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Abstract 

 

Plants are sessile organisms affected by changing environment, especially biotic and abiotic stress. Long non-coding RNAs 

(lncRNAs) became prominent as crucial regulators in diverse biological mechanisms, including developmental processes and stress 

responses such as salinity. In this study, salinity related lncRNAs were sequenced and analyzed according to homology based on 

rice and maize lncRNA sequences. After sequencing, 72HASATROOT and 72TARMROOT were identified as 568 bp, additionally, 

72HASATSHOOT and 72TARMSHOOT were also 568 bp according to reference sequence which are the member of the natural-

antisense lncRNA with 565 bp. Besides, 77HASATROOT and 77TARMROOT were identified as 676 and 644 bp, additionally, 

77HASATSHOOT and 77TARMSHOOT were 666 bp according to reference sequence alignment that reference sequence was 667 

bp and the sno-lncRNA member. Sequencing studies demonstrated sequence alterations resulted in secondary structure changes 

which may affect the adaptation of varieties in response to stress. As a conclusion, rapid evolution of lncRNAs may be another force 

for adaptation to changing environment in plants.  
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1. Introduction 

 

Long non-coding RNAs (lncRNAs) are more than 200 

nucleotides (nt), opening a new branch for RNA studies, while 

the eukaryotic genomes were constituted only a small portion of 

the protein-coding genes. lncRNAs mainly has no coding 

sequence (CDS) or open reading frame (ORF) (Ulitsky and 

Bartel, 2013; Chekanova, 2015). lncRNAs are produced 

approximately from whole genome parts, including sense and 

antisense strands of a protein-coding genes, intergenic regions, 

and introns (Mattick and Rinn, 2015). 

The functions of lncRNAs are still mystery and under 

investigation. However, the studies are point to fact that they 

became prominent as important regulators in gene expression at 

the transcriptional, post-transcriptional and post-translational 

levels (Flynn and Chang, 2014; Ren et al., 2021; Statello et al., 

2021). Functional analysis of lncRNAs demonstrated they are 

involved in nuclear structure integrity process by controlling the 

chromatin remodeling complexes and regulating the expression 

of either nearby genes or genes elsewhere in cells (Rinn and 

Chang, 2012; Goff and Rinn, 2015; Song et al., 2019; Grossi et 

al., 2020).  

In recent years, reports on the plant lncRNAs have 

demonstrated they act as key regulatory elements in nearly all 

developmental process, including root organogenesis (Ganguly 

et al., 2021), flowering time (Heo and Sung 2011; Ghorbani et 

al., 2021), photo morphogenesis (Wang et al., 2014), and 

reproduction (Zhang  et  al., 2014; Fang et al., 2019). The studies 

reported plant lncRNAs with diverse biological mechanisms 

played in developmental process, biotic and abiotic stress 

responses (Swiezewski et al., 2009; Heo and Sung, 2011; Wang 

et al., 2014).  

Evolutionary conservation has been considered as useful 

metric for evaluating the functional importance of genes, 

although lack of sequence conservation does not imply the 

opposite (Johnsson et al., 2013; 2014). lncRNAs are found to 
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evolve rapidly based on the comparison of lncRNA exons or 

mRNA untranslated regions or protein-coding sequences or 

(Marques and Ponting, 2009; Young et al., 2012; Ramírez-

Colmenero et al., 2020).  

Interestingly, processing and localization of conserved 

lncRNAs are not conserved, indicating that these processes 

contribute the rapid evolution of function (Ulitsky and Bartel, 

2013; Guo et al., 2020). While some lncRNAs are sytenically 

conserved across multiple species, some of them only share low 

level of sequence homology (Tsagakis et al., 2020). 

Additionally, tissue specificity of lncRNAs is found to be 

conserved compared to mRNAs (Hezroni et al., 2015). 

However, expression levels of the same lncRNAs are distinctly 

regulated in different tissues (Karlik and Gozukirmizi, 2018). 

Additionally, lncRNA promoters are strongly conserved, 

indicating that selective limitations may act at the transcriptional 

level (Necsulea et al., 2014; Tsagakis et al., 2020). 

