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Research Article

Abstract − Helical curves are constructed by the property that their unit tangents
make a constant angle with a chosen constant direction. There are relations between
polynomial planar curves, helices and Pythagorean-hodograph or shortly PH-curves.
The aim of this paper is to obtain a method which generate PH-curves and PH-helical
curves from a planar curve in Euclidean Space En+1. Furthermore, some examples
are given in E4 and E5 to explain the method neatly.
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1. Introduction

Helix is an interesting curve which has been studied by many mathematicians in differential geometry.
We can see helices or its various types of general helix in many areas such as nature, physics, kinematic
motion, design of architectural building and the structure of the DNA. A curve is a general helix (or
constant slope curve) if its tangent vector field makes a constant angle with a fixed straight line in
Euclidean space E3. In 1802, Lancret [1] introduced the famous result on helices and it was proved
in 1845 by B. de Saint Venant that the ratio of its curvature to torsion is constant. Indeed, helix
is a geometric curve whose curvature and torsion are non-vanishing constants [2]. In addition, if the
curvature and the torsion of a curve are non-zero constants then the curve is a general helix. So
it is clear that helix is a special case of general helix. Furthermore, straight lines and circles are
degenerate-helices.

In the curve theory, another important curves are Pythagorean-Hodograph curves, or shortly PH-
curves. These curves have many applications such as CNC machining, offseting, computer aided
geometric design and motion planning. They were first introduced in Farouki et al. [3]. Because they
are characterized by their arclength which is a polynomial function, they have attracted the attention
of researchers and have been widely studied in [4–11].

In [12], Izumiya and Takeuchi show that cylindrical helices can be obtained from planar curves.
They give a method to obtain a helical curve from a planar curve in their study. Moreover, there
are well-known two methods for constructing PH-curves: One of them is by using complex numbers
representation [4] and the other method is quaternion representation [5, 7]. Via the point of view
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of these studies Camcı and İlarslan give a new method for construction of PH-helical curves in 3-
dimensional Euclidean space in [13]. In this paper, we extend their theory to the Euclidean space
En+1.

2. Basic Concepts and Notions

Let α : I ⊂ R → En be a regular curve in Euclidean space En. It is well known that the curve α is
said to be of unit speed (or parameterized by arclength function s) if ⟨α′(s), α′(s)⟩ = 1, where ⟨, ⟩ is
the standard inner product of En given by

⟨X,Y ⟩ =
n∑

i=1

xiyi,

where X = (x1, x2, ..., xn), Y = (y1, y2, ..., yn) ∈ En. Let {V1, V2, ..., Vn} be the moving Frenet frame
along a space curve α, where Vi (i = 1, 2, ..., n) denote ith Frenet vector field of α. Then, the Frenet
formulas are given by

V
′
1 (t) = ν(t)k1(t)V2(t)

V
′
i (t) = ν(t) (−ki−1(t)Vi−1(t) + ki(t)Vi+1(t)) , 2 ≤ i ≤ n− 1

V
′
n(t) = −ν(t)kn−1(t)Vn−1(t)

(1)

where ν(t) =
∥∥∥α′

(t)
∥∥∥ and ki (i = 1, 2, ..., n− 1) denote the i-th curvature function of the curve (see

[2, 14]). If the curve lies in a hyperplane of En, then it is said that α is a (n− 1)-flat curve. It is well
known that α is (n− 1)-flat curve in En if and only if kn−1(t) = 0 [15]. Harmonic curvature functions
were defined by Özdamar and Hacısalihoğlu in [16] as follow:

Definition 2.1. Let α be a regular curve in En. Harmonic curvatures of the curve α are defined by
Hi : I ⊂ R → R such that

Hi =


0, i = 1

k1
k2
, i = 2

{V1[Hi−1] + kiHi−2} 1
ki+1

, i = 3, 4, ..., n− 2

Characterizations for generalized helices by using the harmonic curvatures of the curve were studied
by Camcı et al. in [17]. They obtained some important results for generalized helix in n-dimensional
Euclidean space En.

