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ABSTRACT  ARTICLE INFO 
The theory of angular momentum performance has a significant position in the 
classical and quantum mechanical study of physical properties, such as studies into 
nuclear, atomic, and molecular processes, as well as other quantum problems, 
including spherical symmetry. In this analysis, angular momentum operators are 
described in multiple ways, based on the angular momentum operator's commutator, 
matrix, and geometric representation. The eigenvalue and eigenvector were also 
known for operators𝐽𝐽±, 𝐽𝐽2, 𝐽𝐽𝑥𝑥,𝐽𝐽𝑦𝑦, and 𝐽𝐽𝑧𝑧within the |𝑗𝑗,𝑚𝑚⟩ basis. Furthermore, in 
quantum mechanics, angular momentum is called a quantized variable, meaning that 
it comes in discrete quantities. In contrast to the macroscopic system case where a 
continuous variable is an angular momentum. In this study, the different factors of the 
angular momentum operator also attempted to focus on establishing it is eigenvalues 
and Eigen states. For the raising and lowering operators (𝚥𝚥±̂) within the |𝑗𝑗,𝑚𝑚⟩ of the 
eigenvalue and eigenvector within the basis have been discussed.  
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1. Introduction 

In both classical and quantum mechanics (QM), angular 
momentum has a significant role. Angular momentum is 
conserved in whole isolated systems (including linear 
momentum and energy): this fact decreases substantially 
the amount of required work in calculating rigid body 
rotations, planetary trajectories, also many more [1, 2]. 
Analogously, in QM, to comprehend the composition of 
atoms, angular momentum has a critical role, and several 
other quantum questions regarding rotational symmetry, 
highly depend on angular momentum [1, 3]. 
In quantum mechanics (QM), Angular momentum 
operators come in a variety of forms; the orbital angular 
momentum (commonly exhibited via(𝐿𝐿� )), the total angular 
momentum (generally exhibited via(𝐽𝐽)), also spin angular 
momentum (indicated via(𝑆𝑆)). Disorienting expression 
“Angular momentum” could hint at both the orbital 
angular momentum and the total angular momentum. 
Angular momentum, like other measurable quantities, is 
represented in QM by an operator. Its vector operator is 
identical to the operator of the momentum. As we can 
quickly see, though, the angular momentum operator’s 
three elements are always do not commute, contrary to the 
linear momentum operator. Various angular momentum 
operators exist in QM: entire angular momentum(𝚥𝚥)), the 

orbital angular momentum�𝐿𝐿�⃑ � then angular internal or spin 
angular momentum�𝑆𝑆�. No classical equivalent has this 
last one (spin)[2]. The angular momentum vector 𝐿𝐿�⃑  is 
classically described by the cross product of position 𝑟𝑟 and 
momentum�𝑃𝑃�⃑ � [1, 3]: 
 
𝐿𝐿�⃑ = (𝑟𝑟 × 𝑝𝑝) = ��𝑦𝑦𝑝𝑝𝑧𝑧 − 𝑧𝑧𝑝𝑝𝑦𝑦�𝚤𝚤 + (𝑧𝑧𝑝𝑝𝑥𝑥 − 𝑥𝑥𝑝𝑝𝑧𝑧)𝐽𝐽 +

�𝑥𝑥𝑝𝑝𝑦𝑦 − 𝑦𝑦𝑝𝑝𝑥𝑥�𝑘𝑘�⃑ �         (1) 
 
𝐿𝐿�⃑  The orbital angular momentum operator could be 
achieved in quantum mechanics, where there is an operator 
for each measurable, by replacement (𝑟𝑟 and 𝑝𝑝���⃑  ) with the 
equivalent operators within position description, (𝑅𝑅�⃑�  
And��̂�𝑝 = −𝑖𝑖ℏ∇��⃑ �: 
 
𝐿𝐿�⃑ = 𝑅𝑅�⃑ × 𝑃𝑃�⃑ = �−𝑖𝑖ℏ𝑅𝑅�⃑� × ∇��⃑ �       (2) 
 

The Cartesian components of 𝐿𝐿�⃑� are (𝐿𝐿�𝑋𝑋, 𝐿𝐿�𝑦𝑦,𝐿𝐿�𝑧𝑧) 
which are [1].: 
 
𝐿𝐿�𝑥𝑥 = 𝑌𝑌�𝑃𝑃�𝑍𝑍 − �̂�𝑍𝑃𝑃�𝑦𝑦 = −𝑖𝑖ℏ �𝑌𝑌� 𝜕𝜕

𝜕𝜕𝑍𝑍
− �̂�𝑍 𝜕𝜕

𝜕𝜕𝑦𝑦
�      (3) 

 
𝐿𝐿�𝑦𝑦 = 𝐿𝐿�𝑦𝑦�̂�𝑍𝑃𝑃�𝑥𝑥 − 𝑋𝑋�𝑃𝑃�𝑍𝑍 = −𝑖𝑖ℏ ��̂�𝑍 𝜕𝜕

𝜕𝜕𝑥𝑥
− 𝑋𝑋� 𝜕𝜕

𝜕𝜕𝑍𝑍
�      (4) 
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𝐿𝐿�𝑧𝑧 = 𝑋𝑋�𝑃𝑃�𝑦𝑦 − 𝑌𝑌�𝑃𝑃�𝑥𝑥 = −𝑖𝑖ℏ �𝑋𝑋� 𝜕𝜕

𝜕𝜕𝑦𝑦
− 𝑌𝑌� 𝜕𝜕

𝜕𝜕𝑥𝑥
�      (5) 

 
And the square of the angular momentum operator ( 𝐿𝐿 ���⃑�) is 
[4].: 
 
𝐿𝐿�⃑�2= 𝐿𝐿�𝑥𝑥

2+𝐿𝐿�𝑦𝑦
2 + 𝐿𝐿�𝑧𝑧

2        (6) 
 
The angular momenta of the element are Hermitian, 
and𝐿𝐿�𝑥𝑥,𝐿𝐿�𝑦𝑦 and 𝐿𝐿�𝑧𝑧 do not commute (we can not evaluate 
them to arbitrary precision at the same time) with each 
other.: 
 
��̈�𝐿𝑥𝑥, �̈�𝐿𝑦𝑦� = 𝑖𝑖ℏ�̈�𝐿𝑧𝑧 , ��̈�𝐿𝑦𝑦,�̈�𝐿𝑍𝑍� = 𝑖𝑖ℏ�̈�𝐿𝑥𝑥 , ��̈�𝐿𝑧𝑧,�̈�𝐿𝑥𝑥� = 𝑖𝑖ℏ�̈�𝐿𝑦𝑦     (7) 
 
