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Nonstandard Discretization and Stability Analysis of a Novel Type of Malaria-Ross Model 

Mehmet KOCABIYIK1* 

ABSTRACT: Malaria is still a deadly disease in most developing countries. In order to prevent this and 

many other diseases in all countries, it is necessary to understand the dynamics of the disease well. For 

this reason, in this study, a new type of Malaria-Ross equation, Distributed order, is discussed. In this 

new type, the dynamics of the disease can be understood better and quicker in different situations with 

the density function included in such equations. Numerical discretization of this model is done with the 

help of a nonstandard finite difference scheme. Afterward, stability analyses of the equilibrium points 

obtained from the model that were performed. At the same time, comparisons were made with other 

numerical methods. Finally, the findings are expressed with graphs and tables. 

Keywords: Distributed order differential equations, Malaria-Ross model, numerical Analysis, 

discretization, stability Analysis 
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INTRODUCTION 

Malaria is an ancient disease, but it still significantly impacts public health. In fact, WHO (World 

Health Organization) has declared malaria as an endemic disease in some developing countries (WHO, 

2017). Malaria is a vector-borne infectious disease caused by the protozoan parasite transmitted to 

vertebrates by an infected female Anopheles mosquito. The parasite is transmitted to humans by the bite 

of an infected mosquito. It is very important to understand and predict the transmission dynamics of 

malaria because of its impact on the world. As in most fields in biology, mathematical modeling is used 

to study infectious diseases, to understand the relationship between host and parasite, and the dynamics 

of disease. 

In this framework, Ronald Ross reached the life cycle of the malaria parasite in 1890. He 

subsequently published a series of articles on the transmission of malaria (Ross, 1911; Ross, 1915; Ross 

1916a; Ross 1916b; Ross and Hadson, 1916). In the model to be used in this research, the relationship 

between the number of mosquitoes and humans was examined. This model is also called Malaria Ross 

model (Ross, 1915). After these studies, many articles were published about the latent infection period 

of malaria in humans (Macdonald, 1957; Aron and May, 1982; Dietz, 1988; Aron, 1988; Anderson and 

May, 1991). In recent years, Ngwa and Shu have investigated the dynamics of the model (Nqwa and 

Shu, 2000; Nqwa, 2004). Chitnis (2005), on the other hand, has studied the spread of malaria.  

Mandal et al. (2011) conducted a study in which all the mathematical models of malaria have been 

found. In addition to these articles, studies on discretization and stability analysis for different malaria 

models have also gained importance in recent years (Elsheikh et al., 2014; Nyang’inja, 2019). 

In this study, the Malaria Ross model has been discussed and its dynamics have been investigated. 

The Malaria Ross model for these dynamics is expressed as a new type of equation, with Distributed 

order differential equations. The main purpose for us to create the distributed order of the Malaria Ross 

model and reach its solution in this way is that, this type of equation is a general state of ordinary and 

fractional differential equations. The most important factor that provides generalization is that this type 

of equation contains a density function. Selection of density function provides interpretation capability 

for both ordinary equations, fractional equations, and different situations. For example, with the selection 

𝑢(𝛼)=1, the differential equation of the distributed order becomes fractional-order differential equations.   

Distributed order differential equations have been defined and developed by Caputo (1969; 1995; 

2001; 2003). This type of equation defined by Caputo has gained importance afterward and was used in 

fractional order systems by Hartley and Lorenzo (2003). Bagley and Torvik (2000a; 2000b) worked on 

the existence and solution of distributed order differential equations. Distributed order differential 

equations which have gained more importance with these research studies have been studied and 

researched by many researchers in subjects such as analytical solutions, numerical solutions, and 

stability analysis (Diethelm and Ford, 2009; Katsikadelis, 2014; Li and Wu, 2016; Aminikhah et al., 

2013; Luchko, 2009). 

