

Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi Journal of Agricultural Faculty of Gaziosmanpasa University http://ziraatdergi.gop.edu.tr/

Araştırma Makalesi/Research Article

JAFAG ISSN: 1300-2910 E-ISSN: 2147-8848 (2017) 34 (2), 74-80 doi:**10.13002/jafag4203** 

## Determination of Biochemical Properties and Fatty Acid Composition of New Walnut (Juglans regia) Genotypes

## Sebahattin YILMAZ<sup>1</sup> Yaşar AKÇA<sup>2\*</sup>

<sup>1</sup>Ahi Evran University, Faculty of Agriculture, Department of Horticulture, Kırşehir <sup>2</sup>Gaziosmanpaşa University, Faculty of Agriculture, Department of Horticulture, Tokat \*e-mail: akca66@gmail.com

| e man. akeado e gman.com                         |                                           |
|--------------------------------------------------|-------------------------------------------|
| Alındığı tarih (Received): 16.01.2017            | Kabul tarihi (Accepted): 14.06.2017       |
| Online Baskı tarihi (Printed Online): 16.08.2017 | Yazılı baskı tarihi (Printed): 09.09.2017 |

**Abstract:** Walnuts (*Juglans regia* L.) of 14 new genotypes were selected according to late leafing time, fruit quality and high yield in native population in Niksar-Turkey. Crude protein, total oil and ash contents of walnut kernels ranged from 17.09-23.89 %, 62.80-73.05 %, and 1.36 %-2.20 % respectively. Phosphorous contents of kernels were found in the range of 230.65-344.40 mg 100 g<sup>-1</sup>, potassium 163.92-308.86 mg 100 g<sup>-1</sup>, sodium 7.94-22.53 mg 100 g<sup>-1</sup>, copper 2.25-3.64 mg 100 g<sup>-1</sup>, iron 2.21-4.32 mg 100 g<sup>-1</sup>, zinc 1.97-5.48 mg 100 g<sup>-1</sup>, manganese 0.91-4.39 mg 100 g<sup>-1</sup>. Differences in chemical properties and fatty acid contents were determined. Polyunsaturated especially linoleic acid was found predominant. Oleic, linolenic, palmitic and stearic acids were other main fatty acids in oil of walnut kernels. Also, 13 different fatty acids were determined by at small quantities. Total PUFA content changed between 58.77 % and 77.39 %.

Keywords: Walnut, mineral contents, fatty acids

### Yeni Ceviz Genotiplerinin Kimyasal İçerikleri ve Yağ Asitleri Bileşenlerinin Belirlenmesi

Öz: Geç yapraklanma, meyve kalitesi ve yüksek verim esas alınarak Niksar ceviz popülasyonundan 14 genotip seçilmiştir. İç cevizde ham protein, total yağ ve kül içeriği sırasıyla 17.09-23.89 %, 62.80-73.05 %, 1.36-2.20 % arasında belirlenmiştir. Fosfor içeriği 230.65-344.40 mg 100 g<sup>-1</sup> arasında, potasyum içeriği 163.92-308.86 mg arasında, sodyum içeriği 7.94-22.53 mg arasında, bakır içeriği 2.25-3.64 arasında, demir içeriği 2.21-4.32 arasında, çinko içeriği 1.97-5.48 arasında, manganez içeriği 0.91-4.39 arasında tespit edilmiştir. Genotiplerin kimyasal içerikleri ve yağ asitleri kompozisyonları arasında farklılıklar belirlenmiştir. Çoklu doymamış yağ asitleri içinde linoleik asit dominant bulunmuştur. İç ceviz yağında, ana yağ asitleri oleik, linolenik, palmitik ve stearik asitlerdir. Ayrıca eser miktarlarda 13 farklı yağ asidi de tespit edilmiştir. Total ÇDYA içeriği % 58.77 ile % 77.39 arasında belirlenmiştir.

Anahtar kelimeler: Ceviz, mineral içerikleri, yağ asitleri

#### 1. Introduction

Walnuts are accepted dense and rich foods since ancient times so that it was called '*Jovis* glans' in the meaning of fruit of god Jupiter. *Juglans regia* L. trees can be found the native in a wide area from central Asia, Iran to the eastern part of Turkey (McGranahan and Leslie 1990). Turkey is an important walnut producer country in the world (FAOSTAT 2014). In Turkey, kernel walnuts are used in bakery and confectionary in making bread, cakes, ice creams and especially 'baklava' production as important special food.

In the world today, some fruits like walnuts becoming popular due to their positive health effect. Health benefits of walnuts are generally attributed composition. to their chemical Depending on genetic of the tree and environmental factors walnuts generally contain 60 % oil, 12-19 % protein and 2-4 % ash, 65 % of this oil composed of polyunsaturated fatty acids (Savage et al. 2001; Savage 2001; Prasad 1994).

As well as containing omega 3 and omega 6 fatty acids, walnuts contain significant amounts of antioxidants such as vitamin E, vegetable

proteins, dietary fibers, vitamins B12, B 1, phytosterols, polyphenols, minerals such as phosphorous, potassium, magnesium, iron and copper (Pereria et al. 2008; Venkatachalam et al. 2006; Maguire et al. 2004; Amaral et al. 2003; Sze-Tao et al. 2000).

Although walnuts are rich in fat, a meaningful correlation between nut consumption and reduced incidence of heart and artery diseases has been reported in large epidemiological studies (Torobian et al. 2009). Regular walnut consumption shows the cardio protective effect and lowers blood total plasma cholesterol and low-density-lipoprotein (LDL) cholesterol levels. This positive health effect thought to be a result of high unsaturated fatty acid contents of walnut oil. Results of many researches support daily consumption of walnut in certain amounts (Torobian et al. 2009; Griel and Kris-Etherton 2006).

Oil content and fatty acid profile of walnut oil are also important for consumers that expect health benefits such as lowering blood LDL concentrations. Consumers of today have increasing interest on nutritional attributes and origin of fruits. Cultivars that show variation aspect of oil and high rate of stable fatty acids are also important for breeders.

Cultivar based and market survey analyses to demonstrate nutritive quality were implemented by researchers. Generally, proximate mineral contents and fatty acid composition of walnut cultivars or genotypes from different origins have been reported separately. But the production of wild or semi-cultivated trees that offered to markets or food industry has not been investigated. In this research main and important nutritional components and oil attributes of walnuts were investigated together for genotypes among wild and semi-cultivated walnut trees. In this study, 14 new selected walnut genotypes from important walnut production area of Turkey were characterized. The main aim of this study was to determine biochemical properties and fatty acid composition of new genotypes.

#### 2. Materials and Methods

# 2.1. Plant material and preparation of samples

In this study, 14 new selected walnut genotypes were used. These genotypes were selected according to nut quality, late leafing time and tolerant to spring frost. Trees of genotypes were grown under natural rainfall (averaging 420 mm/year) and not fertilized. Nut samples were collected at optimum harvest dates. The nuts 5 kg per tree handpicked from the tree, after nuts were hulled, dried at  $41 \pm 2$  °C approximately for two days and were shelled manually. The walnut kernels were put in plastic bags and frozen to -18 °C until the analyses.

### 2.2. Chemical Analyses

All chemical analyses were performed according to standard AOAC methods in duplicate. Dry and well-chopped walnut kernels were extracted with n-hexane in a Soxhlet apparatus for 8 hour and crude oil content was determined according to standard AOAC method (948.22). Crude protein of samples was determined by the Kjeldahl method of AOAC (950.48). Total protein contents were calculated as percent by using a conversion factor of 5.30. Ash of samples was determined by incinerating in a muffle furnace at 525 °C until white ash is obtained according to the gravimetric method of AOAC 950.49 (AOAC 1995). Phosphorous contents were determined according to AOAC method 986.24 by using UV spectrophotometer. Potassium, sodium, copper, iron, zinc and manganese contents of samples were determined by using flame atomic absorption spectrophotometer after ashing 1.0 g sample in a muffle furnace at 550 °C for 5-7 hours until a grey ash residue was obtained. Results reported as mg.100 g<sup>-1</sup> (AOAC 1995).

### 2.2.1. Fatty Acid Analyses

All extractions were conducted in duplicate by using 4.0 g finely chopped walnut. Fatty acid analyses were carried out using the IUPAC II.D.19 method (IUPAC 1979). Fatty acids of the kernel oils were analyzed using a Perkin Elmer Auto System XL gas chromatograph (Perkin-Elmer, Eacosfield, UK) equipped with an SP-2330 column and a flame ionization detector. Separation of fatty acid methyl esters was achieved using a fused silica capillary column (30 m x 0.25 mm x 0,20  $\mu$ m film thickness). The oven temperature was set at 120 °C for 2 min, then increased to 220 °C with a ramp rate of 58 °C min <sup>-1</sup> and then held for 15 min. The injector and detector temperatures were maintained at 240 and 250 °C, respectively. The carrier gas was 10 psi helium with a split ratio of 1/50. The air and hydrogen pressures were 338 and 45 mL min <sup>-1</sup> respectively. Results were expressed as the percentage of fatty acid with respect to the total fatty acids. Fatty acid analyses were conducted in duplicate.

#### **3. Results and Discussion**

# **3.1.** Crude Protein, Total Oil and Ash Contents

Crude protein and total oil contents of walnut kernels ranged from 17.09-23.89 %, 62.80 -73.05 % respectively and listed in Table 1. Crude protein values of walnut vary widely due to genetic and environmental effect. Calculation of crude protein using different conversion factor (4.38, 5.30, 5.40 or 6.25) is another variation source.

**Table 1.** Crude protein, total oil, ash contents (%) and mineral contents (mg 100 g -1) of kernels of fourteen new walnut (*Juglans regia* L.) genotypes

*Çizelge 1.* On dört yeni ceviz (Juglans regia L.) genotipinin ceviz içlerinin ham protein, toplam yağ, kül (%) ve mineral içerikleri (mg 100 g -1)

|         | Content                     |              |      |                    |                  |                |                |              |              |                   |
|---------|-----------------------------|--------------|------|--------------------|------------------|----------------|----------------|--------------|--------------|-------------------|
| Content | Crude<br>protein<br>(NX5.3) | Total<br>oil | Ash  | Phosphorous<br>(P) | Potassium<br>(K) | Sodium<br>(Na) | Copper<br>(Cu) | Iron<br>(Fe) | Zinc<br>(Zn) | Manganese<br>(Mn) |
| 60NL2   | 21.65                       | 62.80        | 2.08 | 280.80             | 259.89           | 15.56          | 3.11           | 3.35         | 2.38         | 1.57              |
| 60NL5   | 23.38                       | 71.60        | 1.70 | 308.10             | 239.51           | 8.15           | 3.12           | 3.09         | 5.48         | 4.31              |
| 60NL7   | 17.09                       | 73.05        | 1.36 | 252.90             | 254.65           | 17.53          | 3.17           | 2.70         | 3.22         | 2.23              |
| 60NL10  | 17.29                       | 64.28        | 1.70 | 292.20             | 212.36           | 17.30          | 3.29           | 2.96         | 2.26         | 0.91              |
| 60NL13  | 19.71                       | 69.02        | 1.44 | 296.20             | 232.00           | 15.27          | 2.76           | 2.21         | 3.16         | 1.12              |
| 60NF32  | 20.07                       | 65.87        | 1.75 | 270.60             | 238.73           | 9.73           | 2.83           | 3.01         | 4.29         | 3.11              |
| 60NF34  | 23.89                       | 69.05        | 1.74 | 298.80             | 236.70           | 10.30          | 3.64           | 3.08         | 2.97         | 2.20              |
| 60NF44  | 22.39                       | 69.84        | 1.84 | 230.65             | 163.92           | 22.53          | 3.46           | 4.04         | 3.38         | 4.39              |
| 60NL53  | 21.23                       | 66.62        | 2.20 | 330.60             | 308.86           | 19.10          | 2.73           | 2.72         | 1.97         | 2.65              |
| 60NF58  | 20.59                       | 70.68        | 1.90 | 298.80             | 254.28           | 17.38          | 2.70           | 2.98         | 2.82         | 1.63              |
| 60NF59  | 20.90                       | 70.37        | 2.14 | 330.45             | 297.22           | 16.58          | 2.85           | 3.03         | 3.81         | 1.96              |
| 60NL61  | 19.01                       | 68.20        | 1.72 | 263.40             | 262.19           | 13.21          | 3.34           | 2.67         | 3.22         | 0.92              |
| 60NF81  | 18.84                       | 68.35        | 1.88 | 293.40             | 225.61           | 10.53          | 3.32           | 4.32         | 2.73         | 1.84              |
| 60NF84  | 23.88                       | 67.63        | 2.14 | 344.40             | 267.43           | 7.94           | 2.25           | 2.95         | 5.19         | 2.72              |
| Mean    | 20.71                       | 68.38        | 1.83 | 292.24             | 246.67           | 14.37          | 3.04           | 3.08         | 3.35         | 2.25              |

