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Abstract
This work considers optimal investment and reinsurance strategies for an insurer with sto-
chastic economic factor. In our mathematical model, a risk-free asset and a risky asset are
assumed to rely on a stochastic economic factor which is described by a diffusion process.
We generalize the claim process to a compound Poisson process with the stochastic eco-
nomic factor. Using expected utility maximization, we characterize the optimal strategy of
investment-reinsurance under the power utility function. We use dynamic programming
principle to derive the Hamilton–Jacobi–Bellman (HJB) equation. Then, by analysing
the solution of the HJB equation, the optimal investment-reinsurance strategy is obtained
and given in the verification theorem. Finally, sensitivity analysis is given to show the
economic behavior of the optimal investment and reinsurance strategies.
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1. Introduction
In the actuarial industry, the problem of optimal investment proportion is the funda-

mental problem concerned by insurers, who always want to maximize the expected utility
of their terminal wealth. The pioneering research in this area is done by [12], who first
introduced stochastic control methods to study the optimal portfolio problem. Subse-
quently, the optimal investment problem has been the subject of a lot of research. Cox
and Huang [7] used the martingale method to obtain an explicit solution for optimal con-
trol while considering the non-negative constraints of consumption and wealth. Karatzas
and Shreve [11] explained Merton’s research and its popularization in their monograph.
Pham [15] extended the Merton optimal investment problem to a multi-dimensional model
with stochastic volatility and portfolio constraints, using logarithmic transformation to ex-
press the value function as a solution of a semi-linear parabolic equation. Using stochastic
control representation and some approximations, he proved the smooth solution of the
semi-linear parabolic equation, thus proving the existence of the optimal investment port-
folio and expressing it with the classical solution of the semi-linear equation. Yang and
Zhang [20] studied the optimal investment strategy of an insurance company whose risk
process obeys the jump-diffusion stochastic differential equation (SDE) and obtained a
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closed-form expression of the optimal strategy when the utility function is exponential.
Wang et al. [19] studied the optimal investment problem of insurers and reinsurers, ap-
plied stochastic control theory, established the corresponding HJB equation, and deduced
the optimal investment reinsurance strategy under the exponential utility function.

In recent years, the issue of optimal reinsurance has also attracted more and more at-
tention. Reinsurance is an essential tool for insurance companies to manage their risk
exposure. Schmidli [16] obtained the optimal reinsurance strategy under the diffusion
model and the classic risk model under the minimum ruin probability criterion. Golubin
[8] considered the criterion of minimizing the expected maximum loss for the classic risk
model, and transformed the insurer’s insurance and reinsurance strategy problems into
static problems without considering the HJB equation. Guan and Liang [9] introduced
interest rate and inflation risk, and analyzed an insurer’s optimal reinsurance and invest-
ment problem. Shen and Zeng [17] maximized and minimized the mean and variance
of the insurer’s terminal wealth simultaneously, using the method of backward stochastic
differential equation (BSDE), and obtained the closed-form expression of the optimal strat-
egy. Sun and Guo [18] considered optimal investment and reinsurance strategies where
the volatility of the risky asset is random and follows that of the CIR process under the
mean-variance criterion by using BSDE technology. Brachetta and Ceci [3] investigated
the optimal proportional reinsurance-investment strategy of an insurance company which
wishes to maximize the expected exponential utility of its terminal wealth in a finite time
horizon. The model extends the Cramér–Lundbegr model, introduces a stochastic factor
affecting the intensity of the claims arrival process, and assumes that financial market is
not affected by the stochastic factor. Subsequently, when both the intensity of the claims
arrival process and the claim size distribution are influenced by an exogenous stochastic
factor, Brachetta and Ceci [4] considered the optimal excess-of-loss reinsurance problem.
Cao et al. [6] studied the optimal reinsurance investment problem of the compound dy-
namic contagion process. The model considers the self-exciting and externally-exciting
clustering effect for the claim arrivals. Ceci et al. [5] characterized the optimal investment
and proportional reinsurance problem of an insurance company with exponential utility
preferences in a stochastic-factor model. The insurance company experiences both ordi-
nary and catastrophic claims and wishes to maximize the expected exponential utility of
its terminal wealth.