The orbital angular momentum elements were also 
communally contradictory observables. The square's 
eigenvalues of the magnitude of the orbital angular 
momentum operator 𝐿𝐿�2 are ℓ(ℓ + 1)ℏ2, while ℓ is 
quantum number orbital angular momentums which are 
natural numbers and (ℏ ) is (reduced Planck constant). The 
𝐿𝐿�𝑧𝑧 eigenvalues are 𝑚𝑚ℏ wherever m = -ℓ, -−ℓ + 1, …, −ℓ. 
Since 𝐿𝐿�2 and 𝐿𝐿�𝑧𝑧 commute ��𝐿𝐿�2, 𝐿𝐿�𝑍𝑍� = 0�, the quantum 
numbers of orbital angular momentum ℓ and m would be 
used to describe their corresponding eigenstates as|𝑙𝑙,𝑚𝑚⟩. 
Furthermore, the orbital angular momentum (𝐿𝐿�⃑ ), 
fundamental fragments, as the way as electrons, 
additionally own spin for short (or intrinsic angular 
momentum spin 𝑆𝑆), that is to say not according to motion 
in space position. The spin angular momentum and the 
orbitals algebras are uniform and the spin angular 
momentum operator's elements (�̂�𝑆𝑧𝑧 , �̂�𝑆𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 �̂�𝑆𝑥𝑥), fulfill 
commutation unique to the components of the orbital 
angular momentum operator's commutation affiliations 
𝐿𝐿�𝑍𝑍, 𝐿𝐿�𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 𝐿𝐿�𝑥𝑥 it means that [5, 6]: 
��̂�𝑆𝑥𝑥 , �̂�𝑆𝑦𝑦� = 𝑖𝑖ℏ�̂�𝑆𝑧𝑧 , ��̂�𝑆𝑧𝑧, �̂�𝑆𝑥𝑥�= 𝑖𝑖ℏ�̂�𝑆𝑦𝑦 ,  ��̂�𝑆𝑦𝑦 , �̂�𝑆𝑧𝑧� = 𝑖𝑖ℏ�̂�𝑆𝑥𝑥, 
 ��̂�𝑆2, �̂�𝑆𝑧𝑧� = 0.  
In addition {s(s+1)ℏ2 } are the squared of the amount of 
the spin angular momentum operator S2 eigenvalues, 
wherever s exhibits the spin angular momentum. The spin 
quantum number could be a natural number half-odd 
integer and a positive integer. In addition, the spin 
quantum value s for such electron is (1

2
), while the values 

with ms, the spin quantum value for the z-dimension of 
spin, which is (± 1

2
). If the basis vectors are the eigenstates 

of the z elements of spin, also the operators are��̂�𝑆𝑧𝑧 =
ℏ
2
ℴ�𝑧𝑧,  �̂�𝑆𝑦𝑦 = ℏ

2
ℴ�𝑦𝑦 , 𝑎𝑎𝑎𝑎𝑎𝑎 �̂�𝑆𝑥𝑥 = ℏ

2
ℴ�𝑥𝑥�, which could be illustrated 

via Pauli matrix [7, 8]: 
ℴ�𝑧𝑧 = �1 0

0 −1�, ℴ�𝑦𝑦 = �0 −𝑖𝑖
𝑖𝑖 0 � and ℴ�𝑧𝑧 = �0 1

1 0� 

Since ��̂�𝑆2� and (�̂�𝑆𝑧𝑧) are commute, then quantum numbers 
(s) and (ms) can be utilized to indicate their eigenstates 
simultaneously like as |𝑠𝑠,𝑚𝑚⟩ [1, 9]. If there is a quantum 
system that has two particles along with independent 
quantum orbital angular momentum numbers ℓ1 and ℓ2, 
the system's total quantum orbital angular momentum 
number would range from ℓ1 + ℓ2 down to |ℓ1 − ℓ2 | i.e. ℓ 
=ℓ1 + ℓ2, ℓ1 + ℓ2-1,…, |ℓ1 − ℓ2 |. The z-elements of the 

system's overall orbital angular momentum are equivalent 
to the sum of the z-components of the individual particles' 
orbital angular momenta, i.e. m = 𝑚𝑚1 + 𝑚𝑚2. The 
reasonable values of its overall quantum number of 
angular momentum (j) could be determined for a single 
particle of non-zero spin by adding its quantum number ℓ 
(orbital angular momentum) and its quantum number is 
(the angular momentum’s spin). It means, j = s+ ℓ, s+ℓ -
1…, |s-l|. Comparably, the average quantum number of 
angular momentum of the process for two particles with 
overall angular momentum quantum numbers 𝑗𝑗1and 𝑗𝑗2is j 
= 𝑗𝑗1 + 𝑗𝑗2, 𝑗𝑗1 + 𝑗𝑗2– 1,…., |𝑗𝑗1 − 𝑗𝑗2 | [10, 11]. 
In this work, we exhibited a review about the formalism 
nature of the general angular momentum through the 
Common formality of angular momentum which is 
explained clearly via the determination of the Eigenstates 
and eigenvalues of 𝚥𝚥2and 𝚥𝚥�̂�𝑧 as well as describing the 
eigenvalue and eigenvector for the raising and lowering 
operators (𝚥𝚥±̂) within the |𝑗𝑗,𝑚𝑚⟩ basis, and we will show 
different characteristics of the angular momentum 
operator, We will show different characteristics of the 
angular momentum operator. In this review, we tried to 
focus on specifying it is Eigen states and eigenvalues. 
Finally, we illustrate a review of angular momentums 
geometry and orbital angular momentum Eigenfunctions. 

 
2. The Common Formality of Angular 
Momentum 

To initiate a exceed common angular momentum operator 
(𝐽𝐽) which is attributed via its three elements (𝐽𝐽𝑥𝑥 , 𝐽𝐽𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 𝐽𝐽𝑧𝑧), 
which gratify the succeeding commutation association [9]: 
 
�𝐽𝐽𝑥𝑥, 𝐽𝐽𝑦𝑦� = 𝑖𝑖ℏ𝐽𝐽𝑧𝑧 , �𝐽𝐽𝑦𝑦, 𝐽𝐽𝑧𝑧� = 𝑖𝑖ℏ𝐽𝐽𝑥𝑥, �𝐽𝐽𝑧𝑧, 𝐽𝐽𝑥𝑥� = 𝑖𝑖ℏ𝐽𝐽𝑦𝑦      (8) 
 
Or equivalently via  
 
𝐽𝐽 × 𝐽𝐽 = 𝑖𝑖ℏ𝐽𝐽         (9) 
 
Because 𝐽𝐽𝑥𝑥 , 𝐽𝐽𝑦𝑦 and 𝐽𝐽𝑧𝑧 do not reciprocally commute, they 
could not be diagonalized all at the same; notably, they do 
not have common eigenstates possessions. The angular 
momentum square is [4, 12]:  
 
𝐽𝐽2 = 𝐽𝐽𝑥𝑥

2 + 𝐽𝐽𝑦𝑦
2 + 𝐽𝐽𝑧𝑧

2         (10) 
 