Each value is the average of duplicate determinations

Walnut protein values determined between 12.2 % and 19.24 % in different studies by the different conversion factor. Amaral et al (2003) found oil values of six French cultivars grown in Portugal between 12.2-15.2 % (N x 5.30). Savage (2001) determined crude protein contents of walnut grown in New Zealand between 13.6-18.1 % (Nx6.25). Pereira et al. (2008) have also investigated the proximate composition of six French cultivars and found crude protein values between 15.42-18.03 % (Nx4.38). Caglarirmak (2003) determined protein contents of four new Turkish selections between 13.16-14.63 % (Nx5.40). Crude protein contents of genotypes

from eastern Anatolia found in a range between 12.11-23.43 % (Yarılgaç et al. 2003), and genotypes from western Anatolia in a range between 15.17-19.24 % (Nx5.30) (Özkan and Koyuncu 2005).

Crude protein quantities of samples are slightly higher when compared other researcher's reports. 60NL7 genotype showed lowest value with 17.09 % content when 60NF34 was the highest with 23.89 %. Higher protein contents can be an advantage of origin and result of genetic superiority.

Studies by many researchers have shown that total oil of walnuts varied between 52-70 %.

Mean value of 67.84 % in the range of 62.80 % (60NL2) and 73.05 % (60NL7) obtained from walnut samples in this research (Table 1). Pereira et al. (2008) determined oil contents of three cultivars (Franquette, Lara and Marbot) grown in Portugal between 68.83 % and 72.14 %. Özkan and Koyuncu (2005) determined oil content of walnut genotypes originated from Turkey between 61.97-70.92 %. Savage (2001), reported oil amounts of New Zealand grown American, European cultivars and New Zealand selections. Total oil values differed between 62.6-70.3 % in that study. Sze-Tao and Sathe (2000) determined 66.90 % mean oil content in market surveyed walnuts. Özcan (2009) found 64.2 % mean oil value in the population surveyed walnut samples in Turkey. Maguire et al. (2004) determined 50.8 % oil content in walnut samples derived from local food markets. The oil content of the walnut varieties selected from the Çankırı region varied between 43.16 and 58.68 % (Ünver et al. 2016). Our results were generally similar with previously reported walnut oil amounts from the different part of the world, different cultivars or genotypes.

Average ash content was 1.84 % in this research and values varied narrowly between 1.36-2.20 % (Table 1). Generally, ash contents were differed widely in previously reported researches. Ash contents of walnut kernels varied in the range of 1.26 % (Özkan and Koyuncu 2005) and 4.26 % (Pereira et al. 2008) in that reports.

#### **3.2. Mineral Contents**

Mineral compositions of walnut genotypes were listed also in Table 1. Phosphorous contents of genotypes were found in the range of 230.65-344.40 mg 100 g<sup>-1</sup>. Potassium contents were found between 163.92-308.86, sodium 7.94-22.53 mg 100 g<sup>-1</sup>. The amount of other minerals (mg 100 g<sup>-1</sup>) determined in the range of 2.25-3.64 for copper, 2.21-4.32 for iron, 1.97-5.48 for zinc, 0.91-4.39 for manganese.

Studies on the determination of walnut mineral contents showed that there were significant differences in amounts. That can be related to various geological origins, genotypes-cultivars, climate and soil conditions and tree fertilization. Lavedrine et al. (2000) reported the mineral composition of walnuts originated from France and California. According to their findings, walnut contains (as mg 100 g<sup>-1</sup>) phosphorous between 308-335, potassium 358-487, sodium 0.3-6.7, copper 1.2-1.5, iron 1.8-2.9, zinc 1.2-1.9, manganese 1.1-4.3. Cultivar samples derived in that study were from professional orchards and cultivated in similar conditions so that internal within the same mineral values were narrow. Determined average and range mineral values of new Turkish walnut cultivars and selections from different origins by Caglarirmak (2003) were (mg 100 g<sup>-1)</sup> 316.0 (280-380) for phosphorous, 270 (230-340) for potassium, 1.01 (0.50-1.34) for copper, 2.90 (2.46-3.33) for iron, 2.01 (1.1-2.45) for zinc, 2.46 (1.51-3.85) for manganese.

In our study, average phosphorous and potassium quantities were found lower than many of previously reported data (Özcan 2009; Caglarirmak 2003; Lavedrine et al. 2000) and book reviews (Prasad 1994). Sodium values were slightly higher when compared other reports. But levels of iron, copper, zinc and manganese minerals were similar (Özcan 2009; Lavedrine et al. 2000).

Differences in mineral contents in other researches has been reported a result of origin, genotype and different environmental factors such as climate and soil. Origins, environmental factors, and cultural practices such as irrigation and fertilization did not fully represent in reports. Mineral absorption of trees greatly affected by soil pH, so walnut kernels could show wide variations. Acidic soils enhance Cu and Mn absorption. Inversely chalky soils could affect absorption of iron. Fertilizer applications in orchards by enriching soil nutrition could result from differences in contents of walnut kernels. In our study, samples were collected from different genotypes from sites that have different soil types and not fully cultivated.

#### 3.3. Fatty Acid Composition

The fatty acid compositions of 14 different genotypes were given in Table 2.