This paper considers optimal investment and reinsurance strategies for an insurer with
the stochastic economic factor. Regarding the stochastic economic factor, we assumed
that it is subject to Itô diffusion (see [2]). We generalize the claim process to a compound
Poisson process with the stochastic economic factor. We also allow an insurer to purchase
the reinsurance contract to reduce their risks and calculate the premium based on the
expected value principle. In addition, there are two types of assets available for an insurer
to invest in the financial market, namely risk-free assets and risky assets. Under power
utility, in order to be able to apply dynamic programming principles, we innovatively define
a new variable called the ratio of the retained proportion of risk over surplus. Then we use
the power transformation (see [21]) to make the HJB equation linear. We subsequently
apply Proposition 2.3 in [1] to analyze the solution of the updated HJB equation, thereby
obtaining the classical solution of the original HJB equation. In this way, the optimal
investment-reinsurance strategy is found. We thus use the verification theorem to give it.

To summarize, the main contributions of this paper have four aspects: (1) We introduce
reinsurance into our model framework and related to the stochastic economic factor, and
then skilfully solve the optimal investment-reinsurance problem by define a new variable.
(2) We extend the classical claim process to a pure discontinuous process with the stochas-
tic economic factor. (3) The stochastic factor does not influence claims arrival intensity
but only claims jump sizes and this should allow to simplify the solution. (4) We assume
that the insurer and reinsurer ignore the stochastic economic factor when calculating the
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premium, which will simplify the net profit condition (See Remark 2.1) and HJB equation,
and thereby simplify the problem.

The remainder of this paper is organized as follows. In Section 2, we describe the model.
In Section 3, we derive the HJB equation and optimal strategies. In Section 4, we prove the
existence and uniqueness of the classical solution of HJB equation and the corresponding
verification theorem. Finally, in Section 5, we carry out a sensitivity analysis to study the
impact of the market parameters on the optimal strategies.

2. Formulation of the model
Throughout this paper, N denotes the family of natural numbers, R+ denotes the family

of nonnegative real numbers and R denotes the family of real numbers. We fix T > 0 to be
the time horizon. Let (Ω,F, {Ft}t≥0,P) be a complete probability space equipped with a
filtration {Ft}t≥0 satisfying the usual conditions, namely, it is right continuous and increas-
ing while F0 contains all P-null sets. This space also supports a 2-dimensional Brownian
motion (Wt, W̃t)t∈[0.T ], a series of positive-valued, independent and identically distributed
random variables {Zi}i=1,2,··· and a time homogeneous Poisson process N(t)t∈[0.T ] with
a positive constant intensity λ. Here we assume that Wt, W̃t, {Zi}i=1,2,··· and N(t) are
mutually independent.

Following the classical risk theory, the claim (risk) process is given by a compound
Poisson process, i.e.,

∑N(t)
i=1 Zi. Here N(t) represents the number of claims up to time

t, and Zi represents the size of the ith claim. Denote by Ct the premium income up
to time t. Then, the insurer’s surplus process (wealth process) (Xt)t∈[0,T ] is given by
Xt = x + Ct −

∑N(t)
i=1 Zi, where x > 0 is the initial wealth.

In this paper, we also assume that the insurer is allowed to purchase reinsurance, which
is a business contract. Specifically, an insurer purchases insurance from a reinsurer against
any losses that result from claims that are made against it. Suppose that the expected
value principle is adopted to calculate the insurance (reinsurance) premium (see [17]),
we then obtain that the insurance (reinsurance) premium P for one claim is given by
P (Z) = (1 + δ)E(Z), where δ > 0 is safety loading associated with the expectation of risk
with respect to the insurer (reinsurer); Z > 0 is a random variable and represents one
claim. Thus, the total premium income up to time t can be expressed as

Ct = (1 + δ)E

N(t)∑
i=1

Zi

 = (1 + δ)λθt,

where θ = E(Z1) > 0. Let āt ∈ [0, 1] for all t ∈ [0, T ]. We denote 1 − āt as the ceded
proportion of risk at time t. Then for each claim Zi, the insurer’s risk retains ātZi and
the remaining risk (1 − āt)Zi is ceded to the reinsurer. According to reinsurance contract,
the total reinsurance premium up to time t can be describe as

C̄t = (1 + δ)E

N(t)∑
i=1

(1 − āt)Zi

 = (1 + δ)(1 − āt)λθt.