Theorem 2.2. [17] Let α be a non-degenerate curve in n-dimensional Euclidean space En. Let
{V1, V2, ..., Vn} and {H1, H2, ...,Hn−2} be the Frenet frame and harmonic curvatures of the curve,
respectively. Then, α is a general helix if and only if H

′
n−2 + νkn−1Hn−3 = 0.

Definition 2.3. [17] Let α be a unit speed, non-degenerate curve in n-dimensional Euclidean space
En. Let {V1, V2, ..., Vn} and {H1, H2, ...,Hn−2} be the Frenet frame and harmonic curvatures of the
curve, respectively. The vector

D = V1 +H1V3 + ...+Hn−2Vn

is called the generalized Darboux vector of the curve α.

The relationship between the generalized Darboux vector D and the general helix is given by the
following theorem.
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Theorem 2.4. [17] Let α be a unit speed, non-degenerate curve in Euclidean space En. Let {V1, V2, ..., Vn}
and {H1, H2, ...,Hn−2} be the Frenet frame and harmonic curvatures of the curve, respectively. Then
α is a generalized helix if and only if D is a constant vector.

Definition 2.5. [3] Let α : I ⊂ R → En+1 (t → α(t)) be a polynomial curve. If the speed of the

curve v(t) =
∥∥∥ ·
α(t)

∥∥∥ is polynomial, then it is called a Pythagorean-hodograph or shortly PH-curve.

One of the well-known equations in mathematics history is the Pythagorean equation, i.e., a2+b2 =
c2. General solution of this equation is [18] :

a = t(u2 − v2), b = 2tuv, c = t(u2 + v2) (2)

where t is a scale parameter. It can be deduced from Equation (2) that rational solution of the
Pythagorean n-tuple a21 + a22 + ...+ a2n = σ2 can be given as follows:

a1 = t(u21 − u22 − ...− u2n)

ai = 2ta1ai, i = 2, , , n

σ = t(u21 + u22 + ...+ u2n)

where ui (i = 1, 2, ..., n) are integers and t is scaling parameter.

3. The Construction of a Helix in En+1

In Euclidean space En+1, let Hn be a n−hyperplane and γ : I → Hn ⊂ En+1 be a regular curve.
Hence, we can define a curve such that

β(t) = γ(t) +

cot θ

t∫
0

∥∥∥ ·
γ(u)

∥∥∥ du
−→a +−→c (3)

where ∥−→a ∥ = 1, ⟨−→a ,
·
γ(t)⟩ = 0, θ ∈ R, −→a and −→c is a constant vector. Therefore, from Equation (3),

·
β(t) =

·
γ(t) +

(
cot θ

∥∥∥ ·
γ(t)

∥∥∥)−→a (4)

and from Equation (4), ∥∥∥∥ ·
β(t)

∥∥∥∥ =
1

sin θ

∥∥∥ ·
γ(t)

∥∥∥ (5)

Thus, from Equations (4) and (5), we have

Tβ = sin θTγ + cos θ−→a , ⟨Tβ,
−→a ⟩ = cos θ (6)

where Tβ (resp. Tγ ) is a tangent of the curve β (resp. γ). From Equation (6), it can be observed that
β is a helix.

Theorem 3.1. All helix curves in Euclidean space En+1 can be obtained from a regular curve which
lies in a hyperplane Hn⊂ En+1.

Proof. Let β : I → En+1 be a unit speed helix curve. Hence, the generalized Darboux vector D(s)
of the curve β is a constant where

D(s) = V1 +H1V3 + ..+Hn−1Vn+1 (7)

In this case, unit axes of the curve β is equal to

−→a =
D(s)

∥D(s)∥
=

V1 +H1V3 + ..+Hn−1Vn+1√
1 +H2

1 +H2
2 + ..+H2

n−1
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and we have ⟨Tβ,
−→a ⟩ = cos θ where β′(s) = Tβ. Hence we can see that

⟨β′,−→a ⟩ = cos θ.