## YILMAZ and AKÇA/ JAFAG (2017) 34 (2), 74-80

| Fatty acid name and molecular structure                                                                                                                                                                                                                                                                                           | 60NL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60NL5                                                                                                                                                                                                                                                                                                                                                                                                                   | 60NL7                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60NL10                                                                                                                                                                                                                                                                                                                                                      | 60NL13                                                                                                                                                                                                                                                                            | 60NF32                                                                                                                                                                                                                                                                                                                                                                       | 60NF34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Myristic C14:0                                                                                                                                                                                                                                                                                                                    | $0.031 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.027 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                       | $0.022 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.026 \pm 0.001$                                                                                                                                                                                                                                                                                                                                           | $0.024\pm0.001$                                                                                                                                                                                                                                                                   | $0.031 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                            | $0.025 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |
| Pentadecanoic C15:0                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                 | $0.023 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |
| Palmitic C16:0                                                                                                                                                                                                                                                                                                                    | $7.116 \pm 0.006$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $7.185\pm0.008$                                                                                                                                                                                                                                                                                                                                                                                                         | $6.653 \pm 0.007$                                                                                                                                                                                                                                                                                                                                                                                                                          | $6.982\pm0.008$                                                                                                                                                                                                                                                                                                                                             | $7.233 \pm 0.001$                                                                                                                                                                                                                                                                 | $7.585 \pm 0.003$                                                                                                                                                                                                                                                                                                                                                            | $6.352 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |
| Palmiteloic C16:1                                                                                                                                                                                                                                                                                                                 | $0.074 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.081\pm0.000$                                                                                                                                                                                                                                                                                                                                                                                                         | $0.069 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.066 \pm 0.001$                                                                                                                                                                                                                                                                                                                                           | $0.078\pm0.002$                                                                                                                                                                                                                                                                   | $0.084\pm0.001$                                                                                                                                                                                                                                                                                                                                                              | $0.082\pm0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |
| Heptadecanoic C17:0                                                                                                                                                                                                                                                                                                               | $0.047 {\pm}\ 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.049\pm0.000$                                                                                                                                                                                                                                                                                                                                                                                                         | $0.048\pm0.000$                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.264 \pm 0.217$                                                                                                                                                                                                                                                                                                                                           | $0.056\pm0.000$                                                                                                                                                                                                                                                                   | $0.052\pm0.000$                                                                                                                                                                                                                                                                                                                                                              | $0.047 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |
| Heptadecenoic C17:1 cis-10                                                                                                                                                                                                                                                                                                        | $0.374 \pm 0.010$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.323\pm0.006$                                                                                                                                                                                                                                                                                                                                                                                                         | $0.365 \pm 0.022$                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.232\pm0.232$                                                                                                                                                                                                                                                                                                                                             | $0.415 \pm 0.002$                                                                                                                                                                                                                                                                 | $0.301 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                            | $0.334\pm0.004$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |
| Stearic C18:0                                                                                                                                                                                                                                                                                                                     | $2.146\pm0.008$                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.907 \pm 0.005$                                                                                                                                                                                                                                                                                                                                                                                                       | $2.288\pm0.023$                                                                                                                                                                                                                                                                                                                                                                                                                            | $2.874\pm0.006$                                                                                                                                                                                                                                                                                                                                             | $2.438\pm0.002$                                                                                                                                                                                                                                                                   | $1.941\pm0.000$                                                                                                                                                                                                                                                                                                                                                              | $1.910\pm0.004$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |
| Elaidic C18:1n9t                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.028\pm0.001$                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.011 \pm 0.011$                                                                                                                                                                                                                                                                                                                                           | $0.023 \pm 0.001$                                                                                                                                                                                                                                                                 | $0.027\pm0.000$                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |
| Oleic C18:1n9c                                                                                                                                                                                                                                                                                                                    | $18.412 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $27.822 \pm 0.004$                                                                                                                                                                                                                                                                                                                                                                                                      | $12.828 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                         | $16.744 \pm 0.003$                                                                                                                                                                                                                                                                                                                                          | $17.661 \pm 0.003$                                                                                                                                                                                                                                                                | $12.426 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                           | $32.090 \pm 0.008$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                          |