Then the insurer’s surplus process can be rewritten as

Xt = x + Ct − C̄t −
N(t)∑
i=1

ātZi = x + (1 + δ)λθātt −
N(t)∑
i=1

ātZi.

Since a Lévy process can be represented by a compound Poisson process if and only if
its Lévy measure is finite (see, e.g., [14]), we can find that there exists a Poisson random
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measure N(dt, dz) on Ω × [0, T ] × (0, ∞) such that
N(t)∑
i=1

Zi =
∫ t

0

∫ ∞

0
zN(ds, dz), ∀t ∈ [0, T ].

So the insurer’s surplus process (Xt)t∈[0,T ] under an {Ft}-predictable retention level,
(āt)t∈[0,T ], becomes

Xt = x + (1 + δ)λθātt −
∫ t

0

∫ ∞

0
ātzN(ds, dz). (2.1)

Additionally, there are two primitive assets available to investment in the financial
market. One of the assets is a risk-free asset with price process (Bt)t∈[0,T ] and the other
is a risky asset with price process (St)t∈[0,T ]. The dynamics of (Bt)t∈[0,T ] and (St)t∈[0,T ]
are given by

dBt = r(Yt)Btdt, B0 = 1 (2.2)
and

dSt = µ(Yt)Stdt + σ(Yt)StdWt, S0 > 0, (2.3)
where r(·) > 0 is a bounded C1-function, µ(·) and σ(·) > 0 are C1-functions, Yt is referred
to as the stochastic economic factor governed by

dYt = β(Yt)dt + α(Yt)
(

ρdWt +
√

1 − ρ2dW̃t

)
, Y0 = y ∈ R. (2.4)

Here β(·) is Lipschitz continuous, α(·) > 0 is bounded Lipschitz continuous, ρ ∈ (−1, 1).
Thus, from classical results (see [13]) it follows that for any initial condition y ∈ R, there
exists a unique strong solution. We further assume that µ(y)−r(y)

σ(y) > 0 is bounded for all
y ∈ R.

Due to the introduction of the stochastic economic factor Yt, we generalize the claim pro-
cess as

∑N(t)
i=1 g(Yt, Zi), where g(y, z) > 0 is a C1-function in y ∈ R such that E[g(Yt, Z1)] <

∞, ∀t ∈ [0, T ]. Let us observe that, since Y and N are independent, we get that

E

N(t)∑
i=1

g(Yt, Zi)

 = λtE[g(Yt, Z1)].

Thus, under the expected value principle, Eq. (2.1) becomes

dXt = (1 + δ)ātλθ(t)dt −
∫ ∞

0
ātg(Yt, z)N(dt, dz),

where θ(t) = E[g(Yt, Z1)]. Since it is difficult for the insurer to evaluate θ(t) at any time
t ∈ [0, T ], we replace θ(t) with θ. Thus, we have

dXt = (1 + δ)λθātdt −
∫ ∞

0
ātg(Yt, z)N(dt, dz).

Remark 2.1. This simplified premium calculation method is not only convenient for us
to use the net profit condition (see Remark 3.2), but also simplifies the analysis of the
solvability of HJB equation (See Theorem 4.1). In fact, if g(y, z) ≤ z for y ∈ R, it means
that the risk of the insurer is reduced and the wealth is increased when the premium
is calculated without considering the stochastic economic factor Y . According to (3.7),
we know that the net profit condition is obviously true. On the contrary, if g(y, z) > z
for y ∈ R, with our simplified method of calculating premiums, it will reduce wealth.
Therefore, for the insurer, if the jump size of the claim g(y, z) is relatively large, the
wealth will be relatively small when applying our model, so the insurer needs to increase
the premium correspondingly. This is also consistent with our intuition.
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At time t, an insurer chooses π̄t, the amount of capital allocated in the risky asset.
Denote by (X π̄,ā

t )t∈[0,T ] the surplus process with a investment strategy π̄ = (π̄t)t∈[0,T ]
and an reinsurance strategy ā = (āt)t∈[0,T ]. To simplify our notation, we write ū :=
(π̄, ā), which is called an investment-reinsurance strategy. Here (π, a) = (π̄t, āt)t∈[0,T ].
Correspondingly, we let ūt = (π̄t, āt). Then using the self-financing trading strategy, we
have from (2.1) − (2.3) that the dynamics of the surplus process (X ū

t )t∈[0,T ] is driven by
the following Lévy SDE:

dX ū
t =

[
r(Yt)X ū

t + (µ(Yt) − r(Yt))π̄t + (1 + δ)λθāt

]
dt + π̄tσ(Yt)dWt

−
∫ ∞

0
ātg(Yt, z)N(dt, dz). (2.5)

