes of order 16

Twenty-two projective planes of order 16 are known to exist. The names of the planes are in accordance with [13]: PG(2,16),
BBH1, SEMI2, SEMI4, BBH2, BBS4, DEMP, DSFP, HALL, LMRH, MATH, JOHN, and JOWK. Specific line sets of the
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planes used in this study can be found in [14].
Previously it was shown that PG(2,16) contains exactly two unitals. Unitals in the rest of the planes of order 16 have not been
completely classified, yet.
Known unitals in the known planes of order 16 were found by Stoichev and Tonchev (thirty-eight unitals) [15], Krčadinac and
Smoljak (three unitals) [16], and Stoichev and Gezek (one hundred and fifteen unitals) [12].
A pedal set of a unital U in a plane of order 16 comes from 5 points of U . The following five configurations (denoted by their
line types) are possible for pedal sets in these planes: Either all 5 points are on a line (51), or 4 points are on a line and four
2-lines (41,24), or two 3-lines and four 2-lines (32,24), or 3 points are on a line and seven 2-lines (31,27), or ten 2-lines (210).
Possible geometries of these configurations could be found in [16, Figure 2].
Using the computational algebra system MAGMA [17], pedal sets of all known unitals in the known projective planes of order
16 have been calculated. The algorithm used in our computations contains the following steps:
Step 1: Define the set of lines (L), points (P), unitals (U) of the Plane π , and line types (LT )
Step 2: For each unital u in U do
Step 3: For each point p ∈ P\u, find its tangents (T )
Step 4: For every tangent t ∈ T find t ∩u and save them in a set ps // ps is the set of pedal sets of the point p
Step 5: Save the pedal sets ps in an indexed set PS
Step 6: For each pedal set ps in PS, check which line type in LT it possesses
Step 7: Print the number of each possible line type
The number of known unitals in the known planes of order 16 is 156. Specific point sets of the known unitals used in this study
can be found in [12]. Pedal sets of the forty-two of the known unitals are studied in [16]. We list the details of the pedal sets of
the remaining unitals in Table 3.1, where Column 1 states the name of the plane, Column 2 provides the unital no’s, and the
last column gives the numbers of pedal sets for each type. All except 38 of unitals in these planes have the same pedal sets
counts with their duals. Details of the pedal sets of dual unitals having different pedal set counts with their duals are listed in
Table 3.2.
Table 3.1 shows that all unitals except unital 4 of BBH1 plane, unital 18 of BBH2 plane, unital 11 of BBS4 plane, all known
unitals in DEMP plane, unitals 4,6,7, and 8 of MATH plane, unital 5 of JOWK plane, unitals 3,4,7 and 8 of SEMI2 plane and
unitals 2,3, and 7 of SEMI4 plane have at least 16 special points.
Previously, there were only two unitals in BBH1 plane having a special tangent. Our computations show that unitals 14 and 16
of BBH1 plane also possess a special tangent. All of the unitals having a special tangent in BBH1 plane has special points not
lying on a special tangent: Unital 1 of BBH1 plane has sixteen special points outside of a special tangent, which are divided
into four distinct sets of size 4 such that each set lies on a secant through the intersection point of the special tangent with the
unital. Unital 2 (and 14) of BBH1 plane has fifty-two special points outside of a special tangent. None of these points lies on a
secant through the intersection point of the special tangent with the unital. Unital 16 of BBH1 plane has eight special points
outside of a special tangent, which are divided into two distinct sets of size 4 such that each set lies on a secant through the
intersection point of the special tangent with the unital. Eight of the unitals of BBH1 plane contains exactly 16 special points,
but none of these points lie on a special tangent.
BBH2 plane previously was known to contain only one unital having a special tangent. Our computations show that there are
six more unitals in BBH2 plane having exactly one special tangent, all of which have special points not lying on a special
tangent: Unitals 19, 20, 22, and 23 of BBH2 plane has eight special points outside of a special tangent, which are divided into
two distinct sets of size 4 such that each set lies on a secant through the intersection point of the special tangent with the unital.
Unital 21 of BBH2 plane has sixteen special points outside of a special tangent, which are divided into two distinct sets of size
8 such that each set lies on a secant through the intersection point of the special tangent with the unital. Unital 26 of BBH2
plane has twenty-four special points outside of a special tangent, which are divided into six distinct sets of size 4 such that
each set lies on a secant through the intersection point of the special tangent with the unital. Table 3.1 shows that seven of the
unitals in BBH2 plane have exactly 16 special points, but none of these points lie on a special tangent.
None of the known unitals in BBS4, DEMP, and DSFP planes have a special tangent, but six unitals in BBS4 plane have
exactly 16 special points, but none of these points lie on a special tangent.
Details of the pedal sets of the known unitals in HALL plane can be found in [16]. Only unitals 4 and 6 of HALL plane
contains special points not lying on a special tangent: Unital 4 of HALL plane has sixteen special points outside of a special
tangent, which are divided into four distinct sets of size 4 such that each set lies on a secant through the intersection point of
the special tangent with the unital. Unital 6 of HALL plane has fifty-two special points outside of a special tangent, which are
divided into ten distinct sets of size 4 and one set of size 12 such that each set lies on a secant through the intersection point of
the special tangent with the unital.
All known unitals in MATH plane having exactly 16 special points, as well as unitals 5 and 13, have exactly one special
tangent. Table 3.1 shows that unitals having more than 16 special points in MATH plane have special points not lying on a
special tangent: Unital 5 of MATH plane has eight special points outside of a special tangent, which are divided into two
distinct sets of size 4 such that each set lies on a secant through the intersection point of the special tangent with the unital.
Unital 13 of MATH plane has sixty-four special points outside of a special tangent, which are divided into sixteen distinct sets
of size 4 such that each set lies on a secant through the intersection point of the special tangent with the unital.
JOHN plane contains three unitals having a special tangent, two of which have special points not lying on a special tangent:
Unital 2 of JOHN plane has sixteen special points outside of a special tangent, which are divided into four distinct sets of size
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4 such that each set lies on a secant through the intersection point of the special tangent with the unital. Unital 26 of JOHN
plane has eight special points outside of a special tangent, which are divided into two distinct sets of size 4 such that each set
lies on a secant through the intersection point of the special tangent with the unital.
The number of known unitals in SEMI2 plane is 21, all except four have exactly sixteen special points and a special tangent.
None of the unitals in SEMI2 plane having at least 16 special points have special points outside of a special tangent.
SEMI4 plane previously was known to have exactly two unitals having a special tangent. Our computations show that many of
the known unitals in SEMI4 plane possess a special tangent. Two of these unitals have special points not lying on a special
tangent: Unital 4 of SEMI4 plane has four special points outside of a special tangent, which lies on a secant through the
intersection point of the special tangent with the unital.
In [18], it was shown that special points and special tangents of a unital U give rise to parallel classes and resolutions of the
unital design associated with U , respectively. Even though, all parallel classes and resolutions of the unital designs associated
with a unital in planes of order 9 come from special points and special tangents, respectively [16], this is not true in general.
The parallel classes of the designs associated with the following unitals in planes of order 16 come from special points: Unitals
1 and 16 of BBH1 plane, unitals 6, 21, and dual unitals 7, 20, and 26 of BBH2 plane, unital 11 of BBS4 plane, unital 3 of
DEMP plane, unital 5 of HALL plane, all unitals in LMRH plane, all unitals except unitals 5 and 9 of MATH plane, unitals 2
and 29 and dual unital 26 of JOHN plane, unitals 5 and 7 of JOWK plane, all unitals except unitals 2 and 10 of SEMI2 plane,
all unitals except unitals 3 and 4 of SEMI4 plane, and unital 2 of PG(2,16). The number of parallel classes of the designs
associated with the rest of the known unitals in planes of order 16 is grater then the number of special points of unitals.