| Linoleaidic C18:2n6t                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                 | $0.023\pm0.001$                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |
| Linoleic C18:2n6c                                                                                                                                                                                                                                                                                                                 | $59.010 \pm 0.005$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $52.762 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                      | $65.520 \pm 0.005$                                                                                                                                                                                                                                                                                                                                                                                                                         | $59.169 \pm 0.011$                                                                                                                                                                                                                                                                                                                                          | $60.925 \pm 0.001$                                                                                                                                                                                                                                                                | $64.696 \pm 0.010$                                                                                                                                                                                                                                                                                                                                                           | $48.859 \pm 0.004$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                          |
| Linolenic C18:3n6 g                                                                                                                                                                                                                                                                                                               | $0.052\pm0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.041\pm0.001$                                                                                                                                                                                                                                                                                                                                                                                                         | $0.052\pm0.001$                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.056\pm0.000$                                                                                                                                                                                                                                                                                                                                             | $0.043\pm0.000$                                                                                                                                                                                                                                                                   | $0.053\pm0.001$                                                                                                                                                                                                                                                                                                                                                              | $0.039\pm0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |
| Arachidic C20:0                                                                                                                                                                                                                                                                                                                   | $0.083\pm0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.085\pm0.003$                                                                                                                                                                                                                                                                                                                                                                                                         | $0.080\pm0.002$                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.098\pm0.001$                                                                                                                                                                                                                                                                                                                                             | $0.091 \pm 0.001$                                                                                                                                                                                                                                                                 | $0.081\pm0.000$                                                                                                                                                                                                                                                                                                                                                              | $0.092\pm0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |
| Linolenic C18:3n3 a                                                                                                                                                                                                                                                                                                               | $12.320 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $9.368\pm0.003$                                                                                                                                                                                                                                                                                                                                                                                                         | $11.765 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                         | $13.130 \pm 0.004$                                                                                                                                                                                                                                                                                                                                          | $10.728 \pm 0.001$                                                                                                                                                                                                                                                                | $12.376 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                           | $9.842\pm0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |
| Eicosenoic C20:1n9 cis-11                                                                                                                                                                                                                                                                                                         | $0.262\pm0.010$                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.292\pm0.001$                                                                                                                                                                                                                                                                                                                                                                                                         | $0.203\pm0.012$                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.255 \pm 0.001$                                                                                                                                                                                                                                                                                                                                           | $0.220\pm0.001$                                                                                                                                                                                                                                                                   | $0.224\pm0.013$                                                                                                                                                                                                                                                                                                                                                              | $0.260 \pm 0.011$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |
| Eicosadienoic C20:2 cis 11.14                                                                                                                                                                                                                                                                                                     | $0.049 \pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.028\pm0.000$                                                                                                                                                                                                                                                                                                                                                                                                         | $0.055 \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.055\pm0.000$                                                                                                                                                                                                                                                                                                                                             | $0.041 \pm 0.001$                                                                                                                                                                                                                                                                 | $0.054\pm0.002$                                                                                                                                                                                                                                                                                                                                                              | $0.035\pm0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |
| Heicosanoic C21:0                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.012\pm0.012$                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |
| Behenic C22:0                                                                                                                                                                                                                                                                                                                     | $0.027\pm0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.034\pm0.002$                                                                                                                                                                                                                                                                                                                                                                                                         | $0.028\pm0.001$                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.029\pm0.000$                                                                                                                                                                                                                                                                                                                                             | $0.028\pm0.001$                                                                                                                                                                                                                                                                   | $0.027\pm0.000$                                                                                                                                                                                                                                                                                                                                                              | $0.035\pm0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |
| Total                                                                                                                                                                                                                                                                                                                             | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                   | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.0                                                                                                                                                                                                                                                                                                                                                       | 100.0                                                                                                                                                                                                                                                                             | 100.0                                                                                                                                                                                                                                                                                                                                                                        | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |
| Fatty acid name and molecular structure                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |
