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ABSTRACT 
 
The aim of this paper is to examine a numerical method for the computation of approximate solution of the 
continuous-time algebraic Riccati equation using Krylov subspace matrix. First of all, Global Arnoldi process 
is initiated to construct an orthonormal basis. In addition, Krylov subspace matrix is employed as projection 
method because it is one of the frequently referred method in the literature. Lastly, some numerical examples 
are given in order to explain how this method works. 
Keywords: Algebraic Riccati equation, Krylov subspace, Arnoldi.   
 
 
GLOBAL ARNOLDİ METODUNUN FARKLI BİR UYGULAMASINDAN ELDE EDİLEN DÜŞÜK 
RANKLI YAKLAŞIK ÇÖZÜMLER 
 
ÖZET 
 
Bu çalışmanın amacı Krylov alt uzay matrisi yardımıyla sürekli cebirsel Riccati denklemlerinin yaklaşık 
çözümünün hesaplanmasında kullanılan nümerik bir metodu incelemektir. İlk olarak ortanormal taban 
oluşturmak için global Arnoldi süreci başlatılmış, ayrıca literatürde sıklıkla başvurulan izdüşüm metotlarından 
biri olduğu için izdüşüm yöntemi olarak Krylov alt uzay matris kullanılmıştır. Son olarak, bu metodun nasıl 
çalıştığını açıklamak amacı ile bazı nümerik örnekler verilmiştir 
Anahtar Sözcükler: Cebirsel Riccati denklemi, Krylov alt uzay, Arnoldi. 
 
 
 
1. INTRODUCTION  
 
Algebraic Riccati equations play a fundamental role in many areas, such as control theory, filter 
design, model reduction problems, differential equations and robust control [2, 3, 4, 5, 6, 7, 8]. 
Usually, in these applications, stable solution of continuous-time algebraic Riccati equation is 

desired. Such a solution X  is symmetric positive semi-definite and each eigen value of the 

matrix 
TA BB X  has a negative real part. The stabilizing solution exists and it is unique 

under certain assumptions on the problem [6, 9, 17]. 
This paper presents the global Arnoldi method for the numerical solution of the 

continuous-time algebraic Riccati equation of the form 
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0T T TA X XA XBB X C C                    (1) 
 

where , n nA X  , 
n pB  , 

s nC  . The matrices B  and C  are assumed to be of 

full rank with s n , p n . 

The remaining of the paper is organized as follows. In section 2, it has been composed 
matrix Krylov subspaces using the global Arnoldi process, also has been applied to compute low 
rank approximate solutions. In the last section, numerical experiments have been performed. 

Throughout this paper, the following notations have been used. For X  and Y  two 

matrices in 
n s  and the following inner product:  ,  T

F
X Y tr X Y  where  .tr

denotes trace. The associated norm is the Frobenius norm denoted by 
F

. 

,i jA B a B      is the Kronecker product of the matrices A  and B . rI  is the identity of 

size r r and 0r l  is the zero matrix of size r l . 

 
2. LOW RANK APPROXIMATE SOLUTION 
  
Before describing these global Arnoldi process, it is given some definitions and remarks on some 
matrix Krylov subspace methods [10, 11, 12, 13] 

Let 
n nA  , 

n sV   and m  be a fixed integer. The matrix Krylov subspace 

   1,  , ,..., m
mK A V span V AV A V  is the subspace spanned by the matrices 

1, ,..., mV AV A V
. Note that  ,  mZ K A V  means that  

 

1

0

m
i

i
i

Z AV




 , i  , 0,..., 1i m  . 

 

We recall that the previous subspace is different from the block Krylov subspace  
 

   1,  , ,..., m
mK A V span V AV A V , where  ,  mZ K A V  means that 

 

1

0

m
i

i
i

Z AV




  , 
s s

i
  , 0,..., 1i m  . 

 

Also that block methods converge in less iterations than standard methods applied to 
each linear system, however block methods are very costly as m increases. Moreover, they can 
suffer from high memory requirements. Global methods are not demanded all these conditions. 
Therefore it is usually preferred in the applications [14, 15]. 
 