In our previous study, the expression levels of maize 

(CNT0018772) and rice (CNT0031477) lncRNAs were 

evaluated in four different barley cultivars (Beyşehir 99, Hasat, 

Konevi 98 and Tarm 92) under salt stress conditions. Our study 

showed the expression levels of both lncRNAs were down-

regulated compared to control. However, one of these barley 

cultivars, Tarm92, showed up-regulation for rice (CNT0031477) 

lncRNA (Karlik and Gozukirmizi, 2018). In this study, both 

lncRNAs sequences were retrieved from barley cultivars (Hasat 

and Tarm 92) according to sequence homology. Sequences from 

both root and shoots of lncRNAs were analyzed for secondary 

structure and splicing events to understand the processing of 

RNA. 

 

2. Materials and methods 

 

The PCR products of CNT0018772 and CNT0031477 

were used for sequence analysis and then re-sequenced. By 

using BLASTN, the sequence homology search was conducted 

in barley genome retrieved from the Ensembl website (Ensembl 

Plants, 2021). The nucleotide sequences of lncRNAs of barley 

were submitted to GenBank (accession numbers CNT0018772 

for 72HASATROOT MK369941, 72HASATSHOOT 

MK369942, 72TARMROOT MK369943, 72TARMSHOOT 

MK369944, and CNT0031477 for 72HASATROOT 

MK369945, 72HASATSHOOT MK369946, 72TARMROOT 

MK369947, 72TARMSHOOT MK369948). 

To validate lncRNAs, the sequences were ≥ 200 bp were 

selected as lncRNAs. The NCBI ORF Finder was utilized to 

ensure that transcripts encode no ORFs or incomplete ORFs 

were considered as lncRNA candidates (NCBI, 2021). For 

coding potential evaluation, the Coding Potential Calculator 2 

(CPC2) (Kang et al., 2017) and Coding-Potential Assessment 

Tool (CPAT) (Wang et al., 2013) were used that they are relied 

on the detection of quality, completeness, and sequence 

similarity of the ORF to protein in current protein databases. 

The excision of introns or alternative splicing events (AS) 

were analyzed by ACESCAN2 (Yeo et al., 2004) and NetGene2 

databases (Hebsgaard, 1996). The bioinformatics tools were 

used to identify to exonic/intronic splicing enhancers. ESE 

Finder 3 was used to define (ESE Finder, 2021) putative ESEs 

associated with common serine/arginine-rich splicing factors 

(Cartegni, 2003; Smith et al., 2006). The secondary structure of 

lncRNAs were predicted by using Vienna RNA package 

RNAfold bioinformatics tool (Lorenz et al., 2011; RNAfold, 

2021).  

3. Results 

 

To obtain barley lncRNA sequences, PCR analysis was 

performed using probe-primers of CNT0018772 and 

CNT0031477 indicated in probe design and used Hasat and 

Tarm cDNA as a template. To validate the two new putative 

barley lncRNA, PCR products were re-sequenced, which were 

~120 bp and ~95 bp for CNT0018772 (maize) and CNT0031477 

(rice), respectively. According to sequencing results, the 

sequence homology search was conducted to isolate new 

lncRNAs in barley genome retrieved from the Ensembl website 

by using BLASTN (Altschul et al., 1990; Ensembl Plants, 2021). 

After re-sequencing, homolog sequences of maize CNT0018772 

lncRNAs were obtained as 1370 and 1393 bp in. Hasat for roots 

and shoots respectively, additionally, as 1303 and 1350 bp in. 

Tarm for roots and shoots, respectively. However, re-sequencing 

results showed that homolog sequence of rice CNT0031477 

lncRNAs were found to be as 2496 and 1451 bp in. Hasat for 

roots and shoots respectively, additionally, as 1378 and 1345 bp 

in. Tarm for roots and shoots, respectively. Also, coding 

potential of the re-sequenced regions of Hasat and Tarm barley 

lncRNas were analyzed by using CPC2 (Kang et al., 2017) and 

CPAT (Wang et al., 2013) programs, resulting in no coding 

potential. 

. 

4. Discussion 

 

The evolutionary history of lncRNAs may contribute to 

understand their functionality. Plenty of lncRNAs exhibited 

rapid evolution process in terms of sequence and expression 

levels, while tissue specificities were often conserved. However, 

evolutionarily conserved lncRNAs tend to demonstrate stable 

and critical functions across species, despite their low number 

(Necsulea et al., 2014; Andergassen et al., 2019). Studying with 

lncRNAs includes serious research challenges, such as the lack 

of the strong statistical signals associated with protein coding 

genes, ORF, G+C content and codon-usage biases, also the lack 

of the 2D or 3D structure information (Rivas and Eddy, 2000).  