| Fatty acid name and molecular structure (continued)                                                                                                                                                                                                                                                                               | 60NF44                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60NL53                                                                                                                                                                                                                                                                                                                                                                                                                  | 60NF58                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60NF59                                                                                                                                                                                                                                                                                                                                                      | 60NL61                                                                                                                                                                                                                                                                            | 60NF81                                                                                                                                                                                                                                                                                                                                                                       | 60NF84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mean                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                   | <b>60NF44</b><br>0.026 ± 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>60NL53</b><br>0.040 ± 0.013                                                                                                                                                                                                                                                                                                                                                                                          | <b>60NF58</b><br>0.030 ± 0.000                                                                                                                                                                                                                                                                                                                                                                                                             | <b>60NF59</b><br>0.028 ± 0.001                                                                                                                                                                                                                                                                                                                              | 60NL61                                                                                                                                                                                                                                                                            | <b>60NF81</b><br>0.027 ± 0.002                                                                                                                                                                                                                                                                                                                                               | <b>60NF84</b><br>0.032 ± 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Mean</b> 0.028                                                                                                                                        |
| (continued)                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |
| (continued)<br>Myristic C14:0                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.026 \pm 0.000 \\ - \\ 6.693 \pm 0.004 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.040 \pm 0.013 \\ \hline \\ - \\ 6.966 \pm 0.007 \end{array}$                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.030 \pm 0.000 \\ - \\ 6.610 \pm 0.004 \end{array}$                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.028 \pm 0.001 \\ 0.011 \pm 0.011 \\ 6.098 \pm 0.009 \end{array}$                                                                                                                                                                                                                                                                        | -<br>-<br>5.962 ± 0.004                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.027 \pm 0.002 \\ \hline \\ - \\ 7.139 \pm 0.004 \end{array}$                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0.032 \pm 0.006 \\ 0.021 \pm 0.001 \\ 6.766 \pm 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.028                                                                                                                                                    |
| (continued)<br>Myristic C14:0<br>Pentadecanoic C15:0                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.026 \pm 0.000 \\ \hline \\ 6.693 \pm 0.004 \\ 0.067 \pm 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.040 \pm 0.013 \\ \hline \\ 6.966 \pm 0.007 \\ \hline \\ 0.088 \pm 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.030 \pm 0.000 \\ \hline \\ 6.610 \pm 0.004 \\ 0.072 \pm 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0.028 \pm 0.001 \\ 0.011 \pm 0.011 \\ \hline 6.098 \pm 0.009 \\ 0.071 \pm 0.001 \end{array}$                                                                                                                                                                                                                                              | -<br>5.962 ± 0.004<br>0.072 ± 0.001                                                                                                                                                                                                                                               | $\begin{array}{c} 0.027 \pm 0.002 \\ \hline \\ - \\ \hline \\ 7.139 \pm 0.004 \\ \hline \\ 0.066 \pm 0.001 \end{array}$                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.032 \pm 0.006 \\ 0.021 \pm 0.001 \\ 6.766 \pm 0.000 \\ 0.097 \pm 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.028<br>0.018                                                                                                                                           |
| (continued)<br>Myristic C14:0<br>Pentadecanoic C15:0<br>Palmitic C16:0                                                                                                                                                                                                                                                            | $\begin{array}{c} 0.026 \pm 0.000 \\ \hline \\ 6.693 \pm 0.004 \\ \hline \\ 0.067 \pm 0.001 \\ \hline \\ 0.048 \pm 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.040 \pm 0.013 \\ \hline \\ 6.966 \pm 0.007 \\ \hline \\ 0.088 \pm 0.001 \\ \hline \\ 0.044 \pm 0.000 \end{array}$                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.030 \pm 0.000 \\ \hline \\ 6.610 \pm 0.004 \\ \hline \\ 0.072 \pm 0.000 \\ \hline \\ 0.046 \pm 0.000 \end{array}$                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.028 \pm 0.001 \\ 0.011 \pm 0.011 \\ 6.098 \pm 0.009 \\ 0.071 \pm 0.001 \\ 0.051 \pm 0.001 \end{array}$                                                                                                                                                                                                                                  | -<br>-<br>5.962 ± 0.004                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.027 \pm 0.002 \\ \hline \\ - \\ 7.139 \pm 0.004 \end{array}$                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0.032 \pm 0.006 \\ 0.021 \pm 0.001 \\ 6.766 \pm 0.000 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.028<br>0.018<br>6.810                                                                                                                                  |
| (continued)<br>Myristic C14:0<br>Pentadecanoic C15:0<br>Palmitic C16:0<br>Palmiteloic C16:1<br>Heptadecanoic C17:0<br>Heptadecenoic C17:1 cis-10                                                                                                                                                                                  | $\begin{array}{c} 0.026 \pm 0.000 \\ \hline \\ - \\ \hline \\ 6.693 \pm 0.004 \\ \hline \\ 0.067 \pm 0.001 \\ \hline \\ 0.048 \pm 0.000 \\ \hline \\ 0.337 \pm 0.012 \end{array}$                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.040 \pm 0.013 \\ \hline \\ - \\ \hline \\ 6.966 \pm 0.007 \\ \hline \\ 0.088 \pm 0.001 \\ \hline \\ 0.044 \pm 0.000 \\ \hline \\ 0.311 \pm 0.006 \end{array}$                                                                                                                                                                                                                                       | $\begin{array}{c} 0.030 \pm 0.000 \\ \hline \\ - \\ \hline \\ 6.610 \pm 0.004 \\ \hline \\ 0.072 \pm 0.000 \\ \hline \\ 0.046 \pm 0.000 \\ \hline \\ 0.319 \pm 0.016 \end{array}$                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.028\pm 0.001\\ 0.011\pm 0.011\\ \hline 6.098\pm 0.009\\ 0.071\pm 0.001\\ 0.051\pm 0.001\\ 0.336\pm 0.011 \end{array}$                                                                                                                                                                                                                   | $\begin{array}{c} - \\ - \\ - \\ 5.962 \pm 0.004 \\ 0.072 \pm 0.001 \\ 0.050 \pm 0.000 \\ 0.272 \pm 0.026 \end{array}$                                                                                                                                                            | $\begin{array}{c} 0.027 \pm 0.002 \\ \hline \\ - \\ \hline \\ 7.139 \pm 0.004 \\ \hline \\ 0.066 \pm 0.001 \\ \hline \\ 0.052 \pm 0.001 \\ \hline \\ 0.455 \pm 0.016 \end{array}$                                                                                                                                                                                            | $\begin{array}{c} 0.032 \pm 0.006 \\ 0.021 \pm 0.001 \\ 6.766 \pm 0.000 \\ 0.097 \pm 0.000 \\ 0.051 \pm 0.001 \\ 0.286 \pm 0.016 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.028<br>0.018<br>6.810<br>0.076<br>0.065<br>0.333                                                                                                       |
| (continued)<br>Myristic C14:0<br>Pentadecanoic C15:0<br>Palmitic C16:0<br>Palmiteloic C16:1<br>Heptadecanoic C17:0<br>Heptadecenoic C17:1 cis-10<br>Stearic C18:0                                                                                                                                                                 | $\begin{array}{c} 0.026 \pm 0.000 \\ \hline \\ - \\ 6.693 \pm 0.004 \\ \hline \\ 0.067 \pm 0.001 \\ \hline \\ 0.048 \pm 0.000 \\ \hline \\ 0.337 \pm 0.012 \\ \hline \\ 2.091 \pm 0.012 \end{array}$                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.040 \pm 0.013 \\ \hline \\ 6.966 \pm 0.007 \\ \hline \\ 0.088 \pm 0.001 \\ \hline \\ 0.044 \pm 0.000 \\ \hline \\ 0.311 \pm 0.006 \\ \hline \\ 1.820 \pm 0.006 \end{array}$                                                                                                                                                                                                                         | $\begin{array}{c} 0.030 \pm 0.000 \\ \hline \\ 6.610 \pm 0.004 \\ 0.072 \pm 0.000 \\ 0.046 \pm 0.000 \\ 0.319 \pm 0.016 \\ 2.006 \pm 0.016 \end{array}$                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.028\pm 0.001\\ 0.011\pm 0.011\\ \hline 6.098\pm 0.009\\ 0.071\pm 0.001\\ 0.051\pm 0.001\\ 0.336\pm 0.011\\ 1.927\pm 0.009 \end{array}$                                                                                                                                                                                                  | $5.962 \pm 0.004 \\ 0.072 \pm 0.001 \\ 0.050 \pm 0.000$                                                                                                                                                                                                                           | $\begin{array}{c} 0.027 \pm 0.002 \\ \hline \\ - \\ 7.139 \pm 0.004 \\ 0.066 \pm 0.001 \\ 0.052 \pm 0.001 \end{array}$                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.032\pm 0.006\\ 0.021\pm 0.001\\ 6.766\pm 0.000\\ 0.097\pm 0.000\\ 0.051\pm 0.001\\ 0.286\pm 0.016\\ 1.943\pm 0.016\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.028<br>0.018<br>6.810<br>0.076<br>0.065<br>0.333<br>2.115                                                                                              |
| (continued)<br>Myristic C14:0<br>Pentadecanoic C15:0<br>Palmitic C16:0<br>Palmiteloic C16:1<br>Heptadecanoic C17:0<br>Heptadecenoic C17:1 cis-10<br>Stearic C18:0<br>Elaidic C18:1n9t                                                                                                                                             | $\begin{array}{c} 0.026 \pm 0.000 \\ \hline \\ - \\ \hline \\ 6.693 \pm 0.004 \\ \hline \\ 0.067 \pm 0.001 \\ \hline \\ 0.048 \pm 0.000 \\ \hline \\ 0.337 \pm 0.012 \\ \hline \\ 2.091 \pm 0.012 \\ \hline \\ 0.024 \pm 0.001 \end{array}$                                                                                                                                                                                                                                 | $\begin{array}{c} 0.040 \pm 0.013 \\ \hline \\ 6.966 \pm 0.007 \\ \hline \\ 0.088 \pm 0.001 \\ \hline \\ 0.044 \pm 0.000 \\ \hline \\ 0.311 \pm 0.006 \\ \hline \\ 1.820 \pm 0.006 \\ \hline \\ 0.025 \pm 0.001 \end{array}$                                                                                                                                                                                            | $\begin{array}{c} 0.030 \pm 0.000 \\ \hline \\ 6.610 \pm 0.004 \\ 0.072 \pm 0.000 \\ \hline \\ 0.046 \pm 0.000 \\ \hline \\ 0.319 \pm 0.016 \\ \hline \\ 2.006 \pm 0.016 \\ \hline \\ 0.025 \pm 0.001 \end{array}$                                                                                                                                                                                                                         | $\begin{array}{c} 0.028\pm 0.001\\ 0.011\pm 0.011\\ \hline 6.098\pm 0.009\\ 0.071\pm 0.001\\ 0.051\pm 0.001\\ 0.336\pm 0.011\\ 1.927\pm 0.009\\ 0.011\pm 0.011\\ \end{array}$                                                                                                                                                                               | $\begin{array}{c} - \\ 5.962 \pm 0.004 \\ 0.072 \pm 0.001 \\ 0.050 \pm 0.000 \\ 0.272 \pm 0.026 \\ 1.795 \pm 0.025 \\ - \end{array}$                                                                                                                                              | $\begin{array}{c} 0.027 \pm 0.002 \\ \hline \\ - \\ \hline \\ 7.139 \pm 0.004 \\ 0.066 \pm 0.001 \\ 0.052 \pm 0.001 \\ 0.455 \pm 0.016 \\ 2.529 \pm 0.020 \\ \hline \\ - \\ \end{array}$                                                                                                                                                                                     | $\begin{array}{c} 0.032 \pm 0.006 \\ 0.021 \pm 0.001 \\ 6.766 \pm 0.000 \\ 0.097 \pm 0.000 \\ 0.051 \pm 0.001 \\ 0.286 \pm 0.016 \\ 1.943 \pm 0.016 \\ 0.028 \pm 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.028<br>0.018<br>6.810<br>0.076<br>0.065<br>0.333<br>2.115<br>0.022                                                                                     |
