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Abstract

This paper is concerned with a stability result for a Kirchhoff beam equation with variable
exponents and time delay. The exponential and polynomial stability results are proved based
on Komornik’s inequality.

1. Introduction

Let Ω⊂ Rn be a bounded domain with sufficiently smooth boundary ∂Ω. For (x, t) ∈Ω×R+ we consider a Kirchhoff beam equation with
variable exponents and time delay given by

utt +∆
2u−M

(
‖∇u‖2

)
∆u+µ1ut (x, t) |ut |m(x)−2 (x, t)+µ2ut (x, t− τ) |ut |m(x)−2 (x, t− τ) = 0, (1.1)

with Dirichlet boundary condition

u(x, t) = 0 in ∂Ω× [0,∞) , (1.2)

and initial data

u(x,0) = u0 (x) in Ω, (1.3)

ut (x,0) = u1 (x) in Ω, (1.4)

ut (x, t− τ) = f0 (x, t− τ) in Ω× (0,τ) , (1.5)

where τ > 0 is time delay term, µ1 is a positive constant, µ2 is a real number. M (s) is a positive C1-function like M (s) = a+bsγ for s≥ 0,
specially we take a,b = 1 and γ > 0. The functions u0, u1, f0 are the initial data to be specified later.
The variable exponent m(·) is a measurable function on Ω satisfying

2≤ m− ≤ m(x)≤ m+ ≤ m∗, where m− = ess infm(x)
x∈Ω

, m+ = esssupm(x)
x∈Ω

e m∗ =
2(n−2)

n−4
if n≥ 5. (1.6)

The problems with variable exponents arise in many branches in sciences such as nonlinear elasticity theory, electrorheological fluids and
image processing [7,8,26]. Time delay often appears in many practical problems such as thermal, economic phenomena, biological, chemical
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and physical [12].
One of the first mathematical analysis of beam equation for Ω = (0,L)⊂ R, L > 0,

utt +uxxxx−M
(∫ L

0
|ux|2 dx

)
uxx = 0 (1.7)

was done by Ball (1973) [6]. Tucsnak (1996) [29] extended (1.7) for the beam equation in Ω⊂ Rn

utt +∆
2u+M(||∇u||2)(−∆u) = 0, (1.8)

where

||∇u||2 =:
∫

Ω

|∇u|2 dx.

The problem (1.8) is called of Kirchhoff type in reason of the one-dimensional nonlinear equation (1.9) proposed by Kirchhoff [13] (1883),

∂ 2u
∂ t2 −

(
τ0

m
+

k
2mL

∫ L

0

(
∂u
∂x

)2
dx

)
∂ 2u
∂x2 = 0, (1.9)

where τ0 is the initial tension, m the mass of the string and k the Young’s modulus of the material of the string. This model, in connection with
some problems in nonlinear elasticity, describes small vibrations of a stretched string of the length L when only the transverse component of
the tension is considered.
This kind of problem (1.9) is obtained from the model (1.10), first proposed by Woinowsky-Krieger [30] (1950), for the transverse motion of
an extensible beam of the length L whose ends are attached at a fixed distance

∂ 2u
∂ t2 +

EI
ρ

∂ 4u
∂x4 +

(
H
ρ
+

EA
2ρL

∫ L

0
|∂u
∂x
|2dx

)(
−∂ 2u

∂x2

)
= 0, (1.10)

where L, E, I, ρ , H and A denote, respectively, the length of the beam in the rest position, the Young’s modulus, the cross-sectional moment
of inertia, the mass density, the tension in the rest position, and the cross-sectional area.
Antontsev et. al. [3], considered the nonlinear plate (or beam) Petrovsky equation with variable exponents as follows:

utt +∆
2u−∆ut + |ut |p(x)−2 ut = |u|q(x)−2 u. (1.11)

The authors, by using the Banach contraction mapping principle, obtained the local weak solutions. Also, they showed that the solution is
global if p(·)≥ q(·). Moreover, the authors proved that a solution with negative initial energy and p(·)< q(·) blows up in finite time.
In [4], Antontsev et al., considered the Timoshenko-type equation with variable exponents as follows:

utt +∆
2u−M

(
‖∇u‖2

)
∆u+ |ut |p(x)−2 ut = |u|q(x)−2 u. (1.12)