It means the angular momentum’s square is a scalar 
operator; and commutes with (𝐽𝐽𝑥𝑥), ( 𝐽𝐽𝑦𝑦) and (𝐽𝐽𝑧𝑧):  
  
�𝐽𝐽2, 𝐽𝐽𝑘𝑘� = 0       (11) 
 
Where k refers to (x, y, and z) 
 
And since �𝐽𝐽𝑥𝑥

2, 𝐽𝐽𝑥𝑥� = 0, �𝐽𝐽𝑦𝑦, 𝐽𝐽𝑥𝑥� = −𝑖𝑖ℏ𝐽𝐽𝑧𝑧, and �𝐽𝐽𝑧𝑧,  𝐽𝐽�𝑥𝑥� =

𝑖𝑖ℏ𝐽𝐽𝑦𝑦. It may be noted that the operator 𝐽𝐽𝑥𝑥 , 𝐽𝐽𝑦𝑦, 𝐽𝐽𝑧𝑧 , and 𝐽𝐽2 
altogether Hermitian; their eigenvalues are real [1] 
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2.1. Determination of the Eigenstates and 
Eigenvalues of �⃑�𝑱�𝟐𝟐And 𝑱𝑱�𝒛𝒛 

Based on commutates of 𝐽𝐽2with each of (𝐽𝐽𝑥𝑥, 𝐽𝐽𝑦𝑦&𝐽𝐽𝑧𝑧), all 
components of 𝐽𝐽 possibly diagonalized with ( 
𝐽𝐽2).nevertheless, because the components (𝐽𝐽𝑥𝑥 , 𝐽𝐽𝑦𝑦, 𝐽𝐽𝑧𝑧) do not 
commutate frequently, only one of them might be 
specified to be diagonalized with 𝐽𝐽2simultaneously. By 
signifying the joint eigenstates via |𝛼𝛼,𝛽𝛽⟩ also the 
eigenvalues of (𝐽𝐽2)𝑎𝑎𝑎𝑎𝑎𝑎 (𝐽𝐽𝑧𝑧 ) via (ℏ2𝛼𝛼) &(ℏ𝛽𝛽), to await the 
joint eigenstates of 𝐽𝐽2and 𝐽𝐽𝑧𝑧and their relating eigenvalues, 
respectively[1, 7] 
 
𝐽𝐽2|𝛼𝛼,𝛽𝛽⟩ = ℏ2𝛼𝛼|𝛼𝛼,𝛽𝛽⟩      (12) 
 
𝐽𝐽𝑧𝑧|𝛼𝛼,𝛽𝛽⟩ = ℏ𝛽𝛽|𝛼𝛼,𝛽𝛽⟩      (13) 
 
The constant ℏ is presented so (𝛼𝛼&𝛽𝛽) are dimensionless, 
taking into account that (ħ) is the dimensions of the 
angular momentum and the physical dimensions of ħ are 
[ℏ]=time×energy. To illustrate, it can be assumed that 
these eigenstates are orthonormal [4]. 
 
⟨𝛼𝛼′,𝛽𝛽′|𝛼𝛼,𝛽𝛽⟩ = 𝛿𝛿𝛼𝛼′ ,𝛿𝛿𝛽𝛽′ ,𝛽𝛽      (14) 
 
Additionally, it might be introduced lowering and raising 
operators (𝐽𝐽−) and �𝐽𝐽+�  
 
𝐽𝐽± = 𝐽𝐽𝑥𝑥 ± 𝑖𝑖𝐽𝐽𝑦𝑦       (15) 
 
This result in 
 
𝐽𝐽𝑥𝑥 = 1

2
�𝐽𝐽+ + 𝐽𝐽−�, 𝐽𝐽𝑦𝑦 = 1

2
�𝐽𝐽+, 𝐽𝐽−�     (16) 

 
Consequently. 
 
𝐽𝐽𝑥𝑥
2 = 1

4
�𝐽𝐽+

2 + 𝐽𝐽+𝐽𝐽− + 𝐽𝐽−𝐽𝐽+ + 𝐽𝐽−
2�, 𝐽𝐽𝑦𝑦

2 = −1
4
�𝚥𝚥+̂

2 −

𝐽𝐽+𝐽𝐽− − 𝐽𝐽−𝐽𝐽+ + 𝐽𝐽−
2�      (17) 

 
Utilizing equation (8), it could be simply obtained in 
accordance commutation relations.  
 
�𝐽𝐽2, 𝐽𝐽±� = 0, �𝐽𝐽+, 𝐽𝐽−� = 2ℏ𝐽𝐽𝑧𝑧, �𝐽𝐽𝑧𝑧 , 𝐽𝐽±� = ±ℏ𝐽𝐽±    (18) 
 
Furthermore, 𝐽𝐽+ and 𝐽𝐽− fulfill 
𝐽𝐽+𝐽𝐽− = 𝐽𝐽𝑥𝑥

2 + 𝐽𝐽𝑦𝑦
2 + ℏ𝐽𝐽𝑧𝑧 = 𝐽𝐽2 − 𝐽𝐽𝑧𝑧

2 + ℏ𝐽𝐽𝑧𝑧    (19) 
 
𝐽𝐽−𝐽𝐽+ = 𝐽𝐽𝑥𝑥

2 + 𝐽𝐽𝑦𝑦
2 − ℏ𝐽𝐽𝑧𝑧 = 𝐽𝐽2 − 𝐽𝐽𝑧𝑧

2 − ℏ𝐽𝐽𝑧𝑧    (20) 
 
These relation results in 
 
𝐽𝐽2 = 𝐽𝐽±𝐽𝐽∓ + 𝐽𝐽𝑧𝑧

2 ∓ ℏ𝐽𝐽𝑧𝑧      (21) 
 
Which intern yield 
 
𝐽𝐽2 = 1

2
�𝐽𝐽+𝐽𝐽− + 𝐽𝐽−𝐽𝐽+� + 𝐽𝐽𝑧𝑧

2     (22) 

 
Firstly, 𝐽𝐽± operator on |𝛼𝛼,𝛽𝛽⟩, 𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏𝑠𝑠𝑏𝑏( 𝚥𝚥±̂) do not 
commute with (𝐽𝐽𝑧𝑧), eigenstates of 𝐽𝐽± are not the kets 
(|𝛼𝛼,𝛽𝛽⟩), utilizing the relation (18), we have 
 
𝐽𝐽𝑧𝑧�𝐽𝐽±|𝛼𝛼,𝛽𝛽⟩� = �𝐽𝐽±𝐽𝐽𝑧𝑧 ± ℏ𝐽𝐽±�|𝛼𝛼,𝛽𝛽⟩ = ℏ(𝛽𝛽 ± 1)�𝐽𝐽±|𝛼𝛼,𝛽𝛽⟩� 
        (23) 
 