| (continued)<br>Myristic C14:0<br>Pentadecanoic C15:0<br>Palmitic C16:0<br>Palmiteloic C16:1<br>Heptadecanoic C17:0<br>Heptadecenoic C17:1 cis-10<br>Stearic C18:0<br>Elaidic C18:1n9t<br>Oleic C18:1n9c                                                                                                                           | $\begin{array}{c} 0.026 \pm 0.000 \\ \hline \\ - \\ 6.693 \pm 0.004 \\ \hline \\ 0.067 \pm 0.001 \\ \hline \\ 0.048 \pm 0.000 \\ \hline \\ 0.337 \pm 0.012 \\ \hline \\ 2.091 \pm 0.012 \end{array}$                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.040 \pm 0.013 \\ \hline \\ 6.966 \pm 0.007 \\ \hline \\ 0.088 \pm 0.001 \\ \hline \\ 0.044 \pm 0.000 \\ \hline \\ 0.311 \pm 0.006 \\ \hline \\ 1.820 \pm 0.006 \end{array}$                                                                                                                                                                                                                         | $\begin{array}{c} 0.030 \pm 0.000 \\ \hline \\ 6.610 \pm 0.004 \\ 0.072 \pm 0.000 \\ \hline \\ 0.046 \pm 0.000 \\ \hline \\ 0.319 \pm 0.016 \\ \hline \\ 2.006 \pm 0.016 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 17.303 \pm 0.001 \end{array}$                                                                                                                                                                                           | $\begin{array}{c} 0.028\pm 0.001\\ 0.011\pm 0.011\\ \hline 6.098\pm 0.009\\ 0.071\pm 0.001\\ 0.051\pm 0.001\\ 0.336\pm 0.011\\ 1.927\pm 0.009\\ 0.011\pm 0.011\\ 24.285\pm 0.001 \end{array}$                                                                                                                                                               | $\begin{array}{c} - \\ - \\ - \\ 5.962 \pm 0.004 \\ 0.072 \pm 0.001 \\ 0.050 \pm 0.000 \\ 0.272 \pm 0.026 \end{array}$                                                                                                                                                            | $\begin{array}{c} 0.027 \pm 0.002 \\ \hline \\ - \\ \hline \\ 7.139 \pm 0.004 \\ \hline \\ 0.066 \pm 0.001 \\ \hline \\ 0.052 \pm 0.001 \\ \hline \\ 0.455 \pm 0.016 \end{array}$                                                                                                                                                                                            | $\begin{array}{c} 0.032\pm 0.006\\ 0.021\pm 0.001\\ 6.766\pm 0.000\\ 0.097\pm 0.000\\ 0.051\pm 0.001\\ 0.286\pm 0.016\\ 1.943\pm 0.016\\ 0.028\pm 0.001\\ 16.877\pm 0.002 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.028<br>0.018<br>6.810<br>0.076<br>0.333<br>2.115<br>0.022<br>19.512                                                                                    |
| (continued)<br>Myristic C14:0<br>Pentadecanoic C15:0<br>Palmitic C16:0<br>Palmiteloic C16:1<br>Heptadecanoic C17:0<br>Heptadecenoic C17:1 cis-10<br>Stearic C18:0<br>Elaidic C18:1n9t                                                                                                                                             | $\begin{array}{c} 0.026 \pm 0.000 \\ \hline \\ 6.693 \pm 0.004 \\ \hline \\ 0.067 \pm 0.001 \\ \hline \\ 0.048 \pm 0.000 \\ \hline \\ 0.337 \pm 0.012 \\ \hline \\ 2.091 \pm 0.012 \\ \hline \\ 0.024 \pm 0.001 \\ \hline \\ 17.042 \pm 0.000 \\ \hline \\ \end{array}$                                                                                                                                                                                                     | $\begin{array}{c} 0.040 \pm 0.013 \\ \hline \\ 6.966 \pm 0.007 \\ \hline \\ 0.088 \pm 0.001 \\ \hline \\ 0.044 \pm 0.000 \\ \hline \\ 0.311 \pm 0.006 \\ \hline \\ 1.820 \pm 0.006 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 16.030 \pm 0.000 \\ \hline \\ \end{array}$                                                                                                                                                 | $\begin{array}{c} 0.030 \pm 0.000 \\ \hline \\ 6.610 \pm 0.004 \\ 0.072 \pm 0.000 \\ \hline \\ 0.046 \pm 0.000 \\ \hline \\ 0.319 \pm 0.016 \\ \hline \\ 2.006 \pm 0.016 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 17.303 \pm 0.001 \\ \hline \\ 0.011 \pm 0.011 \end{array}$                                                                                                                                                              | $\begin{array}{c} 0.028\pm 0.001\\ 0.011\pm 0.011\\ \hline 6.098\pm 0.009\\ 0.071\pm 0.001\\ 0.051\pm 0.001\\ 0.336\pm 0.011\\ 1.927\pm 0.009\\ 0.011\pm 0.011\\ 24.285\pm 0.001\\ 0.022\pm 0.001\\ \end{array}$                                                                                                                                            | $\begin{array}{c} - \\ 5.962 \pm 0.004 \\ 0.072 \pm 0.001 \\ 0.050 \pm 0.000 \\ 0.272 \pm 0.026 \\ 1.795 \pm 0.025 \\ - \\ 25.655 \pm 0.013 \\ - \end{array}$                                                                                                                     | $\begin{array}{c} 0.027 \pm 0.002 \\ \hline \\ - \\ \hline \\ 7.139 \pm 0.004 \\ 0.066 \pm 0.001 \\ 0.052 \pm 0.001 \\ 0.455 \pm 0.016 \\ 2.529 \pm 0.020 \\ \hline \\ - \\ 17.987 \pm 0.001 \\ \hline \\ - \end{array}$                                                                                                                                                     | $\begin{array}{c} 0.032 \pm 0.006 \\ 0.021 \pm 0.001 \\ 6.766 \pm 0.000 \\ 0.097 \pm 0.000 \\ 0.051 \pm 0.001 \\ 0.286 \pm 0.016 \\ 1.943 \pm 0.016 \\ 0.028 \pm 0.001 \\ 16.877 \pm 0.002 \\ 0.011 \pm 0.011 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.028<br>0.018<br>6.810<br>0.076<br>0.333<br>2.115<br>0.022<br>19.512<br>0.017                                                                           |
| (continued)Myristic C14:0Pentadecanoic C15:0Palmitic C16:0Palmiteloic C16:1Heptadecanoic C17:0Heptadecenoic C17:1 cis-10Stearic C18:0Elaidic C18:1n9tOleic C18:1n9cLinoleaidic C18:2n6tLinoleic C18:2n6c                                                                                                                          | $\begin{array}{c} 0.026 \pm 0.000 \\ \hline \\ - \\ 6.693 \pm 0.004 \\ 0.067 \pm 0.001 \\ \hline \\ 0.048 \pm 0.000 \\ \hline \\ 0.337 \pm 0.012 \\ \hline \\ 2.091 \pm 0.012 \\ \hline \\ 0.024 \pm 0.001 \\ \hline \\ 17.042 \pm 0.000 \\ \hline \\ - \\ 60.430 \pm 0.003 \end{array}$                                                                                                                                                                                    | $\begin{array}{c} 0.040 \pm 0.013 \\ \hline \\ 6.966 \pm 0.007 \\ \hline \\ 0.088 \pm 0.001 \\ \hline \\ 0.044 \pm 0.000 \\ \hline \\ 0.311 \pm 0.006 \\ \hline \\ 1.820 \pm 0.006 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 16.030 \pm 0.000 \\ \hline \\ \hline \\ 59.242 \pm 0.004 \end{array}$                                                                                                                      | $\begin{array}{c} 0.030 \pm 0.000 \\ \hline \\ 6.610 \pm 0.004 \\ 0.072 \pm 0.000 \\ \hline \\ 0.046 \pm 0.000 \\ \hline \\ 0.319 \pm 0.016 \\ \hline \\ 2.006 \pm 0.016 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 17.303 \pm 0.001 \\ \hline \\ 0.011 \pm 0.011 \\ \hline \\ 61.986 \pm 0.010 \end{array}$                                                                                                                                | $\begin{array}{c} 0.028\pm 0.001\\ 0.011\pm 0.011\\ \hline 6.098\pm 0.009\\ 0.071\pm 0.001\\ 0.051\pm 0.001\\ 0.336\pm 0.011\\ 1.927\pm 0.009\\ 0.011\pm 0.011\\ 24.285\pm 0.001\\ 0.022\pm 0.001\\ 57.556\pm 0.013\\ \end{array}$                                                                                                                          | $\begin{array}{c} - \\ 5.962 \pm 0.004 \\ 0.072 \pm 0.001 \\ 0.050 \pm 0.000 \\ 0.272 \pm 0.026 \\ 1.795 \pm 0.025 \\ - \\ 25.655 \pm 0.013 \\ - \\ 56.397 \pm 0.005 \end{array}$                                                                                                 | $\begin{array}{c} 0.027 \pm 0.002 \\ \hline \\ - \\ \hline \\ 7.139 \pm 0.004 \\ 0.066 \pm 0.001 \\ 0.052 \pm 0.001 \\ 0.455 \pm 0.016 \\ 2.529 \pm 0.020 \\ \hline \\ - \\ 17.987 \pm 0.001 \\ \hline \\ - \\ 59.542 \pm 0.002 \end{array}$                                                                                                                                 | $\begin{array}{c} 0.032 \pm 0.006 \\ 0.021 \pm 0.001 \\ 6.766 \pm 0.000 \\ 0.097 \pm 0.000 \\ 0.051 \pm 0.001 \\ 0.286 \pm 0.016 \\ 1.943 \pm 0.016 \\ 0.028 \pm 0.001 \\ 16.877 \pm 0.002 \\ 0.011 \pm 0.011 \\ 62.547 \pm 0.013 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.028<br>0.018<br>6.810<br>0.076<br>0.065<br>0.333<br>2.115<br>0.022<br>19.512<br>0.017<br>59.189                                                        |
| (continued)Myristic C14:0Pentadecanoic C15:0Palmitic C16:0Palmiteloic C16:1Heptadecanoic C17:0Heptadecenoic C17:1 cis-10Stearic C18:0Elaidic C18:1n9tOleic C18:1n9cLinoleaidic C18:2n6tLinoleic C18:2n6cLinolenic C18:3n6 g                                                                                                       | $\begin{array}{c} 0.026 \pm 0.000 \\ \hline \\ - \\ \hline \\ 6.693 \pm 0.004 \\ \hline \\ 0.067 \pm 0.001 \\ \hline \\ 0.048 \pm 0.000 \\ \hline \\ 0.337 \pm 0.012 \\ \hline \\ 2.091 \pm 0.012 \\ \hline \\ 0.024 \pm 0.001 \\ \hline \\ 17.042 \pm 0.000 \\ \hline \\ - \\ \hline \\ 60.430 \pm 0.003 \\ \hline \\ 0.054 \pm 0.000 \end{array}$                                                                                                                         | $\begin{array}{c} 0.040 \pm 0.013 \\ \hline \\ 6.966 \pm 0.007 \\ \hline \\ 0.088 \pm 0.001 \\ \hline \\ 0.044 \pm 0.000 \\ \hline \\ 0.311 \pm 0.006 \\ \hline \\ 1.820 \pm 0.006 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 16.030 \pm 0.000 \\ \hline \\ \hline \\ 59.242 \pm 0.004 \\ \hline \\ 0.051 \pm 0.001 \end{array}$                                                                                         | $\begin{array}{c} 0.030 \pm 0.000 \\ \hline \\ 6.610 \pm 0.004 \\ 0.072 \pm 0.000 \\ \hline \\ 0.046 \pm 0.000 \\ \hline \\ 0.319 \pm 0.016 \\ \hline \\ 2.006 \pm 0.016 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 17.303 \pm 0.001 \\ \hline \\ 0.011 \pm 0.011 \\ \hline \\ 61.986 \pm 0.010 \\ \hline \\ 0.048 \pm 0.001 \end{array}$                                                                                                   | $\begin{array}{c} 0.028\pm 0.001\\ 0.011\pm 0.011\\ \hline 6.098\pm 0.009\\ 0.071\pm 0.001\\ 0.051\pm 0.001\\ 0.336\pm 0.011\\ 1.927\pm 0.009\\ 0.011\pm 0.011\\ 24.285\pm 0.001\\ 0.022\pm 0.001\\ 57.556\pm 0.013\\ 0.039\pm 0.000\\ \end{array}$                                                                                                         | $\begin{array}{c} - \\ 5.962 \pm 0.004 \\ 0.072 \pm 0.001 \\ 0.050 \pm 0.000 \\ 0.272 \pm 0.026 \\ 1.795 \pm 0.025 \\ - \\ 25.655 \pm 0.013 \\ - \\ 56.397 \pm 0.005 \\ 0.040 \pm 0.000 \end{array}$                                                                              | $\begin{array}{c} 0.027 \pm 0.002 \\ \hline \\ - \\ \hline \\ 7.139 \pm 0.004 \\ 0.066 \pm 0.001 \\ 0.052 \pm 0.001 \\ 0.455 \pm 0.016 \\ 2.529 \pm 0.020 \\ \hline \\ - \\ \hline \\ 17.987 \pm 0.001 \\ \hline \\ - \\ \hline \\ 59.542 \pm 0.002 \\ 0.050 \pm 0.000 \end{array}$                                                                                          | $\begin{array}{c} 0.032 \pm 0.006 \\ 0.021 \pm 0.001 \\ 6.766 \pm 0.000 \\ 0.097 \pm 0.000 \\ 0.051 \pm 0.001 \\ 0.286 \pm 0.016 \\ 1.943 \pm 0.016 \\ 0.028 \pm 0.001 \\ 16.877 \pm 0.002 \\ 0.011 \pm 0.011 \\ 62.547 \pm 0.013 \\ 0.047 \pm 0.001 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.028<br>0.018<br>6.810<br>0.076<br>0.065<br>0.333<br>2.115<br>0.022<br>19.512<br>0.017<br>59.189<br>0.047                                               |
| (continued)Myristic C14:0Pentadecanoic C15:0Palmitic C16:0Palmiteloic C16:1Heptadecanoic C17:0Heptadecenoic C17:1 cis-10Stearic C18:0Elaidic C18:1n9tOleic C18:1n9cLinoleaidic C18:2n6tLinoleic C18:2n6cLinolenic C18:3n6 gArachidic C20:0                                                                                        | $\begin{array}{c} 0.026 \pm 0.000 \\ \hline \\ - \\ \hline \\ 6.693 \pm 0.004 \\ \hline \\ 0.067 \pm 0.001 \\ \hline \\ 0.048 \pm 0.000 \\ \hline \\ 0.337 \pm 0.012 \\ \hline \\ 2.091 \pm 0.012 \\ \hline \\ 0.024 \pm 0.001 \\ \hline \\ 17.042 \pm 0.000 \\ \hline \\ - \\ \hline \\ 60.430 \pm 0.003 \\ \hline \\ 0.054 \pm 0.000 \\ \hline \\ 0.070 \pm 0.003 \end{array}$                                                                                            | $\begin{array}{c} 0.040 \pm 0.013 \\ \hline \\ 6.966 \pm 0.007 \\ \hline \\ 0.088 \pm 0.001 \\ \hline \\ 0.044 \pm 0.000 \\ \hline \\ 0.311 \pm 0.006 \\ \hline \\ 1.820 \pm 0.006 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 16.030 \pm 0.000 \\ \hline \\ \hline \\ 59.242 \pm 0.004 \\ \hline \\ 0.051 \pm 0.001 \\ \hline \\ 0.067 \pm 0.001 \end{array}$                                                            | $\begin{array}{c} 0.030 \pm 0.000 \\ \hline \\ 6.610 \pm 0.004 \\ 0.072 \pm 0.000 \\ \hline \\ 0.046 \pm 0.000 \\ \hline \\ 0.319 \pm 0.016 \\ \hline \\ 2.006 \pm 0.016 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 17.303 \pm 0.001 \\ \hline \\ 0.011 \pm 0.011 \\ \hline \\ 61.986 \pm 0.010 \\ \hline \\ 0.048 \pm 0.001 \\ \hline \\ 0.074 \pm 0.000 \end{array}$                                                                      | $\begin{array}{c} 0.028\pm 0.001\\ 0.011\pm 0.011\\ 6.098\pm 0.009\\ 0.071\pm 0.001\\ 0.051\pm 0.001\\ 0.336\pm 0.011\\ 1.927\pm 0.009\\ 0.011\pm 0.011\\ 24.285\pm 0.001\\ 0.022\pm 0.001\\ 57.556\pm 0.013\\ 0.039\pm 0.000\\ 0.071\pm 0.000\\ \end{array}$                                                                                               | $\begin{array}{c} - \\ 5.962 \pm 0.004 \\ 0.072 \pm 0.001 \\ 0.050 \pm 0.000 \\ 0.272 \pm 0.026 \\ 1.795 \pm 0.025 \\ - \\ 25.655 \pm 0.013 \\ - \\ 56.397 \pm 0.005 \\ 0.040 \pm 0.000 \\ 0.062 \pm 0.002 \end{array}$                                                           | $\begin{array}{c} 0.027 \pm 0.002 \\ \hline \\ - \\ \hline \\ 7.139 \pm 0.004 \\ 0.066 \pm 0.001 \\ 0.052 \pm 0.001 \\ 0.455 \pm 0.016 \\ 2.529 \pm 0.020 \\ \hline \\ - \\ 17.987 \pm 0.001 \\ \hline \\ - \\ 59.542 \pm 0.002 \\ 0.050 \pm 0.000 \\ 0.085 \pm 0.000 \end{array}$                                                                                           | $\begin{array}{c} 0.032\pm 0.006\\ 0.021\pm 0.001\\ 6.766\pm 0.000\\ 0.097\pm 0.000\\ 0.051\pm 0.001\\ 0.286\pm 0.016\\ 1.943\pm 0.016\\ 0.028\pm 0.001\\ 16.877\pm 0.002\\ 0.011\pm 0.011\\ 62.547\pm 0.013\\ 0.047\pm 0.001\\ 0.075\pm 0.002\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.028<br>0.018<br>6.810<br>0.076<br>0.065<br>0.333<br>2.115<br>0.022<br>19.512<br>0.017<br>59.189<br>0.047<br>0.080                                      |