Recently, LncRNA:DNA triplex formation was used to 

reveal the general mechanism of lncRNAs directing gene 

regulation and mediating 3D chromatin organization (Soibam 

and Zhamangaraeva, 2021). In this study, two barley lncRNAs 

were re-sequenced which were homologous with maize and rice 

lncRNAs. Barley lncRNAs CNT0018772 for—MK369941, 

MK369942, MK369943 and MK369944— revealed that these 

sequences were associated with barley CNT20168342 lncRNA 

according to CANTATAdb (Szcześniak et al., 2016). Obtained 

re-sequencing data CNT20168342 were resulted with 1370 

(MK369941), 1393 (MK369942), 1303 (MK369943) and 1350 

(MK369944) bp, while CNT20168342 lncRNA was 443 bp. 

Additionally, re-sequencing studies demonstrated MK369945, 

MK369946, MK369947 and MK369948, which are homolog 

with rice lncRNA CNT0031477 were found to be 2496, 1451, 

1378 and 1345 bp, respectively. Homology and RNA processing 

analysis showed that both these two lncRNAs were possibly 

under processing, indicating that these lncRNAs undergo the 

excision of introns or AS due to ACESCAN2 (Yeo et al., 2004) 

and NetGene2 databases (Hebsgaard, 1996). Characterization of 

splicing enhancers of these two lncRNAs were exhibited in Fig. 

1. Studies indicated that AS is a mechanism which is now not 

only creating multiple protein isoforms. Moreover, AS produces 

and regulates small and long non-coding RNAs (Ulitsky and 

Bartel, 2013).  After  analyzing  of  sequences  72HASATROOT 
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Fig. 1. Characterization of splicing enhancers of re-sequenced barley lncRNAs. (A) Representative display of ESE elements in 72 barley 

lncRNAs sequences, (B) Representative display of ESE elements in 77 barley lncRNAs sequences. 

Fig. 2. The re-sequencing analysis of CNT0018772 comparing with reference barley genome (The letters in dark rectangles are highly 

conserved, while the letters in green rectangles are not conserved). 

 

Fig. 3. The re-sequencing analysis of CNT0031477 comparing with reference barley genome (The letters in dark rectangles are highly 

conserved). 
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and 72TARMROOT were identified as 568 bp, additionally, 

72HASATSHOOT and 72TARMSHOOT were also 568 bp 

according to reference sequence alignment that reference 

sequence (chr2H:21427685:21430889:-1) was 565 bp. Also, 

sequence alignment with reference barley genome demonstrated 

that these lncRNA was not conserved and may have rapid 

evolutionary turnover in barley genotypes (Fig. 2). However, the 

majority of lncRNAs can be transcribed from different part of 

the genome, including intergenic regions, promoters, enhancers 

or even introns (Guttman et al., 2009; Khalil et al., 2009; Yang 

et al., 2011; Salzman et al., 2012), indicating that this event may 

be regulated by alternative forms of lncRNAs or different 

lncRNA interactions which needs further studies to validate. 

Regulation of CNT0018772 lncRNA by AS may influence gene 

expression under salinity stress conditions according to our 

previous gene expression study results. Our previous expression 

studies demonstrated that expression levels of CNT0018772 

lncRNA were down- regulated. After sequence analysis, 

77HASATROOT and 77TARMROOT were identified as 676 

and 644 bp, additionally, 77HASATSHOOT and 

77TARMSHOOT were 666 bp according to reference sequence 

alignment that reference sequence 

(chr5H:612797513:612800868:-1) was 667 bp. Also, sequence 

alignment with reference barley genome demonstrated that only 

small part of this lncRNA was conserved (Fig. 3), suggesting 

these lncRNA was not conserved, and may have rapid 

evolutionary turnover in barley genotypes. Besides in our 

previous expression studies, expression analysis of 

CNT0031477 lncRNA indicated these lncRNA could be 

expressed both  shoot and root tissues under 150 mM salt 

treatment and control condition, suggesting that these lncRNA 

may not be tissue specific (Karlik and Gozukirmizi, 2018).  