For greater convenience, at time t, we denote πt as the proportion of wealth invested in
the risky asset and at as the ratio of the retained proportion of risk over surplus. Then
we obtain πt = π̄t

Xū
t

and at = āt

Xū
t−

. Thus, for a control ut = (πt, at), we have ūt = utXt.
We then rewrite (2.5) as

dXu
t

Xu
t−

= [r(Yt) + (µ(Yt) − r(Yt))πt + (1 + δ)λθat] dt + πtσ(Yt)dWt

−
∫ ∞

0
atg(Yt, z)N(dt, dz). (2.6)

Applying the Doléans-Dade formula (see [10]), SDE (2.6) yields a unique solution Xu
t

given by

Xu
t = Xu

0 exp
{ ∫ t

0

[
r(Ys) + (µ(Ys) − r(Ys))πs + (1 + δ)λθas −

∫ ∞

0
asg(Ys, z)ν(dz)

]
ds

− 1
2

∫ t

0
π2

sσ2(Ys)ds +
∫ t

0
πsσ(Ys)dWs −

∫ t

0

∫ ∞

0
asg(Ys, z)Ñ(ds, dz)

+
∫ t

0

∫ ∞

0
[log (1 − asg(Ys, z)) + asg(Ys, z)] N(ds, dz)

}

= Xu
0 exp

{ ∫ t

0
[r(Ys) + (µ(Ys) − r(Ys))πs + (1 + δ)λθas] ds − 1

2

∫ t

0
π2

sσ2(Ys)ds

+
∫ t

0
πsσ(Ys)dWs +

∫ t

0

∫ ∞

0
log (1 − asg(Ys, z)) N(ds, dz)

}
,

where Ñ(dt, dz) = N(dt, dz) − ν(dz)dt is the compensated Poisson random measure.
We now define the admissible control set.

Definition 2.2. Let t ∈ [0, T ] and s ∈ [t, T ]. An investment-reinsurance strategy us is
said to be admissible if the surplus process (2.6) associated with {Ft}-predictable strategy
(πs, as) has a unique positive solution Xu

s while Xu
t = x > 0. Denote by A the set of all

admissible investment-reinsurance strategies.

To avoid the possibility of bankruptcy at jumps, that is Xu
t > 0 for all t ≥ 0, we need

to assume that 1 − atg(y, z) > 0 for all y ∈ R and z > 0 if u ∈ A. In addition, we assume
that the utility function is given by power utility, i.e., U(x) = 1

γ xγ , where γ ∈ (0, 1) is
the risk-aversion parameter. The power utility function belongs to the class of hyperbolic
absolute risk aversion (HARA) utility functions. Then the value function is given by

V (t, x, y) := sup
u∈A

E [U(Xu
T )|Xu

t = x, Yt = y] (2.7)

for (t, x, y) ∈ [0, T ] × R+ × R.
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3. Dynamic programming and optimal strategies
In this section, we limit the strategies (π, a) in the admissible control set A. Our aim is

to find an admissible control u∗ = (π∗, a∗) ∈ A that attains the value function V (t, x, y).
The control u∗ is called an optimal control. In our case, it suffices to consider Markov
control (see Theorem 11.2.3 in [13]). We first derive the HJB equation.