The authors proved the local existence of the solution. Moreover, they investigated the nonexistence of solutions for negative initial energy.
In [5], Antontsev et al., studied the nonlinear p(x)-Laplacian equation with time delay and variable exponents as follows:

utt −∆p(x)u+µ1ut (x, t) |ut |m(x)−2 (x, t)+µ2ut (x, t− τ) |ut |m(x)−2 (x, t− τ) = bu |u|q(x)−2 . (1.13)

The authors proved the blow up of solutions. Then, by applying an integral inequality due to Komornik, they obtained the decay result.
There are few results on Kirchhoff beam equation with delay. In [10] was considered the following nonlinear viscoelastic Kirchhoff beam
equation with a time delay term in the internal feedback, given by

utt +∆
2u−divF (∇u)−σ(t)

∫ t

0
g(t− s)∆2u(s)ds+µ1ut |ut |m−1 (x, t)+µ2ut |ut |m−1(x, t− τ) = 0,

where Ω⊂ Rn,(n≥ 1) is a bounded domain with smooth boundary ∂Ω. The function u = u(x, t) is the transverse displacement, and σ(t)
and g(t) are positive functions defined on R+. µ1,µ2 are positive constants and τ > 0 represents the time delay. Under suitable assumptions,
the authors established the general rates of energy decay by using the energy perturbation method.
Kafini and Messaoudi [16], studied the equation with variable exponents and delay term as follows:

utt −∆u+µ1ut (x, t) |ut |m(x)−2 (x, t)+µ2ut (x, t− τ) |ut |m(x)−2 (x, t− τ) = bu |u|p(x)−2 . (1.14)

They established the decay estimates and global nonexistence results for the equation (1.14).
Santos et al. [27], investigated the existence and the decay of the beam equation as follows:

utt +∆
2u−M

(
‖∇u‖2

)
∆u−

∫ t

0
h(t− s)∆u(s)ds+αut = 0, (1.15)

in a non-cylindrical domain. Recently, some other authors investigate hyperbolic type equations (see [11, 21–25, 28]).
Our aim in this work is to prove the stability of solutions for the Kirchhoff beam equation with the delay term (µ2ut (x, t− τ)) and variable
exponents which make the problem more different than from those considered in the literature. This manuscript extends the result of [16] to
Kirchhoff beam equation.
The paper is organized as follows: In Section 2, the definition of the variable exponents Sobolev and Lebesgue spaces are stated. In Section
3, we obtain the stability result.
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2. Preliminaries

In this section, we present some material needed for the statement and proof of our results. In what follows, we present some properties
related to W 1,p(·)(Ω) Sobolev spaces with variable exponents, see [2, 9, 14]. The spaces Lp(·)(Ω) are special cases of the generalized Orlicz
Spaces originated by Nakano [19] and developed by Musielak [17] and Orlicz [18]. The study of these spaces have been stimulated by
problems of elasticity, fluid dynamics, calculus of variations and differential equations.
Let p : Ω→ [1,∞) be a measurable function. We define the variable exponent Lebesgue space with variable exponent p(·) by:

Lp(·) (Ω) =

{
u : Ω→ R; measurable in Ω :

∫
Ω

|u|p(·) dx < ∞

}
,

with a Luxemburg-type norm

‖u‖p(·) = inf
{

λ > 0 :
∫

Ω

∣∣∣ u
λ

∣∣∣p(x) dx≤ 1
}
.

Equipped with this norm, Lp(·) (Ω) is a Banach space (see [8]).
The relation between the modular

∫
Ω
| f |p(x) dx and the norm follows from

min(‖ f‖p−

p(x), ‖ f‖p+

p(x))≤
∫

Ω

| f |p(x) dx≤max(‖ f‖p−

p(x),‖ f‖p+

p(x)).

In the case p(x) = const > 1, these inequalities transform into equalities. For all f ∈ Lp(x)(Ω), g ∈ Lp′(x)(Ω) with

p(x) ∈ (1,∞), p′(x) =
p(x)

p(x)−1

the generalized Hölder inequality holds, that is,

Lemma 2.1. [1] (Hölder’s inequality) Let p,q,s≥ 1 be measurable functions defined on Ω and

1
s(y)

=
1

p(y)
+

1
q(y)

, for a.e. y ∈Ω,

satisfies. If f ∈ Lp(·) (Ω) and g ∈ Lq(·) (Ω), then, f g ∈ Ls(·) (Ω) and

‖ f g‖s(·) ≤ 2‖ f‖p(·) ‖g‖q(·) .