With 𝛼 𝜖 (𝑟1, 𝑟2) let ∫ 𝑢(𝛼)
𝑟2
𝑟1

= 𝑙 > 0,  𝐷𝑡
𝛼 be the fractional derivative operator and 𝑔(𝑡) be a 

function that can be chosen as a Caputo or Riemann Liouville fractional derivative. In this case, the 

distributed order equations and fractional derivative are respectively defined as (Caputo 1969), 

𝐷𝑡
𝑢(𝛼)𝑔(𝑡) =∑𝛼𝑖∫ 𝑢𝑖(𝛼)

𝜏2

𝜏1

𝑛

𝑖=1

𝐷𝑡
𝑖−𝛼𝑔(𝑡)𝑑𝛼 +∑𝑏𝑗𝑔

𝑖(𝑡)

𝑛

𝑗=0

.              (1) 
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As stated in the previous explanations, with the solution of these types of differential equations, 

information about the solutions of more than one type of differential equations can be obtained (Caputo, 

1995; Caputo, 2001). 

Another important definition for discretization of the model after the definitions of distributed 

order differential equations required is the approximate Grünwald-Letnikov derivative formula. This 

formula can be defined as follows (Meerschaert and Tadjeran, 2004),  

𝐷𝐺𝐿
𝛼 𝑔(𝑡) = lim

𝑣→0
𝑣−𝛼∑(−1)𝑖 (

𝛼

𝑖
) 𝑔(𝑡 − 𝑖𝑣)

𝑛

𝑖=0

. (2) 

If necessary arrangements are made in this formula due to its ease of use, the equation  

𝐷𝑡
𝛼𝑔(𝑡) =∑𝑝𝑖

𝛼𝑔(𝑡𝑛−𝑟),    𝑛 = 1,2,3, , … ,
𝑡 − 𝛼

ℎ

𝑛

𝑖=0

 
(3) 

is found for, 𝑖 = 1,2,3, … , 𝑛,  𝑝𝑖
𝛼 = (1 −

1+𝛼

𝑖
) 𝑝𝑖−1

𝛼 , 𝑝0
𝛼 = ℎ−𝛼and ℎ has been selected quite small 

(Dorciak, 1994).  

In this article, we examine a new type of model, the distributed order, which expresses the 

relationship between the number of mosquitoes and the number of malaria cases in humans, as described 

by Ross (1911). Distributed order Malaria Ross model can be defined as follows, 

𝐷𝑡
𝑢(𝛼)𝐼ℎ = 𝑎 𝑏 𝑚  𝐼𝑚 (1 − 𝐼ℎ) − 𝑟 𝐼ℎ, (4) 

𝐷𝑡
𝑢(𝛼)𝐼𝑚 = 𝑎 𝑐 𝐼ℎ (1 − 𝐼𝑚) − 𝜇2 𝐼

𝑚  , (5) 

where; 

𝐼ℎ = the time evolution of the infected classes in human, 

𝐼𝑚 = the time evolution of the infected classes in mosquito, 

𝑎 =   Man biting rate [0.01-0.5]  day−1, 

𝑏 = Proportion of bites that produce infection in human [0.2-0.5], 

𝑐 = Proportion of bites by which one susceptiple mosquito becomes infected [0.5], 

𝑚 = Ratio of number of female mosquitoes to that of humans [0.5-40], 

𝑟 = Avarage recovery rate of human [0.005-0.05] day−1, 

𝜇2 = Per capita rate of mosquito mortality [0.05-0.5] day−1. 

The main purpose here is to understand the rate of progression and development of infected 

humans and mosquitoes. Knowing these advanced developments is very important to understand the 

dynamics of drugs on the disease. The most important problem for these dynamics is to know the effects 

of different factors and situations. Instead of finding such effects with different equation systems, 

Distributed order differential equations are used. 

This article consists of four sections. In the first section, basic information and definitions about 

Malaria Ross model and Distributed order differential equations are given. Afterward, in this section, a 

new type of Malaria Ross model of distributed order is defined and its purpose of use is stated. In the 

second section, discretization of the given new type model is done with Nonstandard finite difference 

scheme (NSFD). In addition, equilibrium points of the discretized system are found in this section. In 

the third section, the stability analysis of the equilibrium points is made by substituting the parameter 

values. The numerical simulations of this system are also included. In the fourth and last section, there 

is the conclusion part of the outcomes. 
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MATERIALS AND METHODS 