Hence the kets {𝚥𝚥±̂|𝛼𝛼, 𝛽𝛽⟩}is an eigenstate for 𝚥𝚥�̂�𝑧with 
eigenvalues {ℏ(𝛽𝛽 ± 1)}. Also 𝐽𝐽𝑧𝑧with 𝐽𝐽𝑧𝑧

2commute; 
�𝐽𝐽±|𝛼𝛼,𝛽𝛽⟩� have to be an eigenstate of 𝐽𝐽2. Through 

producing use of the commutator ��𝐽𝐽2, 𝐽𝐽±� = 0�, the 

eigenvalues of (𝚥𝚥2) while acting on �𝐽𝐽±|𝛼𝛼, 𝛽𝛽⟩� may be 
determined. additionally, the state ��𝐽𝐽±|𝛼𝛼,𝛽𝛽⟩�� is as well as 
an eigenstate of (𝐽𝐽2) to eigenvalue (ℏ2𝛼𝛼): 
 

𝐽𝐽±
2

 �𝐽𝐽±|𝛼𝛼, 𝛽𝛽⟩� = 𝐽𝐽±𝐽𝐽2|𝛼𝛼,𝛽𝛽⟩ = ℏ2𝛼𝛼�𝐽𝐽±|𝛼𝛼, 𝛽𝛽⟩�   (24) 
 
From (23) and (24), when 𝐽𝐽± come in (|𝛼𝛼,𝛽𝛽⟩), it did not 
influence the first quantum number ⍺, However, it lowers 
or raises 𝛽𝛽 (the second quantum number) through one unit. 
It means that { 𝐽𝐽±|𝛼𝛼,𝛽𝛽⟩} has a proportional relationship 
with {|𝛼𝛼,𝛽𝛽 ± 1⟩}: 
 
𝐽𝐽±|𝛼𝛼,𝛽𝛽⟩ = 𝐶𝐶𝛼𝛼𝛽𝛽

± |𝛼𝛼,𝛽𝛽 ± 1⟩      (25) 
 
Where 𝐶𝐶𝛼𝛼𝛽𝛽

±  is constant. 
 
An upper limit for the quantum number β per unit exists 
for a certain eigenvalue (α) of (𝐽𝐽2), Since the operator ( 

𝐽𝐽2 − 𝐽𝐽𝑧𝑧
2) is valid, because the matrix elements {𝐽𝐽2 − 𝐽𝐽𝑧𝑧

2
=

𝐽𝐽𝑦𝑦
2 + 𝐽𝐽𝑦𝑦

2} are ≥ 0, it would be written as [1,18]: 
 
⟨𝛼𝛼,𝛽𝛽 �𝐽𝐽2 − 𝐽𝐽𝑧𝑧

2|𝛼𝛼,𝛽𝛽⟩ = ℏ2(𝛼𝛼 − 𝛽𝛽2) ≥ 0,→  𝛼𝛼 ≥ 𝛽𝛽2   (26) 
 
Since (𝛽𝛽𝑚𝑚𝑚𝑚𝑥𝑥) is the upper limit of (𝛽𝛽), it has to be a state 
|𝛼𝛼,𝛽𝛽𝑚𝑚𝑚𝑚𝑥𝑥⟩that could not be raised anymore: 
 
𝐽𝐽+|𝛼𝛼,𝛽𝛽⟩ = 0       (27) 
 
Utilizing this equation along with {𝐽𝐽−𝐽𝐽+ = 𝐽𝐽2 − 𝐽𝐽𝑧𝑧

2 −
ℏ𝐽𝐽𝑧𝑧 }, it can be seen that  
 
{(𝐽𝐽2 − 𝐽𝐽𝑧𝑧

2-ℏ𝐽𝐽𝑧𝑧)|𝛼𝛼,𝛽𝛽𝑚𝑚𝑚𝑚𝑥𝑥⟩ = ℏ2�𝛼𝛼 − 𝛽𝛽𝑚𝑚𝑚𝑚𝑥𝑥
2 −

𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚�|𝛼𝛼,𝛽𝛽𝑚𝑚𝑚𝑚𝑥𝑥⟩} or {𝐽𝐽−𝐽𝐽+|𝛼𝛼,𝛽𝛽𝑚𝑚𝑚𝑚𝑥𝑥⟩ = 0}, so that 
 
𝛼𝛼 = 𝛽𝛽𝑚𝑚𝑚𝑚𝑥𝑥(𝛽𝛽𝑚𝑚𝑚𝑚𝑥𝑥 + 1)      (28) 
 
After (n) consecutive utilization of (𝐽𝐽−) on (|𝛼𝛼,𝛽𝛽𝑚𝑚𝑚𝑚𝑥𝑥⟩), it 
should be competent to achieve a state (|𝛼𝛼,𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚⟩ ), what 
which could not be lowered anymore: 
 
𝚥𝚥−̂|𝛼𝛼,𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚⟩ = 0       (29) 
 
Employing {𝐽𝐽+𝐽𝐽− = 𝐽𝐽2 − 𝐽𝐽𝑧𝑧

2 + ℏ𝐽𝐽𝑧𝑧}, and through 
similarity along with equations (27) & (28), then 
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𝛽𝛽𝑚𝑚𝑚𝑚𝑥𝑥 = −𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚       (30) 
Since (𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚) was attained by the utilization of (𝐽𝐽−) upon 
(|𝛼𝛼,𝛽𝛽𝑚𝑚𝑚𝑚𝑥𝑥⟩), it indicated that 
 
𝛽𝛽𝑚𝑚𝑚𝑚𝑥𝑥 = 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑎𝑎      (31) 
 
And because (𝛽𝛽𝑚𝑚𝑚𝑚𝑥𝑥) may have an integer number or half-
odd integer number, hinge on (n) being odd or even.it is 
suitable to define the notation j & m indicates that (𝛽𝛽max ) 
and (𝛽𝛽), successively: 𝑗𝑗 = 𝛽𝛽𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑚𝑚

2
,𝑚𝑚 = 𝛽𝛽 thus the 

eigenvalue of 𝐽𝐽2 is taken through 𝛼𝛼 = 𝑗𝑗(𝑗𝑗 + 1). 
Because𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 = −𝛽𝛽𝑚𝑚𝑚𝑚𝑥𝑥 , as well as (n) positive, the 
permitted values of m, are situated down among (-j) and 
(+j): j ≥ m ≥ -j. The gained outcomes will be recognized 
such as the (𝐽𝐽2) and (𝐽𝐽𝑧𝑧) Eigenvalues. related to joint 
eigenvectors(|𝑗𝑗, 𝑚𝑚⟩)are taken, respectively, through 
{ℏ2𝑗𝑗(𝑗𝑗 + 1)} as well as(ℏ𝑚𝑚) [7, 13]: 
 
𝐽𝐽2|𝑗𝑗,𝑚𝑚⟩ = ℏ2𝑗𝑗(𝑗𝑗 + 1)| 𝑗𝑗,𝑚𝑚⟩ & 𝐽𝐽𝑧𝑧|𝑗𝑗,𝑚𝑚⟩ = ℏ𝑚𝑚| 𝑗𝑗,𝑚𝑚⟩   (32) 
 