Next, we define the variable-exponent Sobolev space W 1,p(·) (Ω) as follows:

W 1,p(·) (Ω) =
{

u ∈ Lp(·) (Ω) : ∇u exists and |∇u| ∈ Lp(·) (Ω)
}
.

Variable exponent Sobolev space with respect to the norm:

‖u‖1,p(·) = ‖u‖p(·) +‖∇u‖p(·)

is a Banach space. The space W 1,p(·)
0 (Ω) is defined as the closure of C∞

0 (Ω) in W 1,p(·) (Ω). For u ∈W 1,p(·)
0 (Ω), we can define an equivalent

norm:

‖u‖1,p(·) = ‖∇u‖p(·) .

The dual of W 1,p(·)
0 (Ω) is defined as W−1,p′(·)

0 (Ω), similar to the usual Sobolev spaces, where 1
p(·) +

1
p′(·) = 1.

We also assume that:

|m(x)−m(y)| ≤ − B
log |x− y|

for all x,y ∈Ω, (2.1)

B > 0 and 0 < δ < 1 with |x− y|< δ . (log-Hölder condition)

Lemma 2.2. [2] (Poincarė inequality) Suppose that p(·) satisfies (2.1) and let Ω be a bounded domain of Rn. Then,

‖u‖p(·) ≤ c‖∇u‖p(·) for all u ∈W 1,p(·)
0 (Ω) ,

where c = c
(

p−, p+, |Ω|
)
> 0.

Remark 2.3. We denote by c various positive constants which may be different at different occurrences. Also, throughout this paper, we use
the embedding

H2
0 (Ω) ↪→ H1

0 (Ω) ↪→ Lp (Ω)

which implies

‖u‖p ≤C‖∇u‖ ≤C‖∆u‖ ,

where 2≤ p < ∞ (n = 1,2), 2≤ p≤ 2n
n−2 (n≥ 3).
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3. Stability of solutions

In this section, we get the stability results for the problem (3.1)-(3.7), with the exponent m(·).
Similar to the work of [20], we introduce a new variable

z(x,ρ, t) = ut (x, t− τρ) , x ∈Ω, ρ ∈ (0,1) , t > 0;

hence, we have

τzt (x,ρ, t)+ zρ (x,ρ, t) = 0, x ∈Ω, ρ ∈ (0,1) , t > 0.

Consequently, problem (1.1)- (1.5) is transformed to:

utt +∆
2u−M

(
‖∇u‖2

)
∆u+µ1ut (x, t) |ut (x, t)|m(x)−2 +µ2z(x,1, t) |z(x,1, t)|m(x)−2 = 0, in Ω× (0,∞) , (3.1)

τzt (x,ρ, t)+ zρ (x,ρ, t) = 0 in Ω× (0,1)× (0,∞) , (3.2)

with Dirichlet boundary condition

u(x, t) = 0 on ∂Ω× [0,∞), (3.3)

z(x,ρ, t) = 0 on ∂Ω× [0,1)× [0,∞), (3.4)

and initial data

u(x,0) = u0 (x) in Ω, (3.5)

ut (x,0) = u1 (x) in Ω, (3.6)

z(x,ρ,0) = f0 (x,−ρτ) in Ω× (0,1) . (3.7)

Similar to [16] we can define the strong solution as follows:

Definition 3.1. Fix T > 0. We call (u,z) a strong solution of (3.1)-(3.7) if

u ∈W 2,∞([0,T );L2(Ω))∩W 1,∞([0,T );H2
0 (Ω))∩L∞([0,T );H2(Ω)∩H2

0 (Ω)),

ut ∈ Lm()̇(Ω)× [0,T )),

z ∈W 1,∞([0,1]× [0,T );L2(Ω))∩L∞([0,1];Lm()̇(Ω)∩[0,T )),

and (u,z) satisfies the initial data and (3.1) in the following sense

∫
Ω

[utt +∆
2u−M

(
‖∇u‖2

)
∆u+µ1ut (x, t) |ut (x, t)|m(x)−2 +µ2z(x,1, t) |z(x,1, t)|m(x)−2]vdx = 0,∫

Ω

[τzt (x,ρ, t)+ zρ (x,ρ, t)]wdx = 0,

for a.e. t ∈ [0, t) and for (v,w) ∈ H1
0 (Ω)∩L2(Ω).