2.1. The Global Arnoldi Methods 
 

Basically, the global Arnoldi algorithm is the standard Arnoldi algorithm when 1s  . Thus the 
global Arnoldi algorithm reduces to the standard Arnoldi algorithm [1]. The global Arnoldi 
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algorithm constructs an F -orthonormal basis 1 2, ,...,a a a
mV V V  of the matrix Krylov subspace 

 ,  mK A V ; i.e., 

a a
i F jV V  for i j ; , 1,...,i j m  and , 1a a

i i F
V V   for 1,...,i m . 

 
Algorithm 1. The modified global Arnoldi algorithm 
 

A  an n n  matrix, V  an n s matrix and m  an integer.  

1. 1
a

F

V
V

V
  , (choose a vector V  of norm 1) 

2. For 1, 2,...,j m  Do: 

3. Compute ˆ : a
jV AV ; 

4. For 1, 2,...,i j   

5. ˆ,a
ij i

F
h V V ; 

6. ˆ ˆ: a
ij iV V h V  ; 

7. End Do 

8. 1,
ˆ

j j
F

h V  ; 

9. If 1, 0j jh    Stop 

10. 1
1,

ˆ
a
j

j j

V
V

h


  ; 

11. End Do.  

Let 
a

m  be the n ms  matrix 1 ,...,a a a
m mV V     and mH  be the m m  upper 

Hessenberg matrix whose nonzero entries ,i jh  are defined by algorithm1. ˆ
mH  denotes the  

 1m m   upper Hessenberg matrix and mH  is the m m matrix obtained from ˆ
mH  by 

deleting its last row. If  0,...,0,1
T m

me    and 

   0 ,...,0 ,
T

m m s s s sE e I I    then the following relations is satisfied [11]: 

  1, 1
a a a T

m m m s m m m mA H I h V E                     (2) 

and  

 1
ˆa a

m m m sA H I   .                 (3) 

In what follows, we will see how to extract low rank approximate solutions to the continuous-
time algebraic Riccati equation (1). This will be done by projecting the initial problem onto the 
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matrix Krylov subspaces  ,T T
mK A C  and  ,mK A B . Then we solve the low 

dimensional CARE obtained and get an approximate solution to (1).  

Theorem 1. Let l be the degree of the minimal polynomial of  
TA  for  

TC  and   

 1,...,
a

l lV V  be the matrix obtained by applying the global Arnoldi algorithm to 

 ,T TA C  with  1

T

F

C
V

C
 . Let lX  denote the n n  matrix  

Ta a
l l l lX Z    where 

lZ  is a symmetric positive semi-definite solution of the following CARE [1]: 
 

    0T T T
l s l l l s l l l l l lH I Z Z H I Z B B Z C C                    (4) 

 

with  
Ta

l lB B  ,  1
T

l sF
C C e I   and  1 1,0,...,0

T
e   the first unit vector of 

l . 

Then lX  is a symmetric positive semi-definite solution of the CARE (1). 

Repeat the same process as similar to  ,mK A B . 

The approximate solutions to (1) that we will consider have the following form:  
 

Ta a
l l l lX Z    .  

 

Thus, CARE equation turns into 
 

    0T T T
l s l l l s l l l l l lH I Z Z H I Z B B Z C C       

 

in the low order  equation. 
 
2.2. The Coupled Algebraic Riccati Global Arnoldi Algorithm  
 

A  an n n  stable matrix, B  an n p  matrix and C  an s n  matrix. 

1. Apply Algorithm 1 to the pair  ,A B . 

2. Apply Algorithm 1 to the pair  ,T TA C . 

3. The approximate solutions are represented as the matrix products: 
 

Ta a a
m m m mX Z    and 

Ta a
l l l lX Z   . 

 
3. NUMERICAL EXAMPLES 
 
In this section, we present some numerical examples to illustrate the effectiveness of the global 
Arnoldi algorithm for continuous-time Riccati equations. 
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Example 1 

2 1

1 1
A

 
  
 

,  
0

1
B

 
  
 

,   1 0C   matrices are computed for   ,T T
mK A C .  

2 1

1 1
H

 
  
 

, 
1 0

0 1
a

lV
 

  
 

 matrices are substituted in the following equation. 

    0T T T
l s l l l s l l l l l lH I Z Z H I Z B B Z C C       

As a result, lZ , approximate solution is obtained. 

 

3 41
3

2

3 41
3

2

lZ

 
 

 
 
 
 

. 