While j = (1, 1/2, 1, 3/2, …). And m = (-j, - (j – 1) …... j – 
1, j). Therefore, for each (j) there are (2j + 1) measures of 
(m). Such as, j = 1 then (m) accepts three prizes (-1, 0, 1); 
and if j = 5/2 then (m) makes the six measures (-5/2, -3/2, -
1/2, 1/2, 3/2, 5/2). The values of (j) may be an integer 
number and a half-integer number. There is a discrete 
spectrum of angular momentum operators 𝐽𝐽2 and 𝐽𝐽𝑧𝑧. As the 
eigenstates are orthogonal, tending to various angular 
momentum. Because there are distinct angular momentum 
spectra, the orthogonally state is:⟨𝑗𝑗′,𝑚𝑚′|𝑗𝑗,𝑚𝑚⟩ = 𝛿𝛿𝑗𝑗′,𝛿𝛿𝑚𝑚′ ,𝑚𝑚 
[1, 14].  

2.2.  Describing The Eigenvalue and Eigenvector 
for The Raising and Lowering Operators (𝑱𝑱�±) within 
the |𝒋𝒋,𝒎𝒎⟩ Basis 

The state of the (|𝑗𝑗,𝑚𝑚⟩) is not an eigenstate of(𝐽𝐽±), 
equation (25) can rewrite as: 
 
𝐽𝐽±|𝑗𝑗,𝑚𝑚⟩ = 𝐶𝐶𝑗𝑗𝑚𝑚

± |𝑗𝑗,𝑚𝑚 ± 1⟩      (33) 
 
Derive of 𝐶𝐶𝑗𝑗 𝑚𝑚

+  can be given and then deduce 𝐶𝐶𝑗𝑗 𝑚𝑚
− .because 

(|𝑗𝑗,𝑚𝑚⟩) is normalized, equation (33) can be utilized to 
acquire the following model of expressions [4]: 
 
�𝐽𝐽+|𝑗𝑗,𝑚𝑚⟩�†�𝐽𝐽+|𝑗𝑗,𝑚𝑚⟩� = �𝐶𝐶𝑗𝑗𝑚𝑚+ �

2⟨𝑗𝑗,𝑚𝑚 + 1|𝑗𝑗,𝑚𝑚 + 1⟩ =
�𝐶𝐶𝑗𝑗 𝑚𝑚

+ �2        (34) 
 
�𝐶𝐶𝑗𝑗 𝑚𝑚

+ �2 = �𝑗𝑗,𝑚𝑚�𝐽𝐽−𝐽𝐽+�𝑗𝑗,𝑚𝑚�      (35) 
 
But because (𝐽𝐽2 − 𝐽𝐽𝑧𝑧

2 − ℏ𝐽𝐽𝑧𝑧) is equal to 𝐽𝐽−𝐽𝐽+ and assuming 
the random phase of (𝐶𝐶𝑗𝑗 𝑚𝑚

+ ) being zero, so inferred that 
 

𝐶𝐶𝑗𝑗+𝑚𝑚 =

��𝑗𝑗,𝑚𝑚�𝐽𝐽2 − 𝐽𝐽𝑧𝑧
2 − ℏ𝐽𝐽𝑧𝑧�𝑗𝑗,𝑚𝑚�=ℏ�𝑗𝑗(𝑗𝑗 + 1) −𝑚𝑚(𝑚𝑚 + 1) 

        (36) 
 
By similarity with (𝐶𝐶𝑗𝑗 𝑚𝑚

+ ), (𝐶𝐶𝑗𝑗 𝑚𝑚
− ) can be achieved: 

 
𝐶𝐶𝑗𝑗𝑚𝑚+ = ℏ�𝑗𝑗(𝑗𝑗 + 1) −𝑚𝑚(𝑚𝑚 + 1)     (37) 
 
So the eigenvalue formulas for 𝐽𝐽+and 𝐽𝐽−have taken by [1, 
12]. 
 
𝐽𝐽±|𝑗𝑗,𝑚𝑚⟩ = ℏ�𝑗𝑗(𝑗𝑗 + 1) −𝑚𝑚(𝑚𝑚 ± 1) |𝑗𝑗,𝑚𝑚 ± 1⟩   (38) 
 
3. Matrix Picture of Angular Momentum 

The section's formalism is common and exclusive of any 
individual description. There are several ways of 
portraying the operators of angular momentum and their 
eigenstates. The column vectors and square matrices will 
be illustrated according to eigenkets and operators in this 
section to consider the matrix picture of angular 
momentum. This is accomplished by the discrete basis of 
states and operators. Because (𝐽𝐽2) and (𝐽𝐽𝑧𝑧) commute, the 
general eigenstates (|𝑗𝑗,𝑚𝑚⟩) could be adopted from the basis 
while basis is orthonormal, discrete (not continuous), and 
complete. For a specific measure of (j), the normalization 
stipulation for this basis is determined via {⟨𝑗𝑗′,𝑚𝑚′|𝑗𝑗,𝑚𝑚⟩ =
𝛿𝛿𝑗𝑗′, 𝑗𝑗𝛿𝛿𝑚𝑚′,𝑚𝑚}, and the perfection is illustrated by [9]. 
 
∑ =+𝑗𝑗
𝑚𝑚 − 𝑗𝑗|𝑗𝑗,𝑚𝑚⟩⟨𝑗𝑗,𝑚𝑚| = 𝐼𝐼      (39) 

 
Where (𝐼𝐼) represents unite matrix.𝐽𝐽2 and 𝐽𝐽𝑧𝑧 operators are 
diagonal obtained based on their joint eigenstates 
 
�𝑗𝑗′,𝑚𝑚′�𝐽𝐽2�𝑗𝑗,𝑚𝑚� = ℏ2𝑗𝑗(𝑗𝑗 + 1)𝛿𝛿𝑗𝑗′ , 𝑗𝑗𝛿𝛿𝑚𝑚′𝑚𝑚    (40) 
 
�𝑗𝑗′,𝑚𝑚′�𝐽𝐽𝑧𝑧�𝑗𝑗,𝑚𝑚� = ℏ𝑚𝑚𝛿𝛿𝑗𝑗′ , 𝑗𝑗𝛿𝛿𝑚𝑚′      (41) 
 
because the matrices illustration of (𝐽𝐽2) and (𝐽𝐽𝑧𝑧) in the 
(|𝑗𝑗,𝑚𝑚⟩) eigenbasis are diagonal, further their diagonal 
elements adequate to {ℏ2𝑗𝑗(𝑗𝑗 + 1)} and (ℏ𝑚𝑚), 
consecutively. 
Since 𝐽𝐽𝑧𝑧 did not commute along with the operators 𝐽𝐽±, they 
are delineated in the (|𝑗𝑗,𝑚𝑚⟩) basis via matrices that were 
nondiagonal [1, 15]: 
 