If we consider the curve
γ(s) = β(s)− ⟨β(s), −→a ⟩−→a , (8)

then we have ⟨γ(s), −→a ⟩ = 0. This means that the curve γ lies in Hn. Moreover, we can see that∥∥γ′(s)∥∥ =
∥∥β′(s)− ⟨β′(s), −→a ⟩−→a

∥∥ = sin θ (9)

From Equations (8) and (9), we have

γ(s) +

cot θ

s∫
0

∥∥∥ ·
γ(u)

∥∥∥ du
−→a = β(s)− s cos θ−→a + s cot θ sin θ−→a = β(s)

From Equation (5), we can see that if the curve α is a polynomial curve, then the curve β is a
polynomial curve. Hence, from Theorem 3.1, we can give following theorem.

Theorem 3.2. Under the above notation, if the curve α is a PH-curve, then the curve β is a PH-helical
curve. Moreover, all PH-helical curves in Euclidean space En+1 can be obtained from a PH-curve
γ : I → Hn ⊂ En+1

The following theorems are given in [13] for obtaining PH-curves and PH-helical curves from planar
curves in E3.

Theorem 3.3. [13] Let H2(a, b, c) =
{
(p1, p2, p3) ∈ E3 : ap1 + bp2 + cp1 + d = 0

}
be a plane in E3.

If the curve γ : I → H2, γ(t) = (γ1(t), γ2(t), γ3(t)) is a PH-curve, then

γ1(t) =
∫ (

b
√
a2 + b2 + c2

(
u2(t)− v2 (t)

)
− 2acu(t)v (t)

)
dt

γ2(t) =
∫ (

−a
√
a2 + b2 + c2

(
u2(t)− v2 (t)

)
− 2bcu(t)v (t)

)
dt

γ3(t) =
∫
2
(
a2 + b2

)
u(t)v (t) dt

σ(t) =
√
a2 + b2

√
a2 + b2 + c2

(
u2(t) + v2 (t)

)
where u(t) and v (t) are polynomials and

σ2(t) =
(
γ

′
1(t)
)2

+
(
γ

′
2(t)
)2

+
(
γ

′
3(t)
)2

Theorem 3.4. [13] Let H2(a, b, c) be a plane in E3 where

H2(a, b, c) = {(p1, p2, p3) : ap1 + bp2 + cp3 + d = 0}

In this case, we get all PH- helical curves from planes H2(a, b, c) in E3 such that

γ(a,b,c)(γ, t) = β(t) = (β1(t), β2(t), β3(t))

where

β1(t) =

∫ [
b
√

a2 + b2 + c2
(
u2(t)− v2 (t)

)
− 2acu(t)v (t) + a

(
a2 + b2

)
cot θ

(
u2(t) + v2 (t)

)]
dt

β2(t) =

∫ (
−a
√

a2 + b2 + c2
(
u2(t)− v2 (t)

)
− 2bcu(t)v (t) + b

(
a2 + b2

)
cot θ

(
u2(t) + v2 (t)

))
dt

β3(t) =

∫ [
2
(
a2 + b2

)
u(t)v (t) + c

(
a2 + b2

)
cot θ

(
u2(t) + v2 (t)

)]
dt

Hence, axis of the curve β is equal to

−→a =

(
a√

a2 + b2 + c2
,

b√
a2 + b2 + c2

,
c√

a2 + b2 + c2

)
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4. PH-Helical Curves in En+1

In this section we give a method to obtain a PH curve in Hn ⊂ En+1. Then, we give a theorem in
E4 for the given method. After then, using Theorem 3.2, we give a theorem to construct a PH-helical
curve in E4. Finally, we support these theorems by some examples.