For (t, x, y) ∈ [0, T ] × R+ × R, we assume that V (t, x, y) is C1,2,2. Using the dynamic
programming principle, the HJB equation can be formulated as follows:

0 =∂V (t, x, y)
∂t

+ β(y)∂V (t, x, y)
∂y

+ 1
2

α2(y)∂2V (t, x, y)
∂y2

+ sup
(π,a)∈R×R+

{
∂V (t, x, y)

∂x
x[r(y) + (µ(y) − r(y))π + (1 + δ)λθa]

+ ρ
∂2V (t, x, y)

∂x∂y
xπα(y)σ(y) + 1

2
∂2V (t, x, y)

∂x2 x2π2σ2(y)

+
∫ ∞

0
[V (t, x(1 − ag(y, z)), y) − V (t, x, y)] ν(dz)

}
(3.1)

with terminal condition V (T, x, y) = U(x) for all (x, y) ∈ R+ × R.
Since the utility function is power utility, we conjecture that V (t, x, y) has the form

V (t, x, y) = U(x)B(t, y), where B(t, y) is a positive C1,2-function. Direct substitution in
the HJB equation (3.1) yields that

0 =∂B(t, y)
∂t

+ β(y)∂B(t, y)
∂y

+ 1
2

α2(y)∂2B(t, y)
∂y2 + B(t, y) sup

(π,a)∈R×R+

H(π, a; y, ξ) (3.2)

with B(T, y) = 1 for all y ∈ R. Here

ξ = ∂B(t, y)
∂y

1
B(t, y)

,

and the Hamiltonian H(π, a; y, ξ) : R × R × R → R is defined as

H(π, a; y, ξ) := γ[r(y) + (µ(y) − r(y))π + (1 + δ)λθa] + γρπα(y)σ(y)ξ

+ 1
2

γ(γ − 1)π2σ2(y) +
∫ ∞

0
[(1 − ag(y, z))γ − 1]ν(dz).

The first-order condition is then given by

∂H(π, a; y, ξ)
∂π

= γ(µ(y) − r(y)) + γρα(y)σ(y)ξ + γ(γ − 1)πσ2(y) = 0 (3.3)

and
∂H(π, a; y, ξ)

∂a
= γ(1 + δ)λθ − γ

∫ ∞

0
[1 − ag(y, z)]γ−1g(y, z)ν(dz) = 0. (3.4)

Hence, we derive that a candidate for π∗ from Eq. (3.3) as

π∗(y, ξ) = µ(y) − r(y)
(1 − γ)σ2(y)

+ ρα(y)ξ
(1 − γ)σ(y)

. (3.5)

By Eq. (3.4), we have

G(a; y) := (1 + δ)λθ −
∫ ∞

0
(1 − ag(y, z))γ−1g(y, z)ν(dz) = 0. (3.6)

Next we may reveal the properties of the solution of Eq. (3.6).
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Lemma 3.1. For each y ∈ R, there exists a unique nonnegative solution a∗ = a∗(y)
satisfying 1 − a∗g(y, z) > 0 of Eq. (3.6) if and only if

(1 + δ)λθ −
∫ ∞

0
g(y, z)ν(dz) ≥ 0. (3.7)

In addition, the solution a∗ = a∗(y) is C1 on y ∈ R.

Proof. For y ∈ R fixed, it is easy to see that G(a; y) is C1 on a ∈ R+. Since 0 < γ < 1,
we observe that G(a; y) is a decreasing function on a ∈ R+. It is not difficult to find that
lima↑ 1

g(y,z)

∫ ∞
0 (1 − ag(y, z))γ−1g(y, z)ν(dz) = ∞. This implies that lima↑ 1

g(y,z)
G(a; y) =

−∞. But lima↓0 G(a; y) = (1 + δ)λθ −
∫ ∞

0 g(y, z)ν(dz). The argument above indicates
that there is a unique nonnegative solution a∗ lying in [0, 1

g(y,z)) of Eq. (3.6) if and only if
Eq. (3.7) holds. This also means that 1 − a∗g(y, z) > 0 holds. In addition, by the implicit
function theorem and G(a; y) is C1 on a ∈ [0, 1

g(y,z)) for y ∈ R, a∗ = a∗(y) is C1 on y ∈ R
follows immediately. The proof is therefore complete. �

Remark 3.2. Inequality (3.7) implies the so called net-profit condition (see, for example,
[3]), which is usually assumed in insurance risk models to ensure that the expected total
risk premium covers the expected losses. In fact, under (3.7) we have that

(1 + δ)λθt ≥ E
[∫ t

0

∫ ∞

0
g(Ys, z)ν(dz)ds

]
= E

[∫ t

0

∫ ∞

0
g(Ys, z)N(ds, dz)

]

= E

N(t)∑
i=1

g(Yt, Zi)

 .