In plants, as more forms and functions of AS are 

considered to modulate diverse biological mechanisms, 

including flowering time, circadian rhythms, and response to 

stress (Simpson et al., 2016; Ling et al., 2017; Verhage et al., 

2017; Zhang and Xiao, 2018; Dikaya et al., 2021). lncRNAs in 

plants influence the gene expression and regulation both in 

direct and indirect ways. For example, COLDAIR effects 

flowering time based on chromatin state and structure or 

APOLO effects on auxin action by chromatin looping (Heo and 

Sung, 2011; Ariel et al., 2014). 

In our previous study, expression levels of maize lncRNA 

CNT0018772 interacting with maize 40S ribosomal protein S6 

(RPS6) (Szcześniak et al., 2016; Karlik and Gozukirmizi, 2018), 

which phosphorylates eukaryotic ribosomes, initiating the 

translation was observed. Sequence analysis of re-sequenced 

these barley lncRNA was located on chr2H:108632412-

108644592 (-), while this barley genome region comprises 

HORVU2Hr1G010890 and HORVU2Hr1G010870 protein-

coding genes homolog with 40S ribosomal protein S6 (RPS6) in 

barley, suggesting these barley lncRNAs may be antisense 

lncRNA which may also be paired with RPS6 as a natural 

antisense- coding protein pairs lncRNA (NAT-lncRNA). This 

study suggests that CNT0018772 lncRNA may regulate RPS6 

expression by AS based on RNA-RNA interaction database 

(Szcześniak et al., 2016). Moreover, homology analysis among 

two —Hasat and Tarm— and Morex revealed that these barley 

lncRNA exhibited low sequence conservation. Diederichs 

(2014) evaluated the lncRNA evolution at four dimensions, 

including sequence, structure, function and syntenic expression 

adds up to lncRNA conservation. Although there are a few 

experimental cases showed sequence conservation levels of 

lncRNAs, most lncRNAs demonstrated weak or untraceable 

primary sequence conservation (Nitsche and Stadler, 2017; 

Tavares et al., 2019), suggesting that secondary structures 

among lncRNA homolog may be more conserved than the 

sequences. 

Chen and Carmichael groups (2009; 2010) identified a 

class of lncRNAs named as small nucleolar RNA-related long 

noncoding RNAs (sno-lncRNAs) which are produced from 

introns and have a unique structure (Yin et al., 2012). snoRNAs 

are conserved nuclear RNAs (about 70-200 nt), modifying small 

nuclear (snRNAs) or ribosomal RNA (rRNA) or involving in the 

processing of rRNA during ribosome subunit maturation (Kiss, 

2001; Boisvert et al., 2007; Matera et al., 2007). snoRNAs are 

classified into two main groups: box C/D and box H/ACA 

snoRNAs. The processing of snoRNAs differs based on the 

sequence content among introns (the number of encoded 

snoRNA genes) that some introns are used to produce lncRNAs, 

whereas others are used to generate snoRNAs (Wilusz, 2016). 

Re-sequencing analysis of CNT0031477 lncRNA revealed that 

these lncRNAs were at chr5H:612799183- 612799474 (-) and 

chr5H:612921653-612921944 (+). Additionally, according to 

Ensemble data, chr5H:612799183-612799474 (-) genome 

region contains one transcript named as 

HORVU5Hr1G101570.1 which is no protein coding gene, and 

there snoRNAs (ENSRNA050017778, ENSRNA050017798 

and ENSRNA050017792). Chr5H:612921653-612921944 (+) 

genome region was also found to be contained one transcript 

named as HORVU5Hr1G101650.2 and three snoRNAs 

(ENSRNA049476433, ENSRNA049476461 and 

ENSRNA049476383), indicating these lncRNA might be a 

member of sno-lncRNA class. To date, at least 19 tissue- and 

species-specific sno-lncRNAs have been determined in different 

studies (Zhang et al., 2014). In human chromosome 15, most 

known sno-lncRNA, which regulate AS and many other post-

transcriptional events, is produced from the 15q11–q13 region 

is exposed to genomic imprinting and involved in Prader–Willi 

Syndrome (PWS) (Sahoo et al. 2008; Yin et al., 2012). However, 

sno-lncRNAs have not been identified yet and, their functions 

are still unknown. Moreover, sequence analysis among other 

lncRNAs have also uncovered that these sno-lnRNAs are semi-

conserved on the contrary the idea of most lncRNAs undergo 

rapid sequence evolution and may play important roles (Ulitsky 

et al., 2011; Ramírez-Colmenero et al., 2020). Due to their tissue 

specific expression nature, products of sno-lncRNAs, which 

could be snoRNA or lncRNA, should be investigated in further 

studies, also depending on condition matter. 