For discretization, the Nonstandard finite difference method defined by Mickens in 1989 was 

chosen (Mickens, 1989). If 𝜑 is considered a parameter and 
𝑑𝑔

𝑑𝑡
= 𝐻(𝜑, 𝑔) is considered the ordinary 

differential equation, the NSFD scheme is in the form below; 

𝑡 → 𝑡𝑛, 𝑅(𝑔) → 𝑅(𝑔𝑛),    𝑔(𝑡) → 𝑔(𝑡𝑛),    
𝑑𝑔

𝑑𝑡
→
𝑔𝑛+1 − 𝑔𝑛

𝜙
, (6) 

where  𝜙: denominator function and  
1−𝑒−𝑐ℎ

𝑐
  , ℎ depends on the variable 𝑐  which can be achieved with 

the help of the step range and the equilibrium point. The NSFD scheme can also be used in fractional 

order differential equations with the approximate Grünwald -Letnikov derivative formula expressed in 

the previous section (Mickens, 1994; Mickens, 2002; Ongun and Turhan, 2012; Ongun et al., 2013; 

Ongun and Arslan, 2018; Kocabıyık et al., 2020). 

If the distributed order Malaria Ross model which is expressed by Equations (4)-(5) is discretized 

with NSFD scheme, it takes the form:  

∑
𝑢(𝛼𝑘)

𝑇

𝑇
𝑘=1 ∑ 𝑞𝑖

𝛼𝑘𝑛+1
𝑖=0 𝐼𝑛+1−𝑖

ℎ = 𝑎 𝑏 𝑚  𝐼𝑛
𝑚 (1 − 𝐼𝑛+1

ℎ ) − 𝑟 𝐼𝑛+1
ℎ   (7) 

∑
𝑢(𝛼𝑘)

𝑇

𝑇
𝑘=1 ∑ 𝑞𝑖

𝛼𝑘𝑛+1
𝑖=0 𝐼𝑛+1−𝑖

𝑚 =  𝑎 𝑐 𝐼𝑛
ℎ  (1 − 𝐼𝑛+1

𝑚  ) − 𝜇2 𝐼𝑛+1
𝑚       (8) 

In this discretized system for 𝑖 = 1,2 and for  0 < 𝛼𝑘 < 1 ,  𝑝0
𝛼𝑘 = (𝜙𝑖(ℎ))

−𝛼𝑘  . For the NSFD 

scheme, the denominator functions were chosen in the form:  

𝜙1(ℎ) =
1 − 𝑒𝑟ℎ

𝑟
, 𝜙2(ℎ) =

1 − 𝑒𝜇2ℎ

𝜇2
. (9) 

The left side of the discretized system can be arranged and for 𝑖 = 1,2 if the abbreviations 

∑
𝑢(𝛼𝑘)

𝑁

𝑁
𝑘=1 = 𝐾  and ∑

𝑢(𝛼𝑘)

𝑁

𝑁
𝑘=1  𝜙𝑖(ℎ) = 𝐿𝑖 are used, the discretized form will be Equations (10)-(11),  

𝐼𝑛+1
ℎ =

𝑎 𝑏 𝑚  𝐼𝑛
𝑚−𝐾 (∑ 𝑞

𝑖

𝛼𝑘𝑛+1
𝑖=1 𝐼𝑛+1−𝑖

ℎ )

((𝐿1)
−𝛼𝑘+𝑎 𝑏 𝑚  𝐼𝑛

𝑚+𝑟)
,  (10) 

𝐼𝑛+1
𝑚 =

𝑎 𝑐 𝐼𝑛
ℎ−𝐾 (∑ 𝑞

𝑖

𝛼𝑘𝑛+1
𝑖=1 𝐼𝑛+1−𝑖

𝑚 )

((𝐿2)
−𝛼𝑘+𝑎 𝑐 𝐼𝑛

ℎ+𝜇2)
.   (11) 

In order to find the equilibrium point of Equations (10)-(11), the solutions of the equations:  

𝐼𝑛
ℎ =

𝑎 𝑏 𝑚  𝐼𝑛
𝑚−𝐾 𝑣 𝐼𝑛

ℎ

((𝐿1)
−𝛼𝑘+𝑎 𝑏 𝑚  𝐼𝑛

𝑚+𝑟)
,  (12) 