�𝑗𝑗′,𝑚𝑚′�𝐽𝐽±�𝑗𝑗,𝑚𝑚� = ℏ�𝑗𝑗(𝑗𝑗 + 1) −𝑚𝑚(𝑚𝑚 ± 1)𝛿𝛿𝑗𝑗′ , 𝑗𝑗𝛿𝛿𝑚𝑚′,𝑚𝑚±1 
        (42) 
 
And from the: 
 
𝐽𝐽𝑥𝑥|𝑗𝑗,𝑚𝑚⟩ = 1

2
�𝐽𝐽+ + 𝐽𝐽_�|𝑗𝑗,𝑚𝑚⟩  

=
��(𝑗𝑗 − 𝑚𝑚)(𝑗𝑗 + 𝑚𝑚 + 1)|𝑗𝑗,𝑚𝑚 + 1⟩ +
�(𝑗𝑗 + 𝑚𝑚)(𝑗𝑗 − 𝑚𝑚 + 1)|𝑗𝑗,𝑚𝑚 − 1⟩� ℏ

2
     (43) 
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However,𝐽𝐽𝑦𝑦|𝑗𝑗,𝑚𝑚⟩ = 1
2𝑚𝑚
�𝐽𝐽+ − 𝐽𝐽−�|𝑗𝑗,𝑚𝑚⟩ 

 
=
��(𝑗𝑗 − 𝑚𝑚)(𝑗𝑗 + 𝑚𝑚 + 1)|𝑗𝑗,𝑚𝑚 + 1⟩ −
�(𝑗𝑗 + 𝑚𝑚)(𝑗𝑗 − 𝑚𝑚 + 1)|𝑗𝑗,𝑚𝑚−1⟩� ℏ

2𝑚𝑚
     (44) 

 
The matrices for each (𝐽𝐽𝑥𝑥) and (𝐽𝐽𝑦𝑦) can be deduced by [15]: 
 
�𝑗𝑗′,𝑚𝑚′�𝐽𝐽𝑥𝑥�𝑗𝑗,𝑚𝑚� =  
ℏ
2
��𝑗𝑗(𝑗𝑗 + 1) −𝑚𝑚(𝑚𝑚 + 1)  +

�𝑗𝑗(𝑗𝑗 + 1) −𝑚𝑚(𝑚𝑚 − 1)𝛿𝛿𝑚𝑚′,𝑚𝑚−1�𝛿𝛿𝑗𝑗′ , 𝑗𝑗    (45) 
 
�𝑗𝑗′,𝑚𝑚′�𝐽𝐽𝑦𝑦�𝑗𝑗,𝑚𝑚� = 
ℏ
2𝑚𝑚
��𝑗𝑗(𝑗𝑗 + 1) −𝑚𝑚(𝑚𝑚 + 1)𝛿𝛿𝑚𝑚′,𝑚𝑚+1 −

�𝑗𝑗(𝑗𝑗 + 1) −𝑚𝑚(𝑚𝑚 − 1)𝛿𝛿𝑚𝑚′,𝑚𝑚−1�𝛿𝛿𝑗𝑗′ , 𝑗𝑗    (46) 
 
To showing the matrix of angular momentum, it might be 
considered that j = 1 
While for this case the forbidden prizes of (m) are (-1, 0, 
1), however the link eigenstates of (𝐽𝐽2) and (𝐽𝐽𝑧𝑧) are 
{|1,1⟩, |1,0⟩, 𝑎𝑎𝑎𝑎𝑎𝑎 |1,−1⟩}.from equations (40) & (41) 
presentations of operator’s matrix (𝐽𝐽2) and (𝐽𝐽𝑧𝑧), can be 
deduced [18]: 
 
𝐽𝐽2 =

⎣
⎢
⎢
⎢
⎢
⎡ �1,1�𝐽𝐽2�1,1� �1,1�𝐽𝐽2�1,0� �1,1�𝐽𝐽2�1,−1�

�1,0�𝐽𝐽2�1,1� �1,0�𝐽𝐽2�1,0� �1,0�𝐽𝐽2�1,−1�

�1,−1�𝐽𝐽2�1,1� �1,−1�𝐽𝐽2�1,0� �1,−1�𝐽𝐽2�1,−1�⎦
⎥
⎥
⎥
⎥
⎤

=

2ℏ2 �
1 0 0
0 1 0
0 0 1

�       (47) 

 

𝐽𝐽2 = ℏ �
1 0 0
0 0 0
0 0 −1

�      (48) 

 
Also, from formula (42), the matrices of (𝐽𝐽−) and (𝐽𝐽+) are 
taken via: 
 

𝐽𝐽+ = ℏ√2 �
0 1 0
0 0 1
0 0 0

�  , 𝐽𝐽− = ℏ√2 �
0 0 0
1 0 0
0 1 0

�   (49) 

 
For (𝐽𝐽𝑥𝑥&𝐽𝐽𝑦𝑦,𝑎𝑎𝑎𝑎𝑎𝑎 𝐽𝐽𝑧𝑧) the matrices in the (|𝑗𝑗,𝑚𝑚⟩ basis 
consequences directly from the relation (𝐽𝐽𝑥𝑥=�𝐽𝐽− + 𝐽𝐽+�/2 ) 
as well as (𝐽𝐽𝑦𝑦=i�𝐽𝐽− − 𝐽𝐽+�/2) [3]: 
 

𝐽𝐽𝑦𝑦 = ℏ
√2
�
0 −𝑖𝑖 0
𝑖𝑖 0 −𝑖𝑖
0 𝑖𝑖 0

�  

 

𝐽𝐽𝑥𝑥 = ℏ
√2
�
0 1 0
1 0 1
0 1 0

�  

 

𝐽𝐽𝑧𝑧 = ℏ �
1 0 0
0 0 0
0 0 −1

�  

 
 

4. Geometrical Description of Angular 
Momentum 

The affiliation between momentum and the z-component is 
at issue here. This relation could be delineated 
geometrically in the following way. As exhibited in Figure 
1. Total angular momentum �𝐽𝐽� perhaps illustrated via a 

vector which length.is taken via ��〈𝐽𝐽2� 〉 = ℏ�𝑗𝑗(𝑗𝑗 + 1)� 

and its component on z-axis is �〈𝐽𝐽𝑧𝑧〉 = ℏ𝑚𝑚� because (𝐽𝐽𝑥𝑥) & 
(𝐽𝐽𝑦𝑦) are individually indistinct. just their sum�𝚥𝚥�̂�𝑥

2 + 𝐽𝐽𝑦𝑦
2 =

𝐽𝐽2 − 𝐽𝐽𝑧𝑧
2�, is well known inside the xy-plane [3, 7]. 