3. Conclusion

Previously, no unitals without special points were known to exist (a question asked by the authors in [16]), but the data given in
Table 3.1 shows that unitals 6,6⊥,7, and 8 of MATH plane and unital 2 of SEMI4 plane do not have any special points (unital
2 of SEMI4 plane in [16] is the unital 12 in [12]).
All known unitals in projective planes of order q2 ∈ {9,16} having at least one special tangent have the property that the
number of special points is a multiple of q. Does this property hold in general?
Unitals 2 and 14 of BBH1 plane are the first (and only) examples of unitals having the following property: none of the special
points outside of a special tangent lies on a secant through the intersection point of the special tangent with the unital. Why do
these unitals act differently?
None of the unitals given in Table 3.2 have a special tangent. This shows that if a unital U in a plane of order 16 has a special
tangent, then U and U⊥ have the same pedal set counts. Unitals in planes of order 9 having at least one special tangent also
possess this property [16]. Are there unitals not having this property?
It was observed in [16] that the number of pedal sets having line type (q+1) always seems to agree for a unital and its dual
unital. We notice that not only the number of line type (q+1), but also the number of line type (q,2q) seems to agree for a
unital and its dual unital. Can we prove that this property holds in general?
We end this paper with the following conjecture:

Conjecture 1. Let U be a unital embedded in a projective plane of order q2, and ni(U) be the number of pedal sets of U
having line type i. Then,

ni(U) = ni(U⊥)

for i ∈ {(q+1),(q,2q)}. Furthermore, if U has a special tangent, then

ni(U) = ni(U⊥)

for any i.
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Plane Unital Pedal set
No. (5) (4,24) (32,24) (3,27) (210)