For a1, a2, ..., an+1, an+2 ∈ R, let

Hn(a1, a2, ..., an+1) =

{
(p1, p2, , ..., pn+1) ∈ En+1|

n+1∑
i=1

(aipi) + an+2 = 0

}

be a hyperplane of En+1. Assume that γ : I → Hn(a1, a2, ..., an+1), γ(t) = (γ1(t), γ2(t), ..., γn+1(t)) is
a PH − curve with the speed of a polynomial such as σ(t). Therefore, we have

n+1∑
i=1

(γ
′
i(t))

2 = σ2(t) (10)

Since γ lies in Hn(a1, a2, ..., an+1) we write

n+1∑
i=1

(aiγi(t)) + an+2 = 0 (11)

From Equation (10), we get

n∑
i=1

(
γ

′
i(t)

γ
′
n+1(t)

)2

+ 1 =

(
σ(t)

γ
′
n+1(t)

)2

. (12)

Differentiation Equation (11) give us
n+1∑
i=1

aiγ
′
i(t) = 0

Applying the following substitutions

Xi =
γ

′
i(t)

γ
′
n+1(t)

, i = 1, 2, ..., n

ω =
σ(t)

γ
′
n+1(t)

we have
n∑

i=1

(
X2

i

)
+ 1 = ω2 (13)

and
n∑

i=1

(aiXi) + an+1 = 0 (14)

From Equation (14), Xn can be written as

Xn =

n−1∑
i=1

(biXi) + bn (15)

where
bi = − ai

an
, i = 1, 2, ..., n− 1
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and
bn = −an+1

an

Considering Equations (13) and (15), we get

n−1∑
i=1

(1 + b2i )X
2
i +

n∑
i,j=1
i ̸=j

(bibjXiXj) +

n∑
i=1

2(bibn+1Xi) = ω2 (16)

If we apply the following transformations in Equation (16),

Xi = Yi −
bibn+1

1 + b21 + b22 + ...b2n
, i = 1, 2, ..., n

then we find
n−1∑
i=1

(1 + b2i )Y
2
i +

n∑
i,j=1
i ̸=j

(bibjYiYj) +

(
1 + b21 + b22 + ...+ b2n
1 + b21 + b22 + ...+ b2n−1

)
= ω2

We can rewrite this quadratic form as

Y tAY +

(
1 + b21 + b22 + ...+ b2n
1 + b21 + b22 + ...+ b2n−1

)
= ω2 (17)

where

Y =


Y1

Y2
...

Yn−1

 and A =


1 + b21 b1b2 ... b1bn−1

b1b2 1 + b22 ... b2bn−1

...
...

...
...

b1bn−1 b2bn−1 ... 1 + b2n−1


One can calculate the eigenvalues of A as λ1 = 1, λ2 = 1, ..., λn−2 = 1, λn−1 = 1+ b21+ b22+ ...b2n−1 and
the corresponding eigenvectors of A as columns of the following matrix:

A =



− b2
b1

− b3
b1

· · · − bn−1

b1
− bn−2

b1
b1

bn−1

1 0 · · · 0 0 b2
bn−1

0 1 · · · 0 0 b3
bn−1

...
...

. . .
...

...
...

0 0 · · · 1 0 bn−2

bn−1

0 0 · · · 0 1 1


Here In−2 is the Idendity matrix of dimension (n− 2). We define the index set

Sn−j = {1, n− j + 1, n− j + 2, ..., n− 1}

so that we can give a general form of the orthonormal matrix Q obtained by eigenvectors of A which
diagonalize Equation (17) and satisfies Z = QY where
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Q =



−bn−1√ ∑
i∈Sn−k−1

b2i

−b1bn−2√ ∑
i∈Sn−k

b2i
∑

i∈Sn−k−1

b2i

−b1bn−3√ ∑
i∈Sn−k

b2i
∑

i∈Sn−k−1

b2i
...

−b1b2√ ∑
i∈Sn−k

b2i
∑

i∈Sn−k−1

b2i

b1√ ∑
i∈Sn−1

b2i

0 0 0 ...