| (continued)Myristic C14:0Pentadecanoic C15:0Palmitic C16:0Palmiteloic C16:1Heptadecanoic C17:0Heptadecenoic C17:1 cis-10Stearic C18:0Elaidic C18:1n9tOleic C18:1n9cLinoleaidic C18:2n6tLinoleic C18:2n6cLinolenic C18:3n6 gArachidic C20:0Linolenic C18:3n3 a                                                                     | $\begin{array}{c} 0.026 \pm 0.000 \\ \hline \\ - \\ \hline \\ 6.693 \pm 0.004 \\ \hline \\ 0.067 \pm 0.001 \\ \hline \\ 0.048 \pm 0.000 \\ \hline \\ 0.337 \pm 0.012 \\ \hline \\ 2.091 \pm 0.012 \\ \hline \\ 0.024 \pm 0.001 \\ \hline \\ 17.042 \pm 0.000 \\ \hline \\ - \\ \hline \\ 60.430 \pm 0.003 \\ \hline \\ 0.054 \pm 0.000 \\ \hline \\ 0.070 \pm 0.003 \\ \hline \\ 12.828 \pm 0.001 \end{array}$                                                              | $\begin{array}{c} 0.040 \pm 0.013 \\ \hline \\ 6.966 \pm 0.007 \\ \hline \\ 0.088 \pm 0.001 \\ \hline \\ 0.044 \pm 0.000 \\ \hline \\ 0.311 \pm 0.006 \\ \hline \\ 1.820 \pm 0.006 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 16.030 \pm 0.000 \\ \hline \\ \hline \\ 59.242 \pm 0.004 \\ \hline \\ 0.051 \pm 0.001 \\ \hline \\ 0.067 \pm 0.001 \\ \hline \\ 15.036 \pm 0.002 \end{array}$                              | $\begin{array}{c} 0.030 \pm 0.000 \\ \hline \\ \hline \\ 6.610 \pm 0.004 \\ 0.072 \pm 0.000 \\ \hline \\ 0.046 \pm 0.000 \\ \hline \\ 0.319 \pm 0.016 \\ \hline \\ 2.006 \pm 0.016 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 17.303 \pm 0.001 \\ \hline \\ 0.011 \pm 0.011 \\ \hline \\ 61.986 \pm 0.010 \\ \hline \\ 0.048 \pm 0.001 \\ \hline \\ 0.074 \pm 0.000 \\ \hline \\ 11.167 \pm 0.003 \end{array}$                              | $\begin{array}{c} 0.028\pm 0.001\\ 0.011\pm 0.011\\ \hline 6.098\pm 0.009\\ 0.071\pm 0.001\\ \hline 0.051\pm 0.001\\ \hline 0.336\pm 0.011\\ \hline 1.927\pm 0.009\\ \hline 0.011\pm 0.011\\ \hline 24.285\pm 0.001\\ \hline 0.022\pm 0.001\\ \hline 57.556\pm 0.013\\ \hline 0.039\pm 0.000\\ \hline 0.071\pm 0.000\\ \hline 9.182\pm 0.001\\ \end{array}$ | $\begin{array}{c} - \\ \hline 5.962 \pm 0.004 \\ 0.072 \pm 0.001 \\ 0.050 \pm 0.000 \\ 0.272 \pm 0.026 \\ 1.795 \pm 0.025 \\ \hline 25.655 \pm 0.013 \\ \hline 56.397 \pm 0.005 \\ 0.040 \pm 0.000 \\ 0.062 \pm 0.002 \\ 9.383 \pm 0.002 \end{array}$                             | $\begin{array}{c} 0.027 \pm 0.002 \\ \hline \\ - \\ \hline \\ 7.139 \pm 0.004 \\ 0.066 \pm 0.001 \\ 0.052 \pm 0.001 \\ \hline \\ 0.455 \pm 0.016 \\ \hline \\ 2.529 \pm 0.020 \\ \hline \\ - \\ \hline \\ 17.987 \pm 0.001 \\ \hline \\ - \\ \hline \\ 59.542 \pm 0.002 \\ \hline \\ 0.050 \pm 0.000 \\ \hline \\ 0.085 \pm 0.000 \\ \hline \\ 11.700 \pm 0.001 \end{array}$ | $\begin{array}{c} 0.032\pm 0.006\\ 0.021\pm 0.001\\ 6.766\pm 0.000\\ 0.097\pm 0.000\\ 0.051\pm 0.001\\ 0.286\pm 0.016\\ 1.943\pm 0.016\\ 0.028\pm 0.001\\ 16.877\pm 0.002\\ 0.011\pm 0.011\\ 62.547\pm 0.013\\ 0.047\pm 0.001\\ 0.075\pm 0.002\\ 10.941\pm 0.002\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.028<br>0.018<br>6.810<br>0.076<br>0.065<br>0.333<br>2.115<br>0.022<br>19.512<br>0.017<br>59.189<br>0.047<br>0.080<br>11.412                            |
| (continued)Myristic C14:0Pentadecanoic C15:0Palmitic C16:0Palmiteloic C16:1Heptadecanoic C17:0Heptadecenoic C17:1 cis-10Stearic C18:0Elaidic C18:1n9tOleic C18:1n9cLinoleaidic C18:2n6tLinoleic C18:2n6cLinolenic C18:3n6 gArachidic C20:0Linolenic C18:3n3 aEicosenoic C20:1n9 cis-11                                            | $\begin{array}{c} 0.026 \pm 0.000 \\ \hline \\ - \\ \hline \\ 6.693 \pm 0.004 \\ \hline \\ 0.067 \pm 0.001 \\ \hline \\ 0.048 \pm 0.000 \\ \hline \\ 0.337 \pm 0.012 \\ \hline \\ 2.091 \pm 0.012 \\ \hline \\ 0.024 \pm 0.001 \\ \hline \\ 17.042 \pm 0.000 \\ \hline \\ - \\ \hline \\ 60.430 \pm 0.003 \\ \hline \\ 0.054 \pm 0.000 \\ \hline \\ 0.070 \pm 0.003 \\ \hline \\ 12.828 \pm 0.001 \\ \hline \\ 0.223 \pm 0.001 \end{array}$                                 | $\begin{array}{c} 0.040 \pm 0.013 \\ \hline \\ 6.966 \pm 0.007 \\ \hline \\ 0.088 \pm 0.001 \\ \hline \\ 0.044 \pm 0.000 \\ \hline \\ 0.311 \pm 0.006 \\ \hline \\ 1.820 \pm 0.006 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 16.030 \pm 0.000 \\ \hline \\ \hline \\ 59.242 \pm 0.004 \\ \hline \\ 0.051 \pm 0.001 \\ \hline \\ 0.067 \pm 0.001 \\ \hline \\ 15.036 \pm 0.002 \\ \hline \\ 0.197 \pm 0.008 \end{array}$ | $\begin{array}{c} 0.030 \pm 0.000 \\ \hline \\ \hline \\ 6.610 \pm 0.004 \\ 0.072 \pm 0.000 \\ \hline \\ 0.046 \pm 0.000 \\ \hline \\ 0.319 \pm 0.016 \\ \hline \\ 2.006 \pm 0.016 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 17.303 \pm 0.001 \\ \hline \\ 0.011 \pm 0.011 \\ \hline \\ 61.986 \pm 0.010 \\ \hline \\ 0.048 \pm 0.001 \\ \hline \\ 0.074 \pm 0.000 \\ \hline \\ 11.167 \pm 0.003 \\ \hline \\ 0.231 \pm 0.002 \end{array}$ | $\begin{array}{c} 0.028\pm 0.001\\ 0.011\pm 0.011\\ 6.098\pm 0.009\\ 0.071\pm 0.001\\ 0.051\pm 0.001\\ 0.336\pm 0.011\\ 1.927\pm 0.009\\ 0.011\pm 0.011\\ 24.285\pm 0.001\\ 0.022\pm 0.001\\ 57.556\pm 0.013\\ 0.039\pm 0.000\\ 0.071\pm 0.000\\ 9.182\pm 0.001\\ 0.255\pm 0.000\\ \end{array}$                                                             | $\begin{array}{c} - \\ \hline 5.962 \pm 0.004 \\ 0.072 \pm 0.001 \\ 0.050 \pm 0.000 \\ 0.272 \pm 0.026 \\ 1.795 \pm 0.025 \\ \hline \\ 25.655 \pm 0.013 \\ \hline \\ 56.397 \pm 0.005 \\ 0.040 \pm 0.000 \\ 0.062 \pm 0.002 \\ 9.383 \pm 0.002 \\ 0.263 \pm 0.004 \\ \end{array}$ | $\begin{array}{c} 0.027 \pm 0.002 \\ \hline \\ - \\ \hline \\ 7.139 \pm 0.004 \\ 0.066 \pm 0.001 \\ 0.052 \pm 0.001 \\ 0.455 \pm 0.016 \\ 2.529 \pm 0.020 \\ \hline \\ - \\ \hline \\ 17.987 \pm 0.001 \\ \hline \\ - \\ 59.542 \pm 0.002 \\ 0.050 \pm 0.000 \\ 0.085 \pm 0.000 \\ 11.700 \pm 0.001 \\ 0.274 \pm 0.000 \end{array}$                                          | $\begin{array}{c} 0.032 \pm 0.006 \\ 0.021 \pm 0.001 \\ 6.766 \pm 0.000 \\ 0.097 \pm 0.000 \\ 0.051 \pm 0.001 \\ 0.286 \pm 0.016 \\ 1.943 \pm 0.016 \\ 0.028 \pm 0.001 \\ 16.877 \pm 0.002 \\ 0.011 \pm 0.011 \\ 62.547 \pm 0.013 \\ 0.047 \pm 0.001 \\ 0.075 \pm 0.002 \\ 10.941 \pm 0.002 \\ 0.214 \pm 0.011 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.028<br>0.018<br>6.810<br>0.076<br>0.065<br>0.333<br>2.115<br>0.022<br>19.512<br>0.017<br>59.189<br>0.047<br>0.080<br>11.412<br>0.241                   |
| (continued)Myristic C14:0Pentadecanoic C15:0Palmitic C16:0Palmiteloic C16:1Heptadecanoic C17:0Heptadecenoic C17:1 cis-10Stearic C18:0Elaidic C18:1n9tOleic C18:1n9cLinoleaidic C18:2n6tLinoleic C18:2n6cLinolenic C18:3n6 gArachidic C20:0Linolenic C18:3n3 aEicosenoic C20:1n9 cis-11Eicosadienoic C20:2 cis 11.14               | $\begin{array}{c} 0.026 \pm 0.000 \\ \hline \\ - \\ \hline \\ 6.693 \pm 0.004 \\ \hline \\ 0.067 \pm 0.001 \\ \hline \\ 0.048 \pm 0.000 \\ \hline \\ 0.337 \pm 0.012 \\ \hline \\ 2.091 \pm 0.012 \\ \hline \\ 0.024 \pm 0.001 \\ \hline \\ 17.042 \pm 0.000 \\ \hline \\ - \\ \hline \\ 60.430 \pm 0.003 \\ \hline \\ 0.054 \pm 0.000 \\ \hline \\ 0.070 \pm 0.003 \\ \hline \\ 12.828 \pm 0.001 \end{array}$                                                              | $\begin{array}{c} 0.040 \pm 0.013 \\ \hline \\ 6.966 \pm 0.007 \\ \hline \\ 0.088 \pm 0.001 \\ \hline \\ 0.044 \pm 0.000 \\ \hline \\ 0.311 \pm 0.006 \\ \hline \\ 1.820 \pm 0.006 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 16.030 \pm 0.000 \\ \hline \\ \hline \\ 59.242 \pm 0.004 \\ \hline \\ 0.051 \pm 0.001 \\ \hline \\ 0.067 \pm 0.001 \\ \hline \\ 15.036 \pm 0.002 \end{array}$                              | $\begin{array}{c} 0.030 \pm 0.000 \\ \hline \\ \hline \\ 6.610 \pm 0.004 \\ 0.072 \pm 0.000 \\ \hline \\ 0.046 \pm 0.000 \\ \hline \\ 0.319 \pm 0.016 \\ \hline \\ 2.006 \pm 0.016 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 17.303 \pm 0.001 \\ \hline \\ 0.011 \pm 0.011 \\ \hline \\ 61.986 \pm 0.010 \\ \hline \\ 0.048 \pm 0.001 \\ \hline \\ 0.074 \pm 0.000 \\ \hline \\ 11.167 \pm 0.003 \end{array}$                              | $\begin{array}{c} 0.028\pm 0.001\\ 0.011\pm 0.011\\ \hline 6.098\pm 0.009\\ 0.071\pm 0.001\\ \hline 0.051\pm 0.001\\ \hline 0.336\pm 0.011\\ \hline 1.927\pm 0.009\\ \hline 0.011\pm 0.011\\ \hline 24.285\pm 0.001\\ \hline 0.022\pm 0.001\\ \hline 57.556\pm 0.013\\ \hline 0.039\pm 0.000\\ \hline 0.071\pm 0.000\\ \hline 9.182\pm 0.001\\ \end{array}$ | $\begin{array}{c} - \\ \hline 5.962 \pm 0.004 \\ 0.072 \pm 0.001 \\ 0.050 \pm 0.000 \\ 0.272 \pm 0.026 \\ 1.795 \pm 0.025 \\ \hline 25.655 \pm 0.013 \\ \hline 56.397 \pm 0.005 \\ 0.040 \pm 0.000 \\ 0.062 \pm 0.002 \\ 9.383 \pm 0.002 \end{array}$                             | $\begin{array}{c} 0.027 \pm 0.002 \\ \hline \\ - \\ \hline \\ 7.139 \pm 0.004 \\ 0.066 \pm 0.001 \\ 0.052 \pm 0.001 \\ \hline \\ 0.455 \pm 0.016 \\ \hline \\ 2.529 \pm 0.020 \\ \hline \\ - \\ \hline \\ 17.987 \pm 0.001 \\ \hline \\ - \\ \hline \\ 59.542 \pm 0.002 \\ \hline \\ 0.050 \pm 0.000 \\ \hline \\ 0.085 \pm 0.000 \\ \hline \\ 11.700 \pm 0.001 \end{array}$ | $\begin{array}{c} 0.032\pm 0.006\\ 0.021\pm 0.001\\ 6.766\pm 0.000\\ 0.097\pm 0.000\\ 0.051\pm 0.001\\ 0.286\pm 0.016\\ 1.943\pm 0.016\\ 0.028\pm 0.001\\ 16.877\pm 0.002\\ 0.011\pm 0.011\\ 62.547\pm 0.013\\ 0.047\pm 0.001\\ 0.075\pm 0.002\\ 10.941\pm 0.002\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.028<br>0.018<br>6.810<br>0.076<br>0.065<br>0.333<br>2.115<br>0.022<br>19.512<br>0.017<br>59.189<br>0.047<br>0.080<br>11.412<br>0.241<br>0.048          |
| (continued)Myristic C14:0Pentadecanoic C15:0Palmitic C16:0Palmiteloic C16:1Heptadecanoic C17:0Heptadecenoic C17:1 cis-10Stearic C18:0Elaidic C18:1n9tOleic C18:1n9cLinoleaidic C18:2n6tLinoleic C18:2n6cLinolenic C18:3n6 gArachidic C20:0Linolenic C18:3n3 aEicosenoic C20:1n9 cis-11Eicosanoic C20:2 cis 11.14Heicosanoic C21:0 | $\begin{array}{c} 0.026 \pm 0.000 \\ \hline \\ 6.693 \pm 0.004 \\ \hline \\ 0.067 \pm 0.001 \\ \hline \\ 0.048 \pm 0.000 \\ \hline \\ 0.337 \pm 0.012 \\ \hline \\ 2.091 \pm 0.012 \\ \hline \\ 0.024 \pm 0.001 \\ \hline \\ 17.042 \pm 0.000 \\ \hline \\ \hline \\ 60.430 \pm 0.003 \\ \hline \\ 0.054 \pm 0.000 \\ \hline \\ 0.070 \pm 0.003 \\ \hline \\ 12.828 \pm 0.001 \\ \hline \\ 0.223 \pm 0.001 \\ \hline \\ 0.044 \pm 0.000 \\ \hline \\ \hline \\ \end{array}$ | $\begin{array}{c} 0.040 \pm 0.013 \\ \hline 0.040 \pm 0.007 \\ 0.088 \pm 0.001 \\ 0.044 \pm 0.000 \\ 0.311 \pm 0.006 \\ 1.820 \pm 0.006 \\ 0.025 \pm 0.001 \\ 16.030 \pm 0.000 \\ \hline 0.051 \pm 0.001 \\ 0.067 \pm 0.001 \\ 0.067 \pm 0.001 \\ 15.036 \pm 0.002 \\ 0.197 \pm 0.008 \\ 0.058 \pm 0.000 \\ \hline \end{array}$                                                                                         | $\begin{array}{c} 0.030 \pm 0.000 \\ \hline \\ 6.610 \pm 0.004 \\ 0.072 \pm 0.000 \\ \hline \\ 0.046 \pm 0.000 \\ \hline \\ 0.319 \pm 0.016 \\ 2.006 \pm 0.016 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 17.303 \pm 0.001 \\ \hline \\ 0.011 \pm 0.011 \\ \hline \\ 61.986 \pm 0.010 \\ \hline \\ 0.074 \pm 0.000 \\ \hline \\ 11.167 \pm 0.003 \\ \hline \\ 0.231 \pm 0.002 \\ \hline \\ 0.051 \pm 0.001 \\ \hline \end{array}$           | $\begin{array}{c} 0.028\pm 0.001\\ 0.011\pm 0.011\\ 6.098\pm 0.009\\ 0.071\pm 0.001\\ 0.051\pm 0.001\\ 0.336\pm 0.011\\ 1.927\pm 0.009\\ 0.011\pm 0.011\\ 24.285\pm 0.001\\ 0.022\pm 0.001\\ 57.556\pm 0.013\\ 0.039\pm 0.000\\ 0.071\pm 0.000\\ 0.255\pm 0.000\\ 0.255\pm 0.000\\ 0.040\pm 0.001\\ \end{array}$                                            | $5.962 \pm 0.004$ $0.072 \pm 0.001$ $0.050 \pm 0.000$ $0.272 \pm 0.026$ $1.795 \pm 0.025$ $-$ $25.655 \pm 0.013$ $-$ $56.397 \pm 0.005$ $0.040 \pm 0.000$ $0.062 \pm 0.002$ $9.383 \pm 0.002$ $0.263 \pm 0.004$ $0.054 \pm 0.001$                                                 | $\begin{array}{c} 0.027 \pm 0.002 \\ \hline \\ 7.139 \pm 0.004 \\ 0.066 \pm 0.001 \\ 0.052 \pm 0.001 \\ 0.455 \pm 0.016 \\ 2.529 \pm 0.020 \\ \hline \\ \hline \\ 17.987 \pm 0.001 \\ \hline \\ 59.542 \pm 0.002 \\ 0.050 \pm 0.000 \\ 0.085 \pm 0.000 \\ 0.085 \pm 0.000 \\ 11.700 \pm 0.001 \\ 0.274 \pm 0.001 \\ \hline \\ 0.071 \pm 0.001 \\ \hline \\ \end{array}$      | $\begin{array}{c} 0.032 \pm 0.006 \\ 0.021 \pm 0.001 \\ 6.766 \pm 0.000 \\ 0.097 \pm 0.000 \\ 0.051 \pm 0.001 \\ 0.286 \pm 0.016 \\ 1.943 \pm 0.016 \\ 0.028 \pm 0.001 \\ 16.877 \pm 0.002 \\ 0.011 \pm 0.011 \\ 62.547 \pm 0.013 \\ 0.047 \pm 0.001 \\ 0.075 \pm 0.002 \\ 10.941 \pm 0.002 \\ 0.214 \pm 0.011 \\ 0.0214 \pm 0.002 \\ 0.214 \pm 0.001 \\ 0.024 \pm 0.002 \\ 0.214 \pm 0.001 \\ 0.024 \pm 0.002 \\ 0.044 \pm 0.002 \\ 0.002 \\ 0.004 \pm 0.002 \\ 0.004 \pm 0.002 \\ 0.004 \pm 0.002 \\ 0.004 \pm 0.002 \\ 0.004 \pm 0.002 \\ 0.004 \pm 0.002 \\ 0.004 \pm 0.002 \\ 0.004 \pm 0.002 \\ 0.004 \pm 0.002 \\ 0.004 \pm 0.0002 \\ 0.004 \pm 0.002 \\ 0.004 \pm 0.$ | 0.028<br>0.018<br>6.810<br>0.076<br>0.065<br>0.333<br>2.115<br>0.022<br>19.512<br>0.017<br>59.189<br>0.047<br>0.080<br>11.412<br>0.241<br>0.048<br>0.012 |
| (continued)Myristic C14:0Pentadecanoic C15:0Palmitic C16:0Palmiteloic C16:1Heptadecanoic C17:0Heptadecenoic C17:1 cis-10Stearic C18:0Elaidic C18:1n9tOleic C18:1n9cLinoleaidic C18:2n6tLinoleic C18:2n6cLinolenic C18:3n6 gArachidic C20:0Linolenic C18:3n3 aEicosenoic C20:1n9 cis-11Eicosadienoic C20:2 cis 11.14               | $\begin{array}{c} 0.026 \pm 0.000 \\ \hline \\ - \\ \hline \\ 6.693 \pm 0.004 \\ \hline \\ 0.067 \pm 0.001 \\ \hline \\ 0.048 \pm 0.000 \\ \hline \\ 0.337 \pm 0.012 \\ \hline \\ 2.091 \pm 0.012 \\ \hline \\ 0.024 \pm 0.001 \\ \hline \\ 17.042 \pm 0.000 \\ \hline \\ - \\ \hline \\ 60.430 \pm 0.003 \\ \hline \\ 0.054 \pm 0.000 \\ \hline \\ 0.070 \pm 0.003 \\ \hline \\ 12.828 \pm 0.001 \\ \hline \\ 0.223 \pm 0.001 \end{array}$                                 | $\begin{array}{c} 0.040 \pm 0.013 \\ \hline \\ 6.966 \pm 0.007 \\ \hline \\ 0.088 \pm 0.001 \\ \hline \\ 0.044 \pm 0.000 \\ \hline \\ 0.311 \pm 0.006 \\ \hline \\ 1.820 \pm 0.006 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 16.030 \pm 0.000 \\ \hline \\ \hline \\ 59.242 \pm 0.004 \\ \hline \\ 0.051 \pm 0.001 \\ \hline \\ 0.067 \pm 0.001 \\ \hline \\ 15.036 \pm 0.002 \\ \hline \\ 0.197 \pm 0.008 \end{array}$ | $\begin{array}{c} 0.030 \pm 0.000 \\ \hline \\ \hline \\ 6.610 \pm 0.004 \\ 0.072 \pm 0.000 \\ \hline \\ 0.046 \pm 0.000 \\ \hline \\ 0.319 \pm 0.016 \\ \hline \\ 2.006 \pm 0.016 \\ \hline \\ 0.025 \pm 0.001 \\ \hline \\ 17.303 \pm 0.001 \\ \hline \\ 0.011 \pm 0.011 \\ \hline \\ 61.986 \pm 0.010 \\ \hline \\ 0.048 \pm 0.001 \\ \hline \\ 0.074 \pm 0.000 \\ \hline \\ 11.167 \pm 0.003 \\ \hline \\ 0.231 \pm 0.002 \end{array}$ | $\begin{array}{c} 0.028\pm 0.001\\ 0.011\pm 0.011\\ 6.098\pm 0.009\\ 0.071\pm 0.001\\ 0.051\pm 0.001\\ 0.336\pm 0.011\\ 1.927\pm 0.009\\ 0.011\pm 0.011\\ 24.285\pm 0.001\\ 0.022\pm 0.001\\ 57.556\pm 0.013\\ 0.039\pm 0.000\\ 0.071\pm 0.000\\ 9.182\pm 0.001\\ 0.255\pm 0.000\\ \end{array}$                                                             | $\begin{array}{c} - \\ \hline 5.962 \pm 0.004 \\ 0.072 \pm 0.001 \\ 0.050 \pm 0.000 \\ 0.272 \pm 0.026 \\ 1.795 \pm 0.025 \\ \hline \\ 25.655 \pm 0.013 \\ \hline \\ 56.397 \pm 0.005 \\ 0.040 \pm 0.000 \\ 0.062 \pm 0.002 \\ 9.383 \pm 0.002 \\ 0.263 \pm 0.004 \\ \end{array}$ | $\begin{array}{c} 0.027 \pm 0.002 \\ \hline \\ - \\ \hline \\ 7.139 \pm 0.004 \\ 0.066 \pm 0.001 \\ 0.052 \pm 0.001 \\ 0.455 \pm 0.016 \\ 2.529 \pm 0.020 \\ \hline \\ - \\ \hline \\ 17.987 \pm 0.001 \\ \hline \\ - \\ \hline \\ 59.542 \pm 0.002 \\ 0.050 \pm 0.000 \\ 0.085 \pm 0.000 \\ 11.700 \pm 0.001 \\ 0.274 \pm 0.000 \end{array}$                                | $\begin{array}{c} 0.032 \pm 0.006 \\ 0.021 \pm 0.001 \\ 6.766 \pm 0.000 \\ 0.097 \pm 0.000 \\ 0.051 \pm 0.001 \\ 0.286 \pm 0.016 \\ 1.943 \pm 0.016 \\ 0.028 \pm 0.001 \\ 16.877 \pm 0.002 \\ 0.011 \pm 0.011 \\ 62.547 \pm 0.013 \\ 0.047 \pm 0.001 \\ 0.075 \pm 0.002 \\ 10.941 \pm 0.002 \\ 0.214 \pm 0.011 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.028<br>0.018<br>6.810<br>0.076<br>0.065<br>0.333<br>2.115<br>0.022<br>19.512<br>0.017<br>59.189<br>0.047<br>0.080<br>11.412<br>0.241<br>0.048          |