In order to state our main result, we define the “modified” energy functional of (3.1) is given by

E (t) =
1
2
‖ut‖2 +

1
2
‖∆u‖2 +

1
2
‖∇u‖2 +

1
2(γ +1)

‖∇u‖2(γ+1)+
∫ 1

0

∫
Ω

ξ (x) |z(x,ρ, t)|m(x)

m(x)
dxdρ , (3.8)

for t ≥ 0, where ξ is a continuous function yields

τ |µ2|(m(x)−1)< ξ (x)< τ (µ1m(x)−|µ2|) , x ∈Ω. (3.9)

The following lemma gives that, E (t) is decreasing under the condition µ1 > |µ2|.

Lemma 3.2. Let (u,z) be a solution of (3.1)-(3.7). Then, there exists some C0 > 0 such that

E ′ (t)≤−C0

∫
Ω

(
|ut |m(x)+ |z(x,1, t)|m(x)

)
dx≤ 0. (3.10)

Proof. Multiplying (3.1) by ut , integrating over Ω, then, multiplying (3.2) by 1
τ

ξ (x) |z|m(x)−2 z and integrating over Ω× (0,1), summing up,
we obtain

d
dt

[
1
2
‖ut‖2 +

1
2
‖∆u‖2 +

1
2
‖∇u‖2 +

1
2(γ +1)

‖∇u‖2(γ+1)+
∫ 1

0

∫
Ω

ξ (x) |z(x,ρ, t)|m(x)

m(x)
dxdρ

]

=−µ1

∫
Ω

|ut |m(x) dx− 1
τ

∫
Ω

∫ 1

0
ξ (x) |z(x,ρ, t)|m(x)−2 zzρ (x,ρ, t)dρdx−µ2

∫
Ω

utz(x,1, t) |z(x,1, t)|m(x)−2 dx. (3.11)
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The last two terms of the right-hand side of (3.11) can be estimated as follows:

−1
τ

∫
Ω

∫ 1

0
ξ (x) |z(x,ρ, t)|m(x)−2 zzρ (x,ρ, t)dρdx =−1

τ

∫
Ω

∫ 1

0

∂

∂ρ

(
ξ (x) |z(x,ρ, t)|m(x)

m(x)

)
dρdx

=
1
τ

∫
Ω

ξ (x)
m(x)

(
|z(x,0, t)|m(x)−|z(x,1, t)|m(x)

)
dx

=
∫

Ω

ξ (x)
τm(x)

|ut |m(x) dx−
∫

Ω

ξ (x)
τm(x)

|z(x,1, t)|m(x) .

By using Young’s inequality, q =
m(x)

m(x)−1 and q′ = m(x) for the last term, we get

|ut | |z(x,1, t)|m(x)−1 ≤ 1
m(x)

|ut |m(x)+
m(x)−1

m(x)
|z(x,1, t)|m(x) .

Consequently, we obtain

−µ2

∫
Ω

utz |z(x,1, t)|m(x)−2 dx≤ |µ2|
(∫

Ω

1
m(x)

|ut (t)|m(x) dx+
∫

Ω

m(x)−1
m(x)

|z(x,1, t)|m(x) dx
)

.

Thus,

dE (t)
dt

≤−
∫

Ω

[
µ1−

(
ξ (x)

τm(x)
+
|µ2|
m(x)

)]
|ut (t)|m(x) dx−

∫
Ω

(
ξ (x)

τm(x)
− |µ2|(m(x)−1)

m(x)

)
|z(x,1, t)|m(x) dx.

As a result, for all x ∈Ω, the relation (3.9) satisfies

f1 (x) = µ1−
(

ξ (x)
τm(x)

+
|µ2|
m(x)

)
> 0, and f2 (x) =

ξ (x)
τm(x)

− |µ2|(m(x)−1)
m(x)

> 0.

Since m(x), and hence ξ (x), is bounded, we infer that f1 (x) and f2 (x) are also bounded. Hence, if we define

C0 (x) = min{ f1 (x) , f2 (x)}> 0 for any x ∈Ω,

and take C0 (x) = inf
Ω

C0 (x), so C0 (x)≥C0 > 0. Therefore,

E ′ (t)≤−C0

[∫
Ω

|ut (t)|m(x) dx+
∫

Ω

|z(x,1, t)|m(x) dx
]
≤ 0.

We need the following lemmas before obtain our stability results.