√ ∑
i∈Sn−k

b2i√ ∑
i∈Sn−k−1

b2i

b2√ ∑
i∈Sn−1

b2i

0 0 0 ...
−b2b3√ ∑

i∈Sn−k

b2i
∑

i∈Sn−k−1

b2i

b3√ ∑
i∈Sn−1

b2i

...
...

...
. . .

...
...

0 0

√ ∑
i∈Sn−k

b2i√ ∑
i∈Sn−k−1

b2i
...

−b2bn−3√ ∑
i∈n−k

b2i
∑

i∈Sn−k−1

b2i

bn−3√ ∑
i∈Sn−1

b2i

0

√ ∑
i∈Sn−k

b2i√ ∑
i∈Sn−k−1

b2i

−bn−2bn−3√ ∑
i∈Sn−k

b2i
∑

i∈Sn−k−1

b2i
...

−b2bn−2√ ∑
i∈Sn−k

b2i
∑

i∈Sn−k−1

b2i

bn−2√ ∑
i∈Sn−1

b2i

b1√ ∑
i∈Sn−k−1

b2i

bn−1bn−2√ ∑
i∈Sn−k

b2i
∑

i∈Sn−k−1

b2i

bn−1bn−3√ ∑
i∈Sn−k

b2i
∑

i∈Sn−k−1

b2i
...

b2bn−1√ ∑
i∈Sn−k

b2i
∑

i∈Sn−k−1

b2i

bn−1√ ∑
i∈Sn−1

b2i


Here k stands for the k-th column of Q. To clarify Q, we give the following examples for spacial cases n = 3 and
4 respectively:

Q =



−b3√
b21 + b23

−b1b2√
b21 + b23

√
b21 + b22 + b23

b1√
b21 + b22 + b23

0

√
b21 + b23√

b21 + b22 + b23

b2√
b21 + b22 + b23

b1√
b21 + b23

−b2b3√
b21 + b23

√
b21 + b22 + b23

b3√
b21 + b22 + b23



Q =



−b4√
b21 + b24

−b1b3√
b21 + b24

√
b21 + b22 + b23 + b24

−b1b2√
b21 + b23 + b24

√
b21 + b22 + b23 + b24

b1√
b21 + b22 + b23 + b24

0 0

√
b21 + b23 + b24√

b21 + b22 + b23 + b24

b2√
b21 + b22 + b23 + b24

0

√
b21 + b24√

b21 + b23 + b24

−b2b3√
b21 + b23 + b24

√
b21 + b22 + b23 + b24

b3√
b21 + b22 + b23 + b24

−b1√
b21 + b24

−b3b4√
b21 + b24

√
b21 + b22 + b23 + b24

−b2b4√
b21 + b23 + b24

√
b21 + b22 + b23 + b24

b4√
b21 + b22 + b23 + b24



Applying Z = QY in Equation (17) we get

n−2∑
i=1

(Z2
i ) + (1 + b21 + b22 + ...+ b2n−1)Z

2
n−1 +

1 + b21 + b22 + b23 + ...+ b2n
1 + b21 + b22 + ...+ b2n−1

= ω2 (18)



Journal of New Theory 37 (2021) 45-57 / A New Method to Obtain PH-Helical Curves in En+1 52

Because Equation (18) is a Pythagorean (n+2)-tuple, rational solution for this equation is

Z1(t) =
r(t)

s(t)

(
u21(t)−

n−1∑
i=2

u2i (t)

)

Zi(t) =
2r(t)

s(t)
u1(t)ui(t), i = 2, 3, ..., n− 1√

1 + b21 + b22 + b23 + ...+ b2n
1 + b21 + b22 + ...+ b2n−1

=
2r(t)

s(t)
u1(t)un(t)

ω(t) =
r(t)

s(t)

n∑
i=1

u2i (t)

where u1(t), u2(t), ..., un(t) are arbitrary polynomials and

s(t) =
2
√

1 + b21 + b22 + ...+ b2n√
1 + b21 + b22 + b23 + ...+ b2n+1

r(t)u1(t)un(t)

Hence, the components of (γ) can be written with arbitrary polynomials u1(t), u2(t), ..., un(t) and the
reals a1, a2, ..., an+1.