To date, there has a passing acquaintance with lncRNA’s 

secondary structure and the interaction between structure and 

function. In mammals, conservation of lncRNAs in primary 

sequence, and gene structure are rare at orthologous, indicating 

lncRNAs undergone rapid turnover during evolution (Kutter et 

al., 2012; Wood et al., 2013; Ramírez-Colmenero et al., 2020). 

Some mutations could favor evolutionarily positive selection by 

stabilizing RNA structures within lncRNAs. However, Parallel 

Analysis of RNA Structures (PARS) study showed that 

physiological stimuli mostly altered RNA structures in yeast 

(Wan et al., 2012). While they compared the RNA structure 

stability, ncRNAs including, rRNA, tRNA, snoRNA and 

snRNA exhibited more stability than protein coding mRNAs. In 

this study, Vienna RNA package RNAfold bioinformatics tool 

was used to create the predicted secondary structure of eight 

lncRNA transcripts sequences (Fig. 4). The results demonstrated 

primary   sequence   alterations  resulted  in   secondary  structure 
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Fig. 4. The re-sequencing analysis of CNT0031477 comparing with reference barley genome. The letters in dark rectangles are highly conserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

changes. As known, these secondary structures can affect the 

higher- order of tertiary structures which can be associated with 

the interaction of RNA-binding proteins (RBPs), direct catalysis 

functions, formation of scaffolds, and regulation of 

posttranscriptional modifications (Cruz and Westhof, 2009; Qi 

et al., 2021). Interestingly, RNA secondary structure may be a 

significant mark for sensing a signal. Specifically, RNA folding 

can be conformationally altered in response to fluctuations in 

temperature, covalently modified nucleotides, cellular 

osmolarity or other signals (Narberhaus, 2010; Kortmann and 

Narberhaus, 2012; Qi et al., 2021), indicating that secondary 

structure of these lncRNAs studied in this study may be altered 

by sensing of osmatic stress. However, I determined the 

expression levels of CNT0018772 and CNT0031477 were found 

to be down-regulated in our previous study, suggesting that 

secondary structure alterations may not influence functions of 

these lncRNAs.  

Understanding the structure of lncRNAs which are 

considered as emerging regulatory elements will be crucial to 

fully comment the evolution, form, and function (Johnsson et al., 

2014; Fanucchi et al., 2019; Soibam and Zhamangaraeva, 2021). 

Identification of conserved lncRNAs is one of the 

problems for evaluating the origin of the lncRNAs which is still 

unknown. According to low level of sequence conservation, 

lncRNAs may not evolve by using the gene duplication event 

in comparison with protein-coding genes. However, it is 

assumed that protein-coding genes lose their original function 

and become lncRNAs (Hezroni et al., 2017; Tsagakis et al., 

2020). Another possibility of emerging lncRNAs is non-coding 

parts of the genome such as promoters might eventually gain 

function as a lncRNA (Tsagakis et al., 2020). However, plants 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are sessile organisms and need to cope with changing 

environmental conditions throughout their life cycles. 

Genotypic and phenotypic plasticity are the main components 

for coping with this variability and unpredictability of stress 

occurrence (Hilker and Schmülling, 2019; Ramírez-Colmenero 

et al., 2020). Rapid evolution of lncRNAs may be another force 

for adaptation to changing environment in plants. Changing the 

regulation of themselves and playing important roles in gene 

regulation may contribute the adaptation of plants in response 

stress. 

 

4. Conclusion 

 

RNA processing analysis in this study indicated lncRNAs 

undergone rapid evolution, however, similarly the function of 

most lncRNAs remains largely mystery. Today, the functional 

characterization of lncRNAs is still challenging. Studies 

indicated lncRNA functions basically depend on structure and 

protein interaction repertoire of lncRNAs. Our findings suggest 

that RNA processing of lncRNAs is important for determining 

the functions of lncRNAs under control and stress conditions. 
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