𝐼𝑛
𝑚 =

𝑎 𝑐 𝐼𝑛
ℎ − 𝐾 𝑣 𝐼𝑛

𝑚

((𝐿2)−𝛼𝑘 + 𝑎 𝑐 𝐼𝑛
ℎ + 𝜇2)

, (13) 

are required, where 𝑣 = ∑ 𝑞𝑖
𝛼𝑘𝑛+1

𝑖=1 . There are two different situations for this solution. With these 

solutions, equilibrium points are found as; 

𝐸1 = (𝐼𝑛
ℎ, 𝐼𝑛

𝑚) = (0,0), (14) 

𝐸2 = (𝐼𝑛
ℎ, 𝐼𝑛

𝑚) =

(
𝑎2 𝑏 𝑐 𝑚−𝐾2 𝑣2−𝐾 𝑣 ((𝐿1)

−𝛼𝑘+(𝐿2)
−𝛼𝑘+𝑟+𝜇2)−(𝐿1)

−𝛼𝑘(𝐿2)
−𝛼𝑘−(𝐿1)

−𝛼𝑘𝜇2−(𝐿2)
−𝛼𝑘𝑟−𝜇2 𝑟

𝑎𝑐((𝐿1)
−𝛼𝑘+𝑎 𝑏 𝑚  +𝐾 𝑣+𝑟)

,  
 

𝑎2 𝑏 𝑐 𝑚−𝐾2 𝑣2−𝐾 𝑣 ((𝐿1)
−𝛼𝑘+(𝐿2)

−𝛼𝑘+𝑟+𝜇2)−(𝐿1)
−𝛼𝑘(𝐿2)

−𝛼𝑘−(𝐿1)
−𝛼𝑘𝜇2−(𝐿2)

−𝛼𝑘𝑟−𝜇2 𝑟

𝑎𝑏𝑚((𝐿2)
−𝛼𝑘+𝑎 𝑐+𝐾 𝑣 +𝜇2)

 ).  (15) 

For the analysis of these equilibrium points, 𝐽 Jacobian matrix of the discretized system is obtained 

in the following form: 

𝐽(𝐼𝑛+1
ℎ , 𝐼𝑛+1

𝑚 ) =

(

 
 

−𝐾 𝑞1
𝛼𝑘

((𝐿1)
−𝛼𝑘 + 𝑎 𝑏 𝑚  𝐼𝑛

𝑚 + 𝑟)

𝑎 𝑏 𝑚 ((𝐿1)
−𝛼𝑘 + 𝑟 + 𝐾𝑞1

𝛼𝑘  𝐼𝑛
ℎ))

((𝐿1)
−𝛼𝑘 + 𝑎 𝑏 𝑚  𝐼𝑛

𝑚 + 𝑟)2

𝑎 𝑐 ((𝐿2)
−𝛼𝑘 + 𝜇2 + 𝐾𝑞1

𝛼𝑘𝐼𝑛
𝑚)

((𝐿2)
−𝛼𝑘 + 𝑎 𝑐 𝐼𝑛

ℎ + 𝜇2)
2

−𝐾 𝑞1
𝛼𝑘

((𝐿2)
−𝛼𝑘 + 𝑎 𝑐 𝐼𝑛

ℎ + 𝜇2) )

 
 
. 

 

(16) 



Mehmet KOCABIYIK 12(2): 1023-1033, 2022 

Nonstandard Discretization and Stability Analysis of a Novel Type of Malaria-Ross Model 

 

1027 

RESULTS AND DISCUSSION 

In this section, the stability analysis of the obtained equilibrium points and numerical simulations 

of the discretized system will be given with the help of parameter values. For the simulations in this 

section, the parameters a = 0.2 day−1, b = 0.5, c = 0.5, m = 20, r = 0.01 day−1 and μ2 =

0.12 day−1 are used (Mandal et al., 2011). 

Stability analysis of Distributed order Malaria-Ross Model 

Lemma 3.1. Let the 𝐸 point be the equilibrium point of the discretized system. In this case, the absolute 

values of all eigenvalues obtained when substituted in the Jacobian matrix must be less than 1 in order 

for the equilibrium point to be stable. Otherwise, if the absolute value of at least one eigenvalue is not 

less than 1, the equilibrium point is not stable (Dimitrov and Kojouharov, 2007; Dimitrov and 

Kojouharov, 2008). 