In the light of Lemma 3.1, the solutions to Eq.s (3.3) and (3.4) are given by{
π∗(y, ξ) = µ(y)−r(y)

(1−γ)σ2(y) + ρα(y)ξ
(1−γ)σ(y) ,

a∗ = a∗(y) is the unique nonnegative solution obtained in Lemma 3.1.
(3.8)

It is not hard to verify that the Hessian matrix of H(π, a; y, ξ) is negative definite. So,
(π∗(y, ξ), a∗(y)) is a candidate to be the optimal strategy.

4. Solvability of HJB equation and verification theorem
In this section, we will prove the solvability of HJB equation (3.2) and the corresponding

verification theorem.
If we can show that HJB equation (3.2) admits a unique classical solution with the termi-

nal condition B(T, y) = 1 for all y ∈ R, then we can conclude that V (t, x, y) = U(x)B(t, y)
is the unique classical solution of Eq. (3.1) with terminal condition V (T, x, y) = U(x) for
all (x, y) ∈ R+ × R. Substituting (3.8) into (3.2), we have

0 = ∂B(t, y)
∂t

+
[
β(y) + γρα(y)(µ(y) − r(y))

(1 − γ)σ(y)

]
∂B(t, y)

∂y
+ 1

2
α2(y)∂2B(t, y)

∂y2

+ γρ2α2(y)
2(1 − γ)

(
∂B(t, y)

∂y

)2 1
B(t, y)

+ γB(t, y)
[
r(y) + (µ(y) − r(y))2

2(1 − γ)σ2(y)

+ (1 + δ)λθa∗
]

+ B(t, y)
∫ ∞

0
[(1 − a∗g(y, z))γ − 1]ν(dz), (4.1)

the terminal condition is still B(T, y) = 1 for all y ∈ R. Then we have the following
theorem.
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Theorem 4.1. Under the net-profit condition (3.7), for (t, y) ∈ [0, T ] × R, the updated
HJB equation (4.1) has a unique positive and bounded classical solution.

Proof. We use the method of [21] to transform B(t, y). We let B(t, y) = Em(t, y) for a
parameter m to be determined. We may easily observe that

0 = mEm−1(t, y)∂E(t, y)
∂t

+ mφ(y)Em−1(t, y)∂E(t, y)
∂y

+ 1
2

mα2(y)Em−1(t, y)∂2E(t, y)
∂y2

+ α2(y)
[

m(m − 1)
2

+ γρ2m2

2(1 − γ)

]
Em−2(t, y)

(
∂E(t, y)

∂y

)2
+ τ(y)Em(t, y),

where

φ(y) := β(y) + γρα(y)(µ(y) − r(y))
(1 − γ)σ(y)

,

τ(y) := γ

[
r(y) + (µ(y) − r(y))2

2(1 − γ)σ2(y)
+ (1 + δ)λθa∗

]
+

∫ ∞

0
[(1 − a∗g(y, z))γ − 1]ν(dz).

By Lemma 3.1, we have 0 ≤ a∗ < 1
g(y,z) . Recall that µ(y)−r(y)

σ(y) > 0 is bounded. We then
easily see that

τ(y) ≤ γ

[
r(y) + (µ(y) − r(y))2

2(1 − γ)σ2(y)
+ (1 + δ)λθa∗

]
≤ C

for y ∈ R, where C > 0 is a constant. If we choose m = 1−γ
1−γ+γρ2 ∈ (0, 1], then we have

0 = ∂E(t, y)
∂t

+ φ(y)∂E(t, y)
∂y

+ 1
2

α2(y)∂2E(t, y)
∂y2 + τ(y)

m
E(t, y) (4.2)

with the terminal condition E(T, y) = 1 for all y ∈ R. Therefore, Eq. (4.1) becomes a
linear parabolic differential equation. We next prove that Eq. (4.2) has a unique bounded
classical solution. For this purpose, we should apply Girsanov’s Theorem (see, e.g., [13]).
Consider the following SDE:

dỸt = φ(Ỹt)dt + α(Ỹt)
(

ρdWt +
√

1 − ρ2dW̃t

)
, Ỹ0 = y ∈ R, (4.3)

where φ(y) is defined as before. Let

q(Yt) = γρ(µ(Yt) − r(Yt))
(γ − 1)σ(Yt)

and

M(t) = exp
{

−
∫ t

0
q(Ys)

(
ρdWs +

√
1 − ρ2dW̃s

)
− 1

2

∫ t

0
q2(Ys)ds

}
.