Lemma 3.3. (Komornik, [15]) Let E : R+→ R+ be a nonincreasing function and suppose that there are constants σ , ω > 0 such that∫
∞

s
E1+σ (t)dt ≤ 1

Ω
Eσ (0)E (s) = cE (s) , ∀s > 0.

Then, we have{
E (t)≤ cE (0)(1+ t)1/σ if σ > 0,
E (t)≤ cE (0)e−ωt if σ = 0.

for all t ≥ 0.

Lemma 3.4. [16] The functional

F (t) = τ

∫ 1

0

∫
Ω

e−ρτ
ξ (x) |z(x,ρ, t)|m(x) dxdρ

satisfies

F ′ (t)≤
∫

Ω

ξ (x) |ut |m(x) dx− τe−τ

∫ 1

0

∫
Ω

ξ (x) |z(x,ρ, t)|m(x) dxdρ

along the solution of (3.1)-(3.7).

Theorem 3.5. Assume that conditions (1.6) and (2.1) are satisfied. Then, there exist two constants c, α > 0 independent of t such that any
global solution of (3.1)-(3.7) satisfies,{

E (t)≤ ce−αt if m(·) = 2,
E (t)≤ cE (0)(1+ t)2/(m+−2) if m+ > 2.
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Proof. We multiply the equation (3.1) by uEq (t), for q > 0 to be specified later, and integrate over Ω× (s,T ), s < T , to have

∫ T

s
Eq (t)

∫
Ω

[
uutt +u∆2u−u∆u−‖∇u‖2γ u∆u+µ1uut |ut |m(x)−2 +µ2uz(x,1, t) |z(x,1, t)|m(x)−2

]
dxdt = 0,

which implies that

∫ T

s
Eq(t)

∫
Ω

(
d
dt (uut)−u2

t + |∆u|2 + |∇u|2 +‖∇u‖2γ |∇u|2 +µ1uut (x, t) |ut (x, t)|m(x)−2 +µ2uz(x,1, t) |z(x,1, t)|m(x)−2
)

dxdt = 0.

(3.12)

Recalling the definition of E (t), given in (3.8) adding and subtracting some terms and using the relation

d
dt

(
Eq (t)

∫
Ω

uutdx
)
= qEq−1 (t)E ′ (t)

∫
Ω

uutdx+Eq (t)
d
dt

∫
Ω

uutdx,

the equation (3.12) satisfies

2
∫ T

s
Eq+1 (t)dt =−

∫ T

s

d
dt

(
Eq (t)

∫
Ω

uutdx
)

dt +q
∫ T

s
Eq−1 (t)E ′ (t)

∫
Ω

uutdxdt

− γ

γ +1

∫ T

s
Eq
∫

Ω

‖∇u‖2γ
∣∣∣∇u2

∣∣∣dxdt +2
∫ T

s
Eq (t)

∫
Ω

u2
t dxdt−µ1

∫ T

s
Eq (t)

∫
Ω

uut |ut |m(x)−2 dxdt

−µ2

∫ T

s
Eq (t)

∫
Ω

uz(x,1, t) |z(x,1, t)|m(x)−2 dxdt +2
∫ T

s
Eq (t)

∫ 1

0

∫
Ω

ξ (x) |z(x,ρ, t)|m(x)

m(x)
dxdρdt. (3.13)

Next, we estimate the parts of the right side in inequality (3.13), respectively.
The first term is estimated as follows:∣∣∣∣−∫ T

s

d
dt

(
Eq (t)

∫
Ω

uutdx
)

dt
∣∣∣∣= ∣∣∣∣Eq (s)

∫
Ω

uut (x,s)dx−Eq (T )
∫

Ω

uut (x,T )dx
∣∣∣∣

≤ 1
2

Eq (s)
[∫

Ω

u2 (x,s)dx+
∫

Ω

u2
t (x,s)dx

]
+

1
2

Eq (T )
[∫

Ω

u2 (x,T )dx+
∫

Ω

u2
t (x,T )dx

]
≤ 1

2
Eq (s)

[
Cp ‖∆u(s)‖2

2 +2E (s)
]
+

1
2

Eq (T )
[
Cp ‖∆u(T )‖2

2 +2E (T )
]

≤ Eq (s)
[
CpE (s)+E (s)

]
+Eq (T )

[
CpE (T )+E (T )