In some special cases, it is not possible to obtain eigenvalues in the stability analysis section in 

terms of processing difficulty. When such a situation is encountered, the criteria developed by Schur-

Cohn can be used. These criteria, also called Jury Conditions, depend on the coefficients of the 

characteristic equation obtained from the matrix. For the definition of Jury Conditions, if we consider 

the characteristic polynomial 𝑃(𝜆) = 𝜆2 + 𝑎1𝜆 + 𝑎0 ,  

i) 1 + 𝑎1 + 𝑎0 > 0, 

ii) 1 − 𝑎1 + 𝑎0 > 0, 

iii) |𝑎0| < 1,    

if the conditions are satisfied, the equilibrium point is asymptotically stable (Dimitrov and Kojouharov, 

2007).  

Theorem 3.2. The equilibrium point 𝐸1   is locally asymptotically stable if the following condition is 

satisfied, if not unstable. 

|
−1

2
(𝑞1
𝛼𝑘𝐾[(𝐿1)

−𝛼𝑘 + (𝐿2)
−𝛼𝑘 + 𝜇2 + 𝑟]|     

+ ||√

𝑎2𝑏𝑐𝑚(4(𝐿1)−𝛼𝑘(𝐿2)−𝛼𝑘 + 4(𝐿1)−𝛼𝑘𝜇2 + (𝐿1)−𝛼𝑘(𝐿2)−𝛼𝑘𝑟 + 4𝜇2𝑟)

+(𝑞1
𝛼𝑘)2𝐾2(((𝐿1)−𝛼𝑘 − (𝐿2)−𝛼𝑘)2

−2(𝐿1)−𝛼𝑘𝜇2 + 2(𝐿1)−𝛼𝑘𝑟 + 2(𝐿2)−𝛼𝑘𝜇2 − 2(𝐿2)−𝛼𝑘𝑟 + (𝜇2 − 𝑟)2)

||

<  |((𝐿1)
−𝛼𝑘 + 𝑟)((𝐿2)

−𝛼𝑘 + 𝜇2)|,  

Proof 

If equilibrium point 𝐸1  is placed in the Jacobian matrix: 

𝐽(𝐼𝑛+1
ℎ , 𝐼𝑛+1

𝑚 ) =

(

 
 

−𝐾 𝑞1
𝛼𝑘

(𝐿1)−𝛼𝑘 + 𝑟

𝑎 𝑏 𝑚 

(𝐿1)−𝛼𝑘 + 𝑟

𝑎 𝑐 

(𝐿2)−𝛼𝑘 + 𝜇2

−𝐾 𝑞1
𝛼𝑘

(𝐿2)−𝛼𝑘 + 𝜇2))

 
 
. 

If the determinant |𝐽 − 𝜆𝐼| = 0 is used in this obtained Jacobian matrix, the characteristic equation will 

be found as follows: 

𝑃(𝜆) = 𝜆2 + (
𝑞1
𝛼𝑘𝐾[(𝐿1)

−𝛼𝑘+(𝐿2)
−𝛼𝑘+𝜇2+𝑟]

((𝐿1)
−𝛼𝑘+𝑟)((𝐿2)

−𝛼𝑘+𝜇2)
) 𝜆 + (

−𝑎2𝑏𝑐𝑚+(𝑞1
𝛼𝑘)2𝐾2

((𝐿1)
−𝛼𝑘+𝑟)((𝐿2)

−𝛼𝑘+𝜇2)
) = 0. 