Define the probability measure Q on FT and the process WQ
t by dQ = M(T )dP and

dWQ
t = q(t)dt + ρdWt +

√
1 − ρ2dW̃t. Then WQ

t is a Brownian motion with respect to
WQ

t . Since µ(y)−r(y)
σ(y) is bounded for all y ∈ R, Q ∼ P is well defined. Therefore, by

Girsanov’s Theorem, in terms of WQ
t SDE (2.4) can easily be rewritten as

dYt = φ(Yt)dt + α(Yt)dWQ
t , Y0 = y ∈ R. (4.4)

This implies that SDE (4.4) has a unique solution under Q. So we have proved that SDE
(4.3) has a unique solution under P.
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Let Dn = (−n, n) for n ∈ N. Clearly, E(T, y) = 1 is C2 and bounded for all y ∈ R. It is
not hard to verify that the coefficients of SDE (4.2) satisfy the conditions in Proposition
2.3 of [1]. Furthermore, for (t, y) ∈ [0, T ] × R, by the Feynman–Kac formula, we have

E(t, y) = E
[
e
∫ T

t

τ(Ỹs)
m

ds|Ỹt = y

]
.

So E(t, y) is positive and bounded. Then SDE (4.2) has a unique positive and bounded
classical solution.

Since B(t, y) = Em(t, y), m = 1−γ
1−γ+γρ2 ∈ (0, 1], we know that B(t, y) is the unique

positive and bounded classical solution to the updated HJB equation (4.1). Thus the
proof is complete. �

We now state the following verification theorem.

Theorem 4.2. Under the net-profit condition (3.7), for (t, x, y) ∈ [0, T ] × R+ × R, the
value function satisfies

V (t, x, y) = 1
γ

xγ
{
E

[
e

1−γ+γρ2
1−γ

∫ T

t
τ(Ỹs)ds|Ỹt = y

]} 1−γ

1−γ+γρ2
, (4.5)

where Ỹt, 0 ≤ t ≤ T is the unique strong solution to SDE (4.3). Moreover, for y ∈ R and
z > 0, the optimal strategies are given by

π∗
t = π∗

(
Yt,

∂B(t, Yt)
∂y

1
B(t, Yt)

)
, a∗

t = a∗(Yt). (4.6)

Here (π∗(y, ξ), a∗) is given by (3.8) and Yt, 0 ≤ t ≤ T is the unique strong solution to
SDE (2.4).

Proof. Applying Theorem 3.2 of [21], one easily concludes that the value function V (t, x, y)
is given by 1

γ xγEm(t, y). Since m = 1−γ
1−γ+γρ2 , we may easily get (4.5). Using the fact that

µ(y)−r(y)
σ(y) and α(y) are bounded, σ(y) is locally bounded and Lemma 3.1, it follows that

π∗
(
y, ∂B(t,y)

∂y
1

B(t,y)

)
and a∗(y) are locally bounded. So we have (4.6) is admissible by

Definition 2.2. Clearly, (4.6) is the optimum. Therefore, the proof is completed. �

5. Sensitivity analysis
In this section, we analyze the impact of some important parameters on optimal investment-

reinsurance strategies.
To conduct the sensitivity analysis, we proposed the model as follows. The stochastic

economic factor model is chosen to be of the mean-reverting Ornstein–Uhlenbeck process

dYt = (m − Yt)dt + α

(
ρdWt +

√
1 − ρ2dW̃t

)
, Y0 = y ∈ R,

where m ∈ R and α > 0 are constants. Thus there exists a unique solution Yt. We assume
that the riskless bond and the price processes of the risky asset are given by Bt = ert and

dSt = µStdt + σ(Yt)StdWt, S0 > 0.

Here r > 0 and µ are constants, the volatility σ(·) > 0 is C1-function. Then the surplus
process (Xu

t )t∈[0,T ] is given by
dXu

t

Xu
t−

= [r + (µ − r)πt + (1 + δ)λθat] dt + πtσ(Yt)dWt −
∫ ∞

0
atg(Yt, z)N(dt, dz).