 

 

Figure 1. Geometrical illumination of angular momentum (𝐽𝐽) [1]. 
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The graphical illumination for the (j = 2) case is exhibited in Figure 2. In this situation when j=2, the angle 𝜃𝜃 receives just five 
values equivalent subsequently {𝑚𝑚 = −2,−1, 0, 1, 2} they are taken via(𝜃𝜃 = −35.26°,−65.91°, 90°,−65.91°, 35.26°). 

 
Figure 2.Graphical illumination of quantized angular momentum. While j =2 for the state|2,𝑚𝑚⟩ with m = -2, -1, 0, 1, 2. The 

radius of the circle is given byℏ�𝟐𝟐(𝟐𝟐 + 𝟏𝟏)=ℏ√𝟔𝟔 [1, 9]. 
 

In classical, the vector (𝐽𝐽) should be thought of as 
integument a cone. Whose endpoint located on a circle 
with a radiance (�(𝑗𝑗 + 1)𝑗𝑗ℏ ), revolving through cones 
surface of half-angle.  
 

𝜃𝜃 = 𝑏𝑏𝑐𝑐𝑠𝑠−1 � 𝑚𝑚
�𝑗𝑗(𝑗𝑗+1

�      (50) 
 
In consequence of which its projection on the z-axis 
constantly (𝑚𝑚ℏ). The angle 𝜃𝜃 is quantized when the 
quantum number value (m) is restrictive to (-j, -j+1… j-1, 
j). The single reasonable value of 𝜃𝜃 contain values of 
(2𝑗𝑗 + 1); 
 

𝜃𝜃 = 𝑏𝑏𝑐𝑐𝑠𝑠−1 � −𝑗𝑗
�(𝑗𝑗+1)𝑗𝑗

� , 𝑏𝑏𝑐𝑐𝑠𝑠−1 � −𝑗𝑗+1
�(𝑗𝑗+1)𝑗𝑗

� , …,  

𝑏𝑏𝑐𝑐𝑠𝑠−1 � 𝑗𝑗−1
�(𝑗𝑗+1)𝑗𝑗

�,  

𝑏𝑏𝑐𝑐𝑠𝑠−1 � 𝑗𝑗
�(𝑗𝑗+1)𝑗𝑗

�       (51) 
 
Because on the cone's outer surface all (𝐽𝐽) orientations are 
similar, the projection of (𝐽𝐽) along each y and x-axes mean 
out to zero [12, 14]: 
  
〈𝐽𝐽𝑦𝑦〉 = 〈𝐽𝐽𝑥𝑥〉 = 0       (52) 
 
𝑤𝑤ℎ𝑖𝑖𝑙𝑙𝑏𝑏〈𝐽𝐽𝑥𝑥〉 be stands for ��𝑗𝑗,𝑚𝑚�𝐽𝐽𝑥𝑥�𝑗𝑗,𝑚𝑚��. 
 
5. Orbital Angular Momentum Eigenfunctions 

In an effort to achieve the eigenvalues and eigenfunctions 
of (𝐿𝐿�⃑�2) and a component of (L), It’s suitable to exhibit the 
operators in spherical coordinates (r, 𝜃𝜃,𝜙𝜙). 
According to spherical coordinates (𝐿𝐿�𝑧𝑧, 𝐿𝐿�±, 𝐿𝐿�⃑�2) could be 
expressed as [7, 16]: 

 
𝐿𝐿�𝑧𝑧 = −𝑖𝑖ℏ 𝜕𝜕

𝜕𝜕𝜕𝜕
       (53) 

 
𝐿𝐿�±=𝐿𝐿�𝑋𝑋 ± 𝑖𝑖𝐿𝐿�𝑦𝑦 = ±ℏ𝑏𝑏±𝑚𝑚ϕ � 𝜕𝜕

𝜕𝜕𝜕𝜕
± 𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝜕𝜕

𝑐𝑐𝑚𝑚𝑚𝑚𝜕𝜕
𝑖𝑖 𝜕𝜕
𝜕𝜕ϕ
�    (54) 

 
𝐿𝐿�⃑�2 = −ℏ2 � 1

𝑐𝑐𝑚𝑚𝑚𝑚𝜕𝜕
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑠𝑠𝑖𝑖𝑎𝑎𝜃𝜃 𝜕𝜕

𝜕𝜕𝜕𝜕
� + 1

𝑐𝑐𝑚𝑚𝑚𝑚2𝜕𝜕
𝜕𝜕2

𝜕𝜕ϕ2
�    (55) 

 
Because the operators (𝐿𝐿�) & (𝐿𝐿�⃑�𝑥𝑥) hinge just on the 
angle ∅ 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃, their eigenstate rely only on ∅ 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃. 
Their link eigenstates can be denoting by [15, 17]: 
 
�𝜃𝜃𝜕𝜕�1,𝑚𝑚� = 𝑌𝑌1𝑚𝑚(𝜃𝜃,𝜙𝜙)      (56) 
 
When continuous functions of ∅ 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃 are 𝑌𝑌1𝑚𝑚(𝜃𝜃,𝜙𝜙), the 
eigenvalue relation (𝐿𝐿�⃑�2 = |1,𝑚𝑚⟩ = ℏ21(1 + 1)|1,𝑚𝑚⟩) and 
(𝐿𝐿�𝑧𝑧|1,𝑚𝑚⟩ = ℏ𝑚𝑚|1,𝑚𝑚⟩) can be written as[10, 18] 
 
𝐿𝐿�⃑�2𝑌𝑌1𝑀𝑀(𝜃𝜃,𝜙𝜙) = ℏ1(1 + 1)𝑌𝑌1𝑚𝑚     (57) 
 
𝐿𝐿�𝑧𝑧𝑌𝑌1𝑚𝑚(𝜃𝜃,𝜙𝜙) = 𝑚𝑚ℏ𝑌𝑌1𝑚𝑚(𝜃𝜃,𝜙𝜙)     (58) 
 
Because (𝐿𝐿�𝑧𝑧) rely just upon ∅, as illustrated in equation 
(53), the previous two functions indicated that the 
eigenfunctions {𝑌𝑌1𝑚𝑚(𝜃𝜃,𝜙𝜙)} are separable [12, 19]: 
 
𝑌𝑌1𝑚𝑚(𝜃𝜃,∅) = Θ1𝑚𝑚(𝜃𝜃)Φ𝑚𝑚(𝜙𝜙)     (59) 
 
Establish that 
 
𝐿𝐿�±𝑌𝑌1𝑚𝑚(𝜃𝜃,𝜙𝜙) = ℏ�1(1 + 1) −𝑚𝑚(𝑚𝑚 ± 1)𝑌𝑌1𝑚𝑚±1(𝜃𝜃,𝜙𝜙) 
        (60) 
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Conclusion  