With the solution of the characteristic polynomial, the eigenvalues are as follows; 
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𝜆1

=

−1
2
(𝑞1
𝛼𝑘𝐾[(𝐿1)

−𝛼𝑘 + (𝐿2)
−𝛼𝑘 + 𝜇2 + 𝑟] − √

𝑎2𝑏𝑐𝑚(4(𝐿1)
−𝛼𝑘(𝐿2)

−𝛼𝑘 + 4(𝐿1)
−𝛼𝑘𝜇2 + (𝐿1)

−𝛼𝑘(𝐿2)
−𝛼𝑘𝑟 + 4𝜇2𝑟)

+(𝑞
1

𝛼𝑘)
2
𝐾2(((𝐿1)

−𝛼𝑘 − (𝐿2)
−𝛼𝑘)2

−2(𝐿1)
−𝛼𝑘𝜇2 + 2(𝐿1)

−𝛼𝑘𝑟 + 2(𝐿2)
−𝛼𝑘𝜇2 − 2(𝐿2)

−𝛼𝑘𝑟 + (𝜇2 − 𝑟)
2)

((𝐿1)−𝛼𝑘 + 𝑟)((𝐿2)−𝛼𝑘 + 𝜇2)
, 

𝜆2

=

−1
2
(𝑞1
𝛼𝑘𝐾[(𝐿1)

−𝛼𝑘 + (𝐿2)
−𝛼𝑘 + 𝜇2 + 𝑟] + √

𝑎2𝑏𝑐𝑚(4(𝐿1)
−𝛼𝑘(𝐿2)

−𝛼𝑘 + 4(𝐿1)
−𝛼𝑘𝜇2 + (𝐿1)

−𝛼𝑘(𝐿2)
−𝛼𝑘𝑟 + 4𝜇2𝑟)

+(𝑞
1

𝛼𝑘)
2
𝐾2(((𝐿1)

−𝛼𝑘 − (𝐿2)
−𝛼𝑘)2

−2(𝐿1)
−𝛼𝑘𝜇2 + 2(𝐿1)

−𝛼𝑘𝑟 + 2(𝐿2)
−𝛼𝑘𝜇2 − 2(𝐿2)

−𝛼𝑘𝑟 + (𝜇2 − 𝑟)
2)

((𝐿1)−𝛼𝑘 + 𝑟)((𝐿2)−𝛼𝑘 + 𝜇2)
. 

Because of the stability condition expressed in Lemma 3.1, the absolute values of the eigenvalues must 

be less than 1. Then the following conditions must be satisfied: 

|

|

|
−1
2 (𝑞1

𝛼𝑘𝐾[(𝐿1)
−𝛼𝑘 + (𝐿2)

−𝛼𝑘 + 𝜇2 + 𝑟] − √

𝑎2𝑏𝑐𝑚(4(𝐿1)
−𝛼𝑘(𝐿2)

−𝛼𝑘 + 4(𝐿1)
−𝛼𝑘𝜇2 + (𝐿1)

−𝛼𝑘(𝐿2)
−𝛼𝑘𝑟 + 4𝜇2𝑟)

+(𝑞
1

𝛼𝑘)
2
𝐾2(((𝐿1)

−𝛼𝑘 − (𝐿2)
−𝛼𝑘)2

−2(𝐿1)
−𝛼𝑘𝜇2 + 2(𝐿1)

−𝛼𝑘𝑟 + 2(𝐿2)
−𝛼𝑘𝜇2 − 2(𝐿2)

−𝛼𝑘𝑟 + (𝜇2 − 𝑟)
2)

((𝐿1)−𝛼𝑘 + 𝑟)((𝐿2)−𝛼𝑘 + 𝜇2)

|

|

|

< 1, 

|

|

|
−1
2
(𝑞1
𝛼𝑘𝐾[(𝐿1)

−𝛼𝑘 + (𝐿2)
−𝛼𝑘 + 𝜇2 + 𝑟] + √

𝑎2𝑏𝑐𝑚(4(𝐿1)
−𝛼𝑘(𝐿2)

−𝛼𝑘 + 4(𝐿1)
−𝛼𝑘𝜇2 + (𝐿1)

−𝛼𝑘(𝐿2)
−𝛼𝑘𝑟 + 4𝜇2𝑟)

+(𝑞
1

𝛼𝑘)
2
𝐾2(((𝐿1)

−𝛼𝑘 − (𝐿2)
−𝛼𝑘)2

−2(𝐿1)
−𝛼𝑘𝜇2 + 2(𝐿1)

−𝛼𝑘𝑟 + 2(𝐿2)
−𝛼𝑘𝜇2 − 2(𝐿2)

−𝛼𝑘𝑟 + (𝜇2 − 𝑟)
2)

((𝐿1)−𝛼𝑘 + 𝑟)((𝐿2)−𝛼𝑘 + 𝜇2)

|

|

|

< 1. 