We assume that ν(dz) = jδ1(dz), where j > 0, δx is the Dirac measure concentrated
at x. For the volatility function, we choose the uniformly elliptic Scott volatility; see for
instance [15]. In other words, σ(y) =

√
ε + eςy for ε, ς > 0. Clearly, |µ−r|√

ε+eςy < |µ−r|√
ε

. By
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Eq. (3.6), we have (1+δ)λθ − (1−a∗(y)g(y, 1))γ−1jg(y, 1) = 0. Then the solution is given
by

a∗(y) = 1
g(y, 1)

1 −
[(1 + δ)λθ

jg(y, 1)

] 1
γ−1

 . (5.1)

In addition, the net-profit condition (3.7) implies that jg(y, 1) ≤ (1 + δ)λθ for y ∈ R.
Recall that the optimal strategy (π∗(y, ξ), a∗(y)) given by (3.8), then for (y, ξ) ∈ R × R,

π∗(y, ξ) = µ(y) − r(y)
(1 − γ)(ε + eςy)

+ ρα(y)ξ
(1 − γ)

√
ε + eςy

. (5.2)

Therefore, for 0 ≤ t ≤ T , the optimal strategies are given by

π∗
t = π∗

(
Yt,

∂B(t, Yt)
∂y

1
B(t, Yt)

)
, a∗

t = a∗(Yt).

Throughout this section, unless otherwise stated, the market parameters are given as
follows: r = 0.2, λ = 1, δ = 0.2, θ = 0.5, µ = 0.6, α = 0.01, ε = 0.2, ς = 0.02. Graphs for
the impact of y, ρ, j and γ on the optimal strategies are presented in Fig. 1.

Figure 1. Impact of y, ρ, j and γ on the optimal strategies.

First, we study the impact of y, the stochastic economic factor, on the optimal strategy.
We fix γ = 0.5, ρ = −0.2, j = 1 and ξ = 15. Based on the left top figure in Fig. 1, which
plots the optimal strategies with respect to the stochastic economic factor y, we observe
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that the optimal investment proportion π∗ in the risky asset is a decreasing function of
y. This implies that when the stochastic economic factor y becomes larger, the optimal
investment proportion in the risky asset would be smaller. The figure also shows that the
optimal retained proportion of risk over surplus a∗ is a decreasing function of y, but the
decreasing speed is faster than π∗. We use the volatility function to explain the behavior
of the optimal investment proportion. Since the volatility σ(y) =

√
ε + eςy is increasing in

y, it means that when y becomes larger, σ(y) would also be larger. Hence, by (5.2), when
y increases, an insure reduces his/her investment proportion in the risky asset.

The graph of optimal strategy π∗ with respect to different values of ρ in the right top
figure in Fig. 1 is considered. For this analysis, we fix the stochastic economic factor
y = 0, ±20. In terms of π∗ in (5.2), we know that π∗ is an increasing function of ρ.
This is consistent with the graphic line. This behavior is also supported by the economic
interpretation of ρ. When ρ takes values near zero it means that the price processes and
the stochastic economic factor are almost uncorrelated. In other words, when ρ takes
values near zero, there is little uncertainty in the financial market. Hence, π∗ takes a
maximum value in that region.

We further analyze the impact of the jump’s size j on the optimal strategy a∗. For this
analysis, we fix y = 20. The left bottom figure in Fig. 1 shows that the optimal retained
proportion of risk over surplus a∗ is a decreasing function of j. It can be explained that
when the jump’s size j becomes larger, the risk exposure to the insurer would be larger. It
is natural for the insurer to increase the ceded proportion of risk. Therefore, the optimal
retained proportion of risk over surplus a∗ would be small.

The last variable we analyze is γ, the insurer’s risk aversion. The corresponding optimal
strategies are presented in the right bottom figure in Fig. 1. Notice that 0 < γ < 1. In this
case, the insurer with greater γ are more risk seeking. When γ increases, it is natural for
an insurer to invest more money in the risky asset. Hence π∗ increases as well. This can
also explain the optimal retained proportion of risk over surplus a∗. Because an insurer
invests more money in the risky asset, the risk is naturally greater.
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