Orbital angular momentum has been one of the 
fundamental constants of motion in quite an isolated 3-
dimensional model.Based on the obtained findings, we 
inferred that a: 
• A commutator is very important and can be referred 

to as a physics trigger to establish relationships 
between observables with a short method, since a 
quantum mechanics commutator tells us that if the 
two 'observables' commutator is zero, such as 𝐿𝐿�2 and 
𝐿𝐿�𝑧𝑧 commute�𝐿𝐿�2, 𝐿𝐿�𝑧𝑧� = 0, then they can be calculated 
at the same time, otherwise, an uncertain relationship 
remains between the two 'observables'. Such a 
[𝐿𝐿�𝑥𝑥,𝐿𝐿�𝑦𝑦] = iħ𝐿𝐿�𝑧𝑧, ([𝐿𝐿�𝑦𝑦,𝐿𝐿�𝑧𝑧] = iħ𝐿𝐿�𝑥𝑥, ([𝐿𝐿�𝑍𝑍, 𝐿𝐿�𝑥𝑥] = iħ𝐿𝐿�𝑦𝑦, on 
the other hand, the eigenvalue and eigenvector have 
also been calculated for operators 𝐽𝐽±, 𝐽𝐽2, 𝐽𝐽𝑥𝑥, 𝐽𝐽𝑦𝑦 and 
𝐽𝐽𝑧𝑧within the |𝑗𝑗,𝑚𝑚⟩basis.  

• The orbital angular momentum𝐿𝐿�2 eigenvalues are 
ℓ(ℓ+1)ħ2, when (ℓ) is representse quantum number of 
the orbital angular momentum and the eigenvalues of 
𝐿𝐿�𝑧𝑧 are mħ while m is the number of the magnetic 
quantum and m = -ℓ, -ℓ+1,, -ℓ. For quantized angular 
momentum, the overall angular momentum is a general 
form when both spin angular momentum and orbital 
angular momentum are coupled. Thus, the eigenvalues 
of 𝚥𝚥2are j(j+1) and the eigenvalues of 𝚥𝚥�̂�𝑧 are ħm, when 
the overall angular momentum quantum number j = ℓ± 
s. Only a discrete set of values can be used for all of 
them, so it can be inferred that angular momentum is 
quantized and quantized angular momentum values are 
represented as quantum numbers. 

• Angular momentum did not change continuously, but 
rather in “quantum leaps” (sudden changes) between 
such permitted values. 

• Quantization angular momentum principle is suitable 
to the macroscopic system; nevertheless, the discrete 
phases are too small to discern at the macroscale. 

• The universal unit of angular momentum is shortened 
Planck's constant {quantum of action}, where it’s 
defined via two quantum numbers (magnetic and 
orbital).  

• Except in the trivial case where all of the orthogonal 
components of angular momentum are (0), two 
orthogonal parameters of angular momentum cannot 
be known or evaluated at the same time. 

• It is possible to know the length of both the angular 
momentum vector and one of its elements at the same 
time. 
Because of the isotropy of space, total angular 
momentum is still conserved, but orbital angular 
momentum is not (spin-orbit coupling may transfer 
angular momentum between orbital and spin degrees 
of freedom). 

Acknowledgement 
I would be happy to illuminate my big thanks to the 
University of Raparin/college of science /physics 
department for their assistance in my article review. 
 

References 

[1] N. Zettili. Quantum mechanics: concepts and 
applications. American Association of Physics 
Teachers; 2003. 

[2] D. J. Griffiths and D. F. Schroeter. Introduction to 
quantum mechanics. Cambridge University Press; 
2018. 

[3] C. Cohen-Tannoudji, B. Diu and F. Laloe. Quantum 
Mechanics, vol. 1, 231. Singapore: Wiley; 2005. 

[4] P. R. Berman and Coughlin. Introductory quantum 
mechanics. Springer; 2018. 

[5] S. J. N. P. Rozental. Book Review: Quantum 
mechanics. EUGEN MERZBACHER,(John Wiley 
& Sons, New York, 1961. xii-544p. 96s.). 
1963;41:692-692.  

[6] S. Ru, M. An, Y. Yang, R. Qu, F. Wang, Y. Wang, P. 
Zhang and F. J. P. R. A. Li. Quantum state transfer 
between two photons with polarization and orbital 
angular momentum via quantum teleportation 
technology. 2021;103(5):052404.  

[7] D. A. Garanin and E. M. J. a. p. a. Chudnovsky. 
Conservation of Angular Momentum in the Elastic 
Medium with Spins. 2021.  

[8] G. Zhu and C. J. P. R. S. T.-P. E. R. Singh. Improving 
student understanding of addition of angular 
momentum in quantum mechanics. 
2013;9(1):010101.  

[9] A. F. J. Levi. Applied quantum mechanics. Cambridge 
University Press; 2006. 

[10] B. Supriadi, T. Prihandono, V. Rizqiyah, Z. Ridlo, N. 
Faroh and S. Andika, editors. Angular momentum 
operator commutator against position and 
Hamiltonian of a free particle. Journal of Physics: 
Conference Series; 2019: IOP Publishing. 

[11] A. Edmonds. Angular Momentum in Quantum 
Mechanics. Landmarks in Mathematics and 
Physics. Princeton University Press, 4th printing 
edition; 1996. 

[12] J. J. P. N. I. e. Sakurai. Modern Quantum Mechanics 
2Nd Edition. 2011.  

[13] Y. Peleg, R. Pnini and E. Zaarur. Schaum's outline of 
theory and problems of quantum mechanics. 
McGraw Hill Professional; 1998. 

[14] F. W. Byron and R. W. Fuller. Mathematics of 
Classical and Quantum Physics: Volume Two. 
Addison Wesley; 1969. 

 

 

 

 

 



Kishwar Mohammed Wasman & Saman Qadir Mawlud                      Journal of Physical Chemistry and Functional Materials 
 

29 

[15] M. C. Jain. Quantum Mechanics: A Textbook for 
Undergraduates. PHI Learning Pvt. Ltd.; 2017. 

[16] J. J. Sakurai and E. D. Commins. Modern quantum 
mechanics, revised edition. American Association 
of Physics Teachers; 1995. 

[17] M. E. Rose. Elementary theory of angular momentum. 
Courier Corporation; 1995. 

[18] W. Nolting. Theoretical Physics 7: Quantum 
Mechanics-Methods and Applications. Springer; 
2017. 

[19] P. M. Mathews and K. Venkatesan. A textbook of 
Quantum Mechanics. Tata McGraw-Hill Education; 
1978. 


	1. Introduction
	2. The Common Formality of Angular Momentum
	2.1. Determination of the Eigenstates and Eigenvalues of ,,,𝑱..-𝟐.And ,,𝑱.-𝒛.
	2.2.  Describing The Eigenvalue and Eigenvector for The Raising and Lowering Operators (,,𝑱.-±.) within the ,𝒋,.,𝒎. Basis

	3. Matrix Picture of Angular Momentum
	4. Geometrical Description of Angular Momentum
	5. Orbital Angular Momentum Eigenfunctions
	Conclusion
	References