In this case, the equilibrium point 𝐸1  is locally asymptotically stable, provided the following condition 

is satisfied. 

|
−1

2
(𝑞1
𝛼𝑘𝐾[(𝐿1)

−𝛼𝑘 + (𝐿2)
−𝛼𝑘 + 𝜇2 + 𝑟]|     

+ ||√

𝑎2𝑏𝑐𝑚(4(𝐿1)−𝛼𝑘(𝐿2)−𝛼𝑘 + 4(𝐿1)−𝛼𝑘𝜇2 + (𝐿1)−𝛼𝑘(𝐿2)−𝛼𝑘𝑟 + 4𝜇2𝑟)

+(𝑞1
𝛼𝑘)2𝐾2(((𝐿1)−𝛼𝑘 − (𝐿2)−𝛼𝑘)2

−2(𝐿1)−𝛼𝑘𝜇2 + 2(𝐿1)−𝛼𝑘𝑟 + 2(𝐿2)−𝛼𝑘𝜇2 − 2(𝐿2)−𝛼𝑘𝑟 + (𝜇2 − 𝑟)2)

||

<  |((𝐿1)
−𝛼𝑘 + 𝑟)((𝐿2)

−𝛼𝑘 + 𝜇2)|.  

Remark 3.3 In addition, stability analysis can be found using the denominator function. For this 

analysis, let ((𝐿1)
−𝛼𝑘 + 𝑟)((𝐿2)

−𝛼𝑘 + 𝜇2) = 𝑘1, 𝑞1
𝛼𝑘𝐾[(𝐿1)

−𝛼𝑘 + (𝐿2)
−𝛼𝑘 + 𝜇2 + 𝑟] = 𝑈 and 

−𝑎2𝑏𝑐𝑚 + (𝑞1
𝛼𝑘)2𝐾2 = 𝑉. We need to find the constants 𝐷𝐸1 , which must satisfy the Jury Conditions 

for all 0 < 𝑘1 < 𝐷1𝐸1 . For this reason, the characteristic function obtained as; 

𝜆2 + (
𝑈

𝑘1
) 𝜆 + (

𝑉

𝑘1
) = 0. 

When the Jury conditions are examined; 

i) 1 + 𝑎1 + 𝑎0 = 1 +
𝑈

𝑘1
+

𝑉

𝑘1
> 0, 
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ii) 1 − 𝑎1 + 𝑎0 = 1 −
𝑈

𝑘1
+

𝑈

𝑘1
> 0. 

So, 𝐷1𝐸1 can be chosen as below: 

𝐷1𝐸1 {

√|𝑉|,                         𝑈 = 0

min (|𝑈,
√|𝑉|

|𝑈|
|) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

iii) |𝑎0| = |
𝑉

𝑘1
| < 1.    

With this iii condition 𝐷2𝐸1 is selected as √|𝑉|. So, if 𝑘1 < min(𝐷1𝐸1 , 𝐷2𝐸1 ), then the Jury conditions 

are satisfied and 𝐸1  is locally asymptotically stable. 

Remark 3.4 Analysis for equilibrium point 𝐸2  contains quite complex operations. For this reason, the 

stability of the 𝐸2 point has been investigated with the Schur-Cohn test. 

After this information, if it is desired to examine the stability with the help of Jury condition 

criteria, by writing the 𝐸1 = (𝐼𝑛
ℎ, 𝐼𝑛

𝑚) = (0,0)  equilibrium point in its place in the Jacobian matrix,  

𝐽(𝐼𝑛+1
ℎ , 𝐼𝑛+1

𝑚 ) = (
0.00109 1.25399
0.05865 0.00102

) with |𝐽 − 𝜆𝐼| = 0, eigenvalues are found in the form, 𝜆𝟏 =

0.27226, 𝜆2 = −0.27013. In this case, with Lemma 3.1, 𝐸1 equilibrium point locally asymptotically 

stable. On the other hand, the characteristic equation of the system is obtained as, 𝑃(𝜆) = 𝜆2 + 𝑎1𝜆 +

𝑎0, and the coefficients are in the form 𝑎1 = −0.00212, 𝑎0 = −0.07354.  According to the Jury criteria 

i) 1 + 𝑎1 + 𝑎0 = 0.92432 > 0, 

ii) 1 − 𝑎1 + 𝑎0 = 0.92857 > 0, 

iii) |𝑎0| = 0.07354 < 1,    

all conditions are satisfied and this will lead to 𝐸1  equilibrium point is locally asymptotically stable.  