]
,

where Cp is the Poincare’s constant. Because of E (t) is nonincreasing, we infer that∣∣∣∣−∫ T

s

d
dt

(
Eq (t)

∫
Ω

uutdx
)

dt
∣∣∣∣≤ cEq+1 (s)≤ cEq (0)E (s)≤ cE (s) . (3.14)

In similar way, we handle the term∣∣∣∣q∫ T

s
Eq−1 (t)E ′ (t)

∫
Ω

uutdxdt
∣∣∣∣≤−q

∫ T

s
Eq−1 (t)E ′ (t)

[
CpE (T )+E (T )

]
dt

≤−c
∫ T

s
Eq (t)E ′ (t)≤ cEq+1 (s)≤ cE (s) . (3.15)

We estimate the other term as follows:∣∣∣∣− γ

γ +1

∫ T

s
Eq
∫

Ω

‖∇u‖2γ
∣∣∣∇u2

∣∣∣dxdt
∣∣∣∣=
∣∣∣∣∣−2γ

∫ T

s
Eq

(
‖∇u‖2γ

2(γ +1)

∫
Ω

∣∣∣∇u2
∣∣∣dx

)
dt

∣∣∣∣∣
=

∣∣∣∣∣−2γ

∫ T

s
Eq

(
‖∇u‖2(γ+1)

2(γ +1)

)
dt

∣∣∣∣∣
≤
∣∣∣∣−2γ

∫ T

s
Eq (E (t))dt

∣∣∣∣
≤C∗

∫ T

s
Eq+1 (t)dt

≤C∗E (s) (3.16)

where C∗ is a generic constant.
To treat the other term, we set

Ω+ = {x ∈Ω, |ut (x, t)| ≥ 1} and Ω− = {x ∈Ω, |ut (x, t)|< 1} .
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Then, by using the Hölder’s and Young’s inequalities, we get∣∣∣∣∫ T

s
Eq (t)

∫
Ω

u2
t dxdt

∣∣∣∣= ∣∣∣∣∫ T

s
Eq (t)

[∫
Ω+

u2
t dx+

∫
Ω−

u2
t dx
]

dt
∣∣∣∣

≤ c
∫ T

s
Eq (t)

[(∫
Ω+

|ut |m
−

dx
)2/m−

+

(∫
Ω−
|ut |m

+

dx
)2/m+

]
dt

≤ c
∫ T

s
Eq (t)

[(∫
Ω

|ut |m(x) dx
)2/m−

+

(∫
Ω

|ut |m(x) dx
)2/m+

]
dt

≤ c
∫ T

s
Eq (t)

[(
−E ′ (t)

)2/m−
+
(
−E ′ (t)

)2/m+
]

dt

≤ cε

∫ T

s
[E (t)]qm−/(m−−2) dt + c(ε)

∫ T

s

(
−E ′ (t)

)
dt + cε

∫ T

s
E (t)q+1 dt + c(ε)

∫ T

s

(
−E ′ (t)

)2(q+1)/m+

dt.

For m− > 2 and the choice of q = m+/2−1 will give qm−
m−−2 = q+1+ m+−m−

m−−2 .
Therefore,∣∣∣∣∫ T

s
Eq (t)

∫
Ω

u2
t dxdt

∣∣∣∣≤ cε

∫ T

s
E (t)q+1 dt + cε [E (0)]

m+−m−
m−−2

∫ T

s
[E (t)]q+1 dt + c(ε)E (s)

≤ cε

∫ T

s
E (t)q+1 dt + c(ε)E (s) . (3.17)

For the case m− = 2 and the choice of q = m+/2−1 will give the similar result.
For the other term, utilizing Young’s inequality we conclude∣∣∣∣−µ1

∫ T

s
Eq (t)

∫
Ω

u |ut |m(x)−1 dxdt
∣∣∣∣≤ ε

∫ T

s
Eq (t)

∫
Ω

|u(t)|m(x) dxdt + c
∫ T

s
Eq (t)

∫
Ω

cε (x) |ut (t)|m(x) dxdt

≤ ε

∫ T

s
Eq (t)

[∫
Ω+

|u(t)|m
−

dx+
∫

Ω−
|u(t)|m

+

dx
]

dt + c
∫ T

s
Eq (t)

∫
Ω

cε (x) |ut (t)|m(x) dxdt,

where we have used Young’s inequality with

p(x) =
m(x)

m(x)−1
, p′ (x) = m(x)

and hence

cε (x) = (m(x)−1)m(x)m(x)/(1−m(x))
ε

1/(1−m(x)).