For n = 3, we give the following theorem in E4.

Theorem 4.1. For the hyperplane,

H3(a1, a2, a3, a4) = {(p1, p2, p3, p4) : a1p1 + a2p2 + a3p3 + a4p4 + a5 = 0, p1, p2, p3, p4 ∈ R}

let γ : I → H3,γ(t) = (γ1(t), γ2(t), γ3(t), γ4(t)) lies in H3. Then, γ is a PH-curve in E4 with the
followings:

γ1 =

∫  a2
(
a21 + a22 + a23

)√
a21 + a22 + a23 + a24

(
u21 − u22 − u23

)
−2a1a3

√
a21 + a22 + a23

√
a21 + a22 + a23 + a24u1u2 − 2a1a4

√
a21 + a22

√
a21 + a22 + a23u1u3

 dt

γ2 =

∫  −a1
(
a21 + a21 + a23

)√
a21 + a22 + a23 + a24

(
u21 − u22 − u23

)
−2a2a3

√
a21 + a22 + a23

√
a21 + a22 + a23 + a24u1u2 − 2a1a4

√
a21 + a22

√
a21 + a22 + a23u1u3

 dt

γ3 =

∫ (
2
(
a21 + a22

)√
a21 + a22 + a23

√
a21 + a22 + a23 + a24u1u2 − 2a3a4

√
a21 + a22

√
a21 + a22 + a23u1u3

)
dt

γ4 =

∫ (
2
√

a21 + a22
(
a21 + a22 + a23

)3/2
u1u3

)
dt

σ =
(
a21 + a22

)√
a21 + a22 + a23 + a24

(
a21 + a21 + a23

) (
u21 + u22 + u23

)
where u1, u2 and u3 are arbitrary polynomials of parameter ”t” and σ(t) = ∥γ̇(t)∥.

Proof. Assume that γ : I → H3(a1, a2, a3, a4),γ(t) = (γ1(t), γ2(t), γ3(t), γ4(t)) be a PH− curve with
the speed of a polynomial such as σ(t) in H3(a1, a2, a3, a4). So we have

(γ
′
1(t))

2 + (γ
′
2(t))

2 + (γ
′
3(t))

2 + (γ
′
4(t))

2 = σ2(t). (19)

Since γ lies in H3(a1, a2, a3, a4) we write

a1γ1(t) + a2γ2(t) + a3γ3(t) + a4γ4(t) + a5 = 0. (20)
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From Equation (19), we get(
γ

′
1(t)

γ
′
4(t)

)2

+

(
γ

′
2(t)

γ
′
4(t)

)2

+

(
γ

′
3(t)

γ
′
4(t)

)2

+ 1 =

(
σ(t)

γ
′
4(t)

)2

. (21)

Differentiating Equation (20), we find

a1γ
′
1(t) + a2γ

′
2(t) + a3γ

′
3(t) + a4γ

′
4(t) = 0. (22)

If we make the following substitutions in Equations (21) and (22),

X1 =
γ

′
1

γ
′
4

, X2 =
γ

′
2

γ
′
4

, X3 =
γ

′
3

γ
′
4

, ω =
σ

γ
′
4

.

we have
X2

1 +X2
2 +X2

3 + 1 = ω2 (23)

and
a1X1 + a2X2 + a3X3 + a4 = 0. (24)

From Equation (24) X3 can be written as

X3 = b1X1 + b2X2 + b3 (25)

where b1 = −a1
a3
, b2 = −a2

a3
, b3 = −a4

a3
. Considering Equations (23) and (25), we get

(1 + b21)X
2
1 + (1 + b22)X

2
2 + 2b1b2X1X2 + 2b1b3X1 + 2b2b3X2 + 1 + b23 = ω2 (26)

Applying the following transformations in Equation (26)

X1 = Y1 −
b1b3

1 + b21 + b22

X2 = Y2 −
b2b3

1 + b21 + b22

we find

(1 + b21)Y
2
1 + (1 + b22)Y

2
2 + 2b1b2Y1Y2 +

(
1 + b21 + b22 + b23

1 + b21 + b22

)
= ω2

We can write this quadratic form as

[
Y1 Y2

]
.