Like 𝐸1 equilibrium point analysis, by writing the 𝐸2  equilibrium point in its place in the Jacobian 

matrix,  𝐽(𝐼𝑛+1
ℎ , 𝐼𝑛+1

𝑚 ) = (
−0.00001 0.00068
0.00001 −0.00001

) with |𝐽 − 𝜆𝐼| = 0, eigenvalues are found in the form, 

𝜆𝟏 = 0.00009, 𝜆2 = −0.00013. So, 𝐸2 equilibrium point locally asymptotically stable. Again, if the 

Jury conditions are controlled, coefficients are found in the form, 𝑎1 = 0.00003, 𝑎0 = −0.12870. 10
−7,  

i) 1 + 𝑎1 + 𝑎0 = 1.00003 > 0, 

ii) 1 − 𝑎1 + 𝑎0 = 0.99996 > 0, 

iii) |𝑎0| = 0.12870. 10
−7 < 1,    

as seen all Jury conditions are satisfied therefore 𝐸2 equilibrium point is locally asymptotically stable. 

Numerical Simulations 

Using the parameters given at the beginning of the section, in Figure 1, the effect of different 

𝑢(𝛼) density functions on the solutions is seen when ℎ = 0.01 and 𝛼 = 1. As can be seen in this figure, 

it is easier to determine the dynamics of the disease with different 𝑢(𝛼) selection. 

In Figure 2, when 𝑢(𝛼) = 𝛼 and 𝛼 = 1, the effect of the solutions is examined by changing the 

step size, that is, the ℎ value. Here, the difference in the solutions of choosing the different ℎ values is 

seen. Finally, in Figure 3, if 𝑢(𝛼) = 𝛼 and ℎ = 0.01, this time the effect on the solutions is seen by 

changing the 𝛼 values. After these graphics, in Table 1, CPU times are compared for numerical methods. 

As seen in Table 1, we can say that the numerical methods evaluated among themselves are not very 

different. The qualitative results of the Malaria Ross model for different time step sizes are given in 

Table 2. 
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Figure 1. Different u(α) solutions for Malaria Ross model (h = 0.01, α = 1) 

 

Figure 2. Different h solutions for Malaria Ross model (u(α) = α, α = 1) 
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Figure 3. Different  α solutions for Malaria Ross model (u(α) = α, h = 0.01) 

Table 1. CPU Times (seconds) for u(α) = α, h = 0.01 

 

Theta Method  NSFD  

0.1 0.6320 0.6555 

0.3 0.5416 0.6233 

0.8 0.5595 0.5535 

1 0.7010 0.6014 

Table 2. Qualitative results for different time step sizes ℎ in Malaria Ross model with 𝑢(𝛼) = 𝛼,𝛼 = 1 

 

Theta Method  Runge Kutta  NSFD  

0.00001 Convergence Convergence Convergence 

0.0001 Convergence Convergence Convergence 

0.001 Convergence Convergence Convergence 

0.01 Convergence Convergence Convergence 

0.1 Convergence Convergence Convergence 

1 Convergence Convergence Convergence 

2 Divergence Divergence Convergence 

3 Divergence Divergence Convergence 

CONCLUSION 

In this study, the mathematical model of Malaria developed by Ross is defined by distributed order 

differential equations. The dynamics of the Malaria Ross model have been investigated using the density 

function included in the distributed order differential equations. In this way, the acts of the model can 

be interpreted under different conditions. Thanks to this interpretation, the effects of the disease on 

people can be predicted clearly and the use of drugs can be determined accordingly. In addition, it is 

seen that these solutions which stability analysis is performed, are also mathematically reliable. It has 

been seen that distributed order differential equations can be used not only for the Malaria Ross model 

but also for many endemic models and they are very useful in the interpretation phase. 
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