BBH1 4 11 0 24 84 89
5 16 12 4 104 72
6 16 12 4 104 72
7 16 0 16 104 72
8 28 24 12 96 48
9 28 12 36 52 80

10 28 24 12 96 48
11 16 4 12 88 88
12 16 4 12 88 88
13 16 8 12 104 68
14 68 0 0 104 36
15 16 8 12 104 68
16 24 16 16 96 56

BBH2 7 11 8 32 96 61
8 16 24 4 92 72
9 16 16 0 124 52

10 28 24 0 108 48
11 16 12 20 92 68
12 16 4 28 80 80
13 16 8 12 104 68
14 20 16 12 96 64
15 24 0 32 76 76
16 24 4 20 92 68
17 16 0 20 104 68
18 8 0 30 120 50
19 24 24 8 136 16
20 24 56 8 88 32
21 32 8 0 96 72
22 24 24 0 88 72
23 24 16 0 112 56
24 16 24 12 112 44
25 32 16 12 88 60
26 40 16 0 112 40

BBS4 2 16 16 4 76 96
3 16 24 0 76 92
4 20 12 4 88 84
5 16 16 8 92 76
6 20 8 4 96 80

Table 3.1: Pedal sets of unitals in planes of order 16.
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Plane Unital Pedal set
No. (5) (4,24) (32,24) (3,27) (210)

BBS4 7 24 16 24 76 68
8 24 8 12 100 64
9 20 16 36 92 44

10 16 24 20 52 96
11 4 0 0 150 54
12 16 0 0 156 36
13 16 24 48 60 60

DEMP 3 4 0 24 24 156
4 4 12 12 144 36

MATH 5 24 8 0 56 120
6 0 0 32 48 128
7 0 0 32 80 96
8 0 0 16 32 160
9 12 12 44 64 76

10 16 0 0 192 0
11 16 0 0 0 192
12 16 0 0 0 192
13 80 0 0 128 0
14 16 0 0 64 128
15 16 0 0 64 128
16 16 0 0 64 128

JOHN 6 16 20 0 68 104
7 16 16 0 80 96
8 16 12 4 80 96
9 16 8 0 116 68

10 20 12 0 96 80
11 20 16 0 92 80
12 24 0 16 100 68
13 20 0 16 64 108
14 16 20 20 112 40
15 20 12 12 68 96
16 20 16 12 112 48
17 16 24 20 76 72
18 24 4 20 88 72
19 16 44 12 84 52
20 16 32 16 100 44
21 20 0 16 88 84
22 24 12 20 60 92

Table 3.1: (Continued)
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Plane Unital Pedal set
No. (5) (4,24) (32,24) (3,27) (210)

JOHN 23 20 12 12 80 84
24 24 8 12 64 100
25 20 12 20 52 104
26 24 0 0 128 56
27 20 0 12 112 64
28 24 0 12 88 84
29 16 0 16 48 128

JOWK 5 4 0 12 84 108
6 20 0 12 96 80
7 16 0 16 128 48

SEMI2 4 4 0 12 48 144
5 16 0 32 96 64
6 16 0 0 160 32
7 4 0 12 144 48
8 4 0 60 48 96
9 16 0 32 128 32

10 16 0 0 96 96
11 16 0 0 64 128
12 16 0 64 64 64
13 16 0 0 192 0
14 16 0 0 0 192
15 16 0 0 0 192
16 16 64 64 64 0
17 16 0 0 64 128
18 16 0 0 0 192
19 16 0 0 0 192
20 16 0 0 192 0
21 16 0 0 192 0

SEMI4 2 0 16 16 64 112
3 4 4 12 100 88
4 20 16 0 96 76
5 16 24 0 72 96
6 16 24 0 72 96
7 4 0 12 144 48
8 16 0 0 128 64
9 16 64 0 64 64

10 16 0 0 128 64
11 16 64 0 64 64

Table 3.1: (Continued)
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Plane Unital Pedal set
No. (5) (4,24) (32,24) (3,27) (210)

BBH2 7 11 8 24 112 53
8 16 24 0 100 68

11 16 12 12 108 60
12 16 4 20 96 72
14 20 16 20 80 72
18 8 0 35 110 55
23 24 16 16 80 72

BBS4 2 16 16 0 84 92
4 20 12 0 96 80
5 16 16 4 100 72
6 20 8 0 104 76
9 20 16 32 100 40

10 16 24 28 36 104
13 16 24 24 108 36

DEMP 3 4 0 12 48 144
MATH 6 0 0 16 80 112
JOHN 6 16 20 4 60 108

8 16 12 0 88 92
9 16 8 8 100 76

10 20 12 4 88 84
11 20 16 4 84 84
17 16 24 24 68 76
19 16 44 20 68 60
21 20 0 24 72 92
24 24 8 20 48 108
25 20 12 12 68 96
26 24 0 8 112 64

JOWK 6 20 0 28 64 96

Table 3.2: Pedal sets of the dual unitals in planes of order 16.
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