**Table 2.** Fatty acid content (%) of kernels of fourteen new walnut (*Juglans regia* L.) genotypes*Çizelge 2.* On dört yeni ceviz (Juglans regia L.) genotipinin ceviz içlerinin yağ asidi içerikleri (%)

Each value of fatty acid concentrations is the average of duplicate determinations, (-) not detected

Major fatty acids were linoleic (C18:2n6c), oleic (C18:1n9c) and linolenic (C18:3n3a), palmitic (C16:0) and stearic (C18:0) with mean of 59.19 %, 19.51 %, 11.41 %, 6.81 %, 2.12 % respectively (Table 2). Besides these five main fatty acids heptadecenoic, eicosenoic amounts were determined under 1 % and myristic, pentadecanoic, palmiteloeic and myristic acids were observed at trace amounts.

Fatty acid composition of walnut oil has been reported to differ mainly with variety, location, climate and cultural treatments such as fertilization and irrigation during growth (Amaral et al. 2003; Sze-Tao et al. 2000). Linolenic and palmitic acid contents were strongly affected by crop year (Martinez et al. 2006). The main fatty acids found in walnuts are linoleic (18:2n:6), linolenic (18:3n-3), oleic (18-1n-9) (Özcan 2009; Martinez et al. 2006; Doğan and Akgül 2005). Total unsaturated fatty acid (UFA) content is about 65 % in oil of walnut cultivars and these acids especially polyunsaturated (PUFA) acids can be oxidated in a short time (Savage 2001). As oleic acid concentrations increase, the stability of oil increase and this provides much longer storage life. Walnuts that contain the high rate of stable oils can be useful for the food industry for different end use. Fatty acid composition of oil is important for rancidity, flavour and taste (Zwarts et al. 1999).

Amaral et al. (2003) investigated walnut oils from seven countries around the world and in their study SFA ranged between 8.2-10.8 %, MUFA 13.7-22.5 %, PUFA 69.1-76.3 %. In different studies, lack of detection of some fatty acids, walnut oils that have high proportions of C16:0 and C18:1 and low proportions of C18:0 were reported (Tsamouris et al. 2002; Özkan and Koyuncu 2005).

Ünver et al. (2016) determined fatty acid content of 8 walnut types between 50.83 and 60.77 % for linoleic acid, 16.14 and 26.44 % for oleic acid, 5.42 and 7.29 % for palmitic acid, 11.08 and 14.25 % for linolenic acid and 1.70 and 2.55 % for stearic acid and, the total amount of PUFA found between 65.45 and 74.47 %. Pereira and et al. (2008) analyzed fatty acid composition of Franquette, Lara, Parisienne and Mayette walnut cultivars. The linoleic acid content was changed from 55.51 % in cv. Franquette to 60.30 % in cv. Lara. Oleic acid content was ranged from 14.92 % (cv. Franquette) to 20.22 % (cv. Lara) followed by linolenic acid, from 13.2 % (cv. Parisienne) to 17.61 % (cv. Mayette). Palmitic fatty acids contents found between 5.95–6.61 % and stearic acids 2.70–3.07 %. MUFA were present in percentages ranging from 15.16 % (cv. Lara) to 20.53 % (cv. Franquette).

PUFA were the main fatty acid group in walnut oil of extracted from genotypes ranging from 58.78 % (60NF34) to 77.39 % (60NL7) (Table 2). Total monounsaturated fatty acids (MUFA) content of oils ranged from 13.06 (60NF32) to 32.76 % (60NF34) and saturated fatty acids (SFA) were the minor group ranging from 7.87 % (60NL61) to 10.29 % (60NL10). (PUFA+MUFA) Total UFA contents of genotypes were over than 90 % except genotype 60NF10. When considering MUFA, 60NF34 and 60NL5 genotypes showed higher contents than others because of their higher oleic acid concentrations. In this study, genotypes are rich with PUFA, especially with linoleic acid.

Dublin's Glory variety from New Zealand (Zwarts et al. 1999), Franquette variety from Argentina (Martinez et al. 2006), and 32.YS.119-097 (Özkan and Koyuncu 2005) genotypes from Turkey were reported with their high oleic acid contents.

The values obtained in this study were generally in agreement with previously reported fatty acid ranges. Much differentiation can be seen in oleic, linoleic and linolenic acid concentrations but generally similar levels of fatty acids were observed in many studies (Özcan 2009; Pereira et al. 2008; Venkatachalam et al. 2006; Akça et al. 2006; Martinez et al. 2006; Maguire et al. 2004). In general terms, the obtained results were in agreement with the observed in Portuguese samples and other geographical origin such us Italy. The high oleic acid contents of two genotypes 60NF34 (32.09 %) and 60NL5 (27.82 %) are noteworthy in this study. These genotypes have clearly higher oleic acid contents. Fatty acid composition of some genotypes in this study is suitable for maximum health benefit due to high UFA content and some are suitable for long term usage due to high oleic contents. Observed variability in fatty acid composition can be attributed to genetic variability.

#### 4. Conclusions

The results of this study presented here show that genotypes from Turkey have a sufficient and important nutritive value for human consumption. Fatty acid profiles of genotypes are distinctive, healthy and useful for different purposes. Among genotypes, there are suitable genotypes for health consumption with high PUFA contents and also for long term storage. Variability in fatty acid composition of walnut genotypes especially higher oleic acid contents for oil stability showed us that can be possible to breed walnut varieties for long time storage.

#### References

- Akça Y, Kara H, Yazicigil Z, Öztekin Y, Özgen M, Sütyemez M and Kalyoncu L (2006). Fatty acid and dietary fibre content of walnut (*Juglans regia* L.) varieties grown in Turkey. Asian Journal of Chemistry. 18 (2), 1361-1365.
- AOAC (1995). Official Methods of Analysis of AOAC International (Cunniff, P.A. ed.). 16th Edition. Washington D.C.
- Amaral JS, Casal S, Pereirai JA, Serebra RM and Oliveira BPP (2003). Determination of sterol, and fatty acid compositions, oxidative stability, and nutritional value of six walnut (*Juglans regia* L.) cultivars grown in Portugal. J. Agric. Food. Chem. 51(26), 7698-7702.
- Caglarirmak N (2003). Biochemical and physical properties of some walnut genotypes (*Juglans regia* L.). Nahrung/Food. 47(1), 28-32.
- Dogan M and Akgül A (2005). Fatty acid composition of some walnut (*Juglans regia* L.) cultivars from East Anatolia. Grasas y Aceites. 56(4), 328-331.
- FAOSTAT (2014). http://faostat.fao.org/site/339/default.aspx
- Griel AE, Kris-etherton PM (2006). Tree nuts and the lipid profile: A review of clinical studies. British Journal of Nutrition. 96(S2), S68-S78.
- IUPAC (1979). Standart Methods for Analysis of Oils, Fats and Derivatives. 6th Edition (Fifth Edition Method II.D.19) Pergamon Pres. 96-102. Oxford. UK.
- Lavedrine F, Ravel A, Villet A, Ducros V and Alary J (2000). Mineral composition of two walnut cultivars originating in France and California. Food Chemistry. 68(3), 347-351.

- Maguire LS, O'Sullivan SM, Galvin K, O'Connor TP, and O'Brien NM (2004). Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts, and the macadamia nut. Int. J. Food. Sci. Nutr. 55(3), 171-178.
- Martinez ML, Mattea MA and Maestri DM (2006). Varietal and crop year effect on lipid composition of walnut (Juglans regia) genotypes. JAOCS. 83(9),791-796.
- McGranahan GH and Leslie C (eds) (1990). Walnuts. In: Genetic Resources of Temperate Fruit and Nut Crops (James N. Moore&James R. Ballington Jr Eds.). Acta Horticulturae 290. Puplished by ISHS. 2(19), 907-953.
- Özcan MM (2009). Some nutritional characteristics of fruit and oil of walnut (*Juglans regia* L.) growing in Turkey. Iran. J. Chem. Chem. Eng. 28(1), 57-62.
- Özkan, G and Koyuncu MA (2005). Physical and chemical composition of some walnut (*Juglans regia* L.) genotypes grown in Turkey. Grasas y Aceites. 56(2), 142-147.
- Prasad RBN (1994).Walnuts and Pecans, in Encyclopedia of Food Science, Food Technology and Nutrition. Academic Press, London. 4828-4831.
- Pereira JA, Oliveria I, Sousa A, Ferreira ICFR, Bento A and Estevinho L (2008). Bioactive properties and chemical composition of six walnuts (*Juglans regia* L.) cultivars, food and chemical toxicology. 46(6), 2103-2111.
- Savage GP, McNeil DL and Dutta PC (2001). Some nutritional advantages of walnuts. Acta Hort. 544, 557-563.
- Savage GP (2001). Chemical composition of walnuts (*Juglans regia* L.) grown in New Zealand. Plant Foods for Human Nutrition. 56(1), 75-82.
- Sze-tao KWC and Sathe SK (2000). Walnuts (*Juglans regia* L.): Proximate composition, protein solubility, protein amino acid composition and protein in vitro digestibility. J. Sci. Food Agric. 80(9), 1393-1401.
- Torabian S, Haddad E, Rajaram S, Banta J and Sabate J (2009). Acute effect of nut consumption on plasma total polyphenols, antioxidant capacity and lipid peroxidation. The British Dietetic Assocation Ltd. J Hum Nutr Diet. 22(1), 64-71.
- Tsamouris G, Hatziantoniou S and Demetzos C (2002). Lipid analysis of Greek walnut oil (*Juglans regia* L.). Z. Naturforsch. 57(1-2), 51-56.
- Ünver H, Sakar E and Sülüşoğlu M (2016). Determination of Pomological and Morphological Characteristics with Fatty Acid Composition of High Kernel Ratio Walnut Genotypes. Erwerbs-Obstbau (2016) 58(1), 11–18.
- Venkatachalam M and Sathe SK (2006). Chemical composition of selected edible nut seeds. J. Agric. Food Chem. 54(13), 4705-4714.
- Yarilgac T, Özrenk K, Muradoglu F and Tüfenkci S (2003). Some macro-micro nutrient concentrations and pomological traits of selected walnuts (*Juglans regia* L.) from Gevas District. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 13(1), 33-37.
- Zwarts L, Savage GP and McNeil DL (1999). Fatty acid content of New Zealand-grown walnuts (*Juglans regia* L). International Journal of Food Sciences and Nutrition, 50(3), 189-194.