[
1 + b21 b1b2
b1b2 1 + b22

]
.

[
Y1
Y2

]
+

(
1 + b21 + b22 + b23

1 + b21 + b22

)
= ω2 (27)

and if we diagonalize Equation (27) with the matrix Q we get

Z2
1 +

(√
1 + b21 + b22Z2

)2

+

(√
1 + b21 + b22 + b23

1 + b21 + b22

)2

= ω2 (28)

here

Q =

 −b2√
b21+b22

b1√
b21+b22

b1√
b21+b22

b2√
b21+b22


and satisfies Z = Q−1Y . It is seen that Equation (28) is a Pythagorean Quaternary and its solution
is

Z1(t) =
r(t)

s(t)
(u21(t)− u22(t)− u23(t))
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Z2(t) =
2r(t)√

1 + b21 + b22s(t)
u1(t)u2(t)

√
1 + b21 + b22 + b23

1 + b21 + b22
=

2r(t)

s(t)
u1(t)u3(t)

ω(t) =
r(t)

s(t)
(u21(t) + u22(t) + u23(t))

s(t) =
2
√
1 + b21 + b22√

1 + b21 + b22 + b23
r(t)u1(t)u3(t)

where u1, u2 and u3 are arbitrary polynomials. So, by the backward operations we find γ1, γ2, γ3 and
γ4 as declared.

By means of Theorem 3.1, we give the following theorem:

Theorem 4.2. For the hyperplane

H3(a1, a2, a3, a4) = {(p1, p2, p3, p4) : a1p1 + a2p2 + a3p3 + a4p4 + a5 = 0, a1, a2, a3, a4, a5 ∈ R}

let γ : I → H3,γ(t) = (γ1(t), γ2(t), γ3(t), γ4(t)) be a PH-curve in H3. Then, the curve
β : I → E4, β(t) = (β1(t), β2(t), β3(t), β4(t)) is a PH-helical curve in E4 where

β1 =

∫ 
a2
(
a21 + a22 + a23

)√
a21 + a22 + a23 + a24

(
u21 − u22 − u23

)
−2a1a3

√
a21 + a22 + a23

√
a21 + a22 + a23 + a24u1u2 − 2a1a4

√
a21 + a22

√
a21 + a22 + a23u1u3

+a1
(
a21 + a22

) (
a21 + a21 + a23

)
cot θ

(
u21 + u22 + u23

)

 dt

β2 =

∫ 
−a1

(
a21 + a21 + a23

)√
a21 + a22 + a23 + a24

(
u21 − u22 − u23

)
−2a2a3

√
a21 + a22 + a23

√
a21 + a22 + a23 + a24u1u2 − 2a1a4

√
a21 + a22

√
a21 + a22 + a23u1u3

+a2
(
a21 + a22

) (
a21 + a21 + a23

)
cot θ

(
u21 + u22 + u23

)

 dt

β3 =

∫  2
(
a21 + a22

)√
a21 + a22 + a23

√
a21 + a22 + a23 + a24u1u2 − 2a3a4

√
a21 + a22

√
a21 + a22 + a23u1u3

+a3
(
a21 + a22

) (
a21 + a21 + a23

)
cot θ

(
u21 + u22 + u23

)
 dt

β4 =

∫ (
2
√

a21 + a22
(
a21 + a22 + a23

)3/2
u1u3 + a4

(
a21 + a22

) (
a21 + a21 + a23

)
cot θ

(
u21 + u22 + u23

) )
dt

Hence, the unit axis of the curve (β) is

−→a =

(
a1√

a21 + a22 + a23 + a24
,

a2√
a21 + a22 + a23 + a24

,
a3√

a21 + a22 + a23 + a24
,

a4√
a21 + a22 + a23 + a24

)