Similarly, , ,A B C  matrices are computed for  ,mK A B , 

1 1

1 2
H

 
  
 

, 
0 1

1 0
a

lV
 

  
 

 then 

    0T T T
m s m m m s m m m m m mH I Z Z H I Z B B Z C C       

As a result, mZ , approximate solution is obtained  

3 1 3

1 3 3m

i
Z

i

 
    

. 

When  , ,A B C  matrices written in equation (1), 

3 41
3

2

3 41
3

2

X

 
 

 
 
 
 

 

as can be seen here lZ X . 

 
Example 2   

1 2

1 1
A

 
   

,  
1

0
B

 
  
 

,   0 1C   matrices are computed for   ,T T
mK A C . 

1 2

1 1
H

 
  
 

, 
0 1

1 0
a

lV
 

  
 

 matrices are substituted in the following equation. 
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    0T T T
l s l l l s l l l l l lH I Z Z H I Z B B Z C C       

As a result, lZ , approximate solution is obtained. 

4 3

3 2l

i
Z

i

 
   

. 

Similarly, , ,A B C  matrices are computed for   ,mK A B , 

1 2

1 1
H

 
  
 

, 
1 0

0 1
a

lV
 

   
 then 

    0T T T
m s m m m s m m m m m mH I Z Z H I Z B B Z C C       

As a result, mZ , approximate solution is obtained. 

3
2

2
1 1

mZ
 
 
 
 

. 

When  , ,A B C  matrices written in equation (1), 

2 3

3 4

i
X

i

 
   

 

as can be seen here 
Ta a

l l lX Z   . 

 
Example 3   

1 2

1 0
A

 
   

,  
1

0
B

 
  
 

,   0 1C   matrices are computed for   ,T T
mK A C . 

0 2

1 1
H

 
  
 

, 
0 1

1 0
a

lV
 

  
 

 matrices are substituted in the following equation. 

    0T T T
l s l l l s l l l l l lH I Z Z H I Z B B Z C C       

As a result, lZ , approximate solution is obtained  

1 11
2

2

1 11
1

2

l

i

Z
i

  
 
 
  
 
 

. 

Similarly, , ,A B C  matrices computed for   ,mK A B , 
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1 2

1 0
H

 
  
 

, 
1 0

0 1
a

lV
 

   
 then 

    0T T T
m s m m m s m m m m m mH I Z Z H I Z B B Z C C       

As a result, mZ , approximate solution is obtained.  

1 3
1

2

1 3
2

2

m

i

Z
i

 
 
 
 
 
 

. 

When  , ,A B C  matrices written in equation (1), 

1 11
1

2

1 11
2

2

i

X
i

 
 
 
 
 
 

 

as can be seen here 
Ta a

l l lX Z   . 

 
Example 4   

1 1

1 1
A

 
   

,  
1

0
B

 
  
 

,   0 1C   matrices are computed for   ,T T
mK A C . 

1 1

1 1
H

 
  
 

, 
0 1

1 0
V

 
  
 

 matrices are substituted in the following equation. 

    0T T T
l s l l l s l l l l l lH I Z Z H I Z B B Z C C       

As a result, lZ , approximate solution is obtained.  

2 5

5 2
l

i
Z

i

 
  

  
. 

Similarly, , ,A B C  matrices are computed for  ,mK A B , 

1 1

1 1
H

 
  
 

, 
1 0

0 1
V

 
   

 then 

    0T T T
m s m m m s m m m m m mH I Z Z H I Z B B Z C C       

As a result, mZ , approximate solution is obtained.  
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1 19
2

2

1 19
2

2

m

i

Z
i

 
 
 
 
 
 

. 

When  , ,A B C  matrices written in equation (1), 

2 5

5 2

i
X

i

 
  

  
 

as can be seen here 
Ta a

l l lX Z   . 

 
4. CONCLUSION 
 
In this study, it has been used the global Arnoldi method which is based on computing with low 
rank approximate solution of the continuous-time algebraic Riccati equation. It has been achieved 

two solution regarding both pair  ,A B  and pair  ,T TA C . Accordingly, the result obtained 

from pair  ,A B  is quite different than that of exact solution. On the other hand, it has been 

found that approximate solution with low rank is the same with exact solution. 
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