Example 4.3. For the hyperplane H3(3, 4, 12, 84), from Theorem 4.1, it is easy to see that by putting
u1(t) = 1, u2(t) = t and u3(t) = 1+t we obtain a PH-curve γ : I → H3,γ(t) = (γ1(t), γ2(t), γ3(t), γ4(t))
with the followings:

γ1(t) = −114920
3 t3 − 113620t2 − 32760t− 57460

3

γ2(t) = 2830t3 − 31785t2 − 43680t+ 14365

γ3(t) = −37895t2 − 131040t

γ4(t) = 10985t2 + 21970t
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We can check that ∥γ̇(t)∥ = 143650(t2 + t + 1) which is equal to σ(t) given in Theorem 4.1 as well.
Also by the way of Theorem 4.2, assuming cot θ = 1 we get a PH-helix curve from the curve γ such
as β : I → E4, β(t) = (β1(t), β2(t), β3(t), β4(t)) with the followings:

β1(t) = −109850
3 t3 − 111085t2 − 27690t− 54925

3

β2(t) =
92950

3 t3 − 28405t2 − 36920t+ 46475
3

β3(t) = 6760t3 − 27755t2 − 110760t+ 3380

β4(t) = 47320t3 + 81965t2 + 163930t+ 23660

Furthermore it can be calculated that
∥∥∥β̇(t)∥∥∥ = 143650

√
2(t2+ t+1) that means β is also a PH-curve.

At the same time, since < β̇(t), a⃗ >= 85
√
2

2 for the constant vector a⃗ =
(

3
85 ,

4
85 ,

12
85 ,

84
85

)
, it’s seen that

β is a helical curve in E4.

Example 4.4. γ : I → H4(3, 12, 4, 84, 132),γ(t) = (γ1(t), γ2(t), γ3(t), γ4(t), γ5(t)) is a PH-curve com-
ponents below:

γ1(t) = −58984900t3 − 55462500t2 − 96990100t

γ2(t) = −30149075t2 − 152020800t

γ3(t) = 44238675t3 − 73950000t2 − 6434925t

γ4(t) = 72537725t3 − 99969350t

γ5(t) = −39918125t2 + 79836250t

It can be calculated that ∥γ̇(t)∥ = 221193375(t2 + 1). Also the curve β which is obtained from γ by
using Theorem 3.2 is a PH-helical curve in E5 with the followings

β1(t) = −231712975
4 t3 − 55462500t2 − 375280525

4 t

β2(t) = 4226625t3 − 30149075t2 − 139340925t

β3(t) = 45647550t3 − 73950000t2 − 2208300t

β4(t) = 29586375t3 + 72537725t2 − 11210225t

β5(t) = 46492875t3 − 39918125t2 + 219314875t

Furthermore it can be calculated that
∥∥∥β̇(t)∥∥∥ = 1105966875

4 (t2 + 1) that means β is also a PH-curve.

At the same time, since < β̇(t), a⃗ >= 471
5 for the constant vector a⃗ =

(
3

157 ,
12
157 ,

4
157 ,

84
157 ,

132
157

)
, it’s seen

that β is a helical curve in E5.

5. Conclusion

In this paper, we give a method to obtain PH-curves from arbitrary planar curves. And then we show
that there are PH-helical curves which are obtained from PH-curves that we constructed. We give
the derivation of the method in E4 as an application in details and another PH-helical curve in E5

without detailed computations. Changing the coefficients and the polynomials used in examples, one
can obtain any PH-helical curves whose components are of any degrees. Of course, it’s possible to
extend Theorem 4.1 and and 4.2 to any dimension of En+1. In addition, because we consider only the
rational solutions of (n + 1)-tuples of Pythagorean equation, we can say that it may not be possible
to obtain all PH-helical curves with our method given in the paper. So this is an open problem in the
literature.
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