By using the embeddings H2
0 (Ω) ↪→ Lm− (Ω) and H2

0 (Ω) ↪→ Lm+
(Ω), we obtain∣∣∣∣−µ1

∫ T

s
Eq (t)

∫
Ω

u |ut |m(x)−1 dxdt
∣∣∣∣≤ ε

∫ T

s
Eq (t)

[
c‖∆u(s)‖m−

2 + c‖∆u(s)‖m+

2

]
dt + c

∫ T

s
Eq (t)

∫
Ω

cε (x) |ut (t)|m(x) dxdt

≤ ε

∫ T

s
Eq (t)

[
cE(m−−2)/2 (0)E (t)+ cE(m+−2)/2 (0)E (t)

]
dt + c

∫ T

s
Eq (t)

∫
Ω

cε (x) |ut (t)|m(x) dxdt

≤ cε

∫ T

s
Eq+1 (t)dt +

∫ T

s
Eq (t)

∫
Ω

cε (x) |ut (t)|m(x) dxdt. (3.18)

The next term of (3.13) can be estimated in a similar attitude to get∣∣∣∣−µ2

∫ T

s
Eq (t)

∫
Ω

u |z(x,1, t)|m(x)−1 dxdt
∣∣∣∣≤ ε

∫ T

s
Eq (t)

[
c‖∆u(s)‖m−

2 + c‖∆u(s)‖m+

2

]
dt + c

∫ T

s
Eq (t)

∫
Ω

cε (x) |z(x,1, t)|m(x) dxdt

≤ cε

∫ T

s
Eq+1 (t)dt +

∫ T

s
Eq (t)

∫
Ω

cε (x) |z(x,1, t)|m(x) dxdt. (3.19)

For the last term of (3.13), from Lemma 3.4, we get

2
∫ T

s
Eq (t)

∫ 1

0

∫
Ω

ξ (x) |z(x,ρ, t)|m(x)

m(x)
dxdρdt ≤ 2

m−

∫ T

s
Eq (t)

∫ 1

0

∫
Ω

ξ (x) |z(x,ρ, t)|m(x) dxdρdt

≤− 2τ

m−

∫ T

s
Eq (t)

d
dt

(∫ 1

0

∫
Ω

e−ρτ
ξ (x) |z|m(x) dxdρ

)
dt

+
2

m−

∫ T

s
Eq (t)

∫
Ω

ξ (x) |ut |m(x) dxdt

≤− 2τ

m−

[
Eq (t)

∫ 1

0

∫
Ω

e−ρτ
ξ (x) |z|m(x) dxdρ

]t=T

t=s
+

2
m−

∫ T

s
Eq (t)

∫
Ω

ξ (x) |ut |m(x) dxdt.
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As ξ (x) is bounded, by (3.8), we obtain

2
∫ T

s
Eq (t)

∫ 1

0

∫
Ω

ξ (x) |z(x,ρ, t)|m(x)

m(x)
dxdρdt ≤ 2τe−τ

m−
Eq (s)E (s)+

2c
m−

Eq+1 (T )

≤ 2τe−τ

m−
Eq (0)E (s)+

2c
m−

Eq (T )E (s)≤ cE (s) , (3.20)

for some c > 0.
By combining (3.13)-(3.20), we conclude that∫ T

s
Eq+1 (t)dt ≤ ε

∫ T

s
Eq+1 (t)dt + cE (s)+ c

∫ T

s
Eq (t)

∫
Ω

cε (x) |z(x,1, t)|m(x) dxdt. (3.21)

Choosing ε so small such that∫ T

s
Eq+1 (t)dt ≤ cE (s)+ c

∫ T

s
Eq (t)

∫
Ω

cε (x) |z(x,1, t)|m(x) dxdt.

Once ε is fixed, then cε (x)≤M, since m(x) is bounded. Therefore, we infer that∫ T

s
Eq+1 (t)dt ≤ cE (s)+ cM

∫ T

s
Eq (t)

∫
Ω

|z(x,1, t)|m(x) dxdt

≤ cE (s)−C0M
∫ T

s
Eq (t)E ′ (t)dt

≤ cE (s)+
C0M
q+1

[
Eq+1 (s)−Eq+1 (T )

]
≤ cE (s) . (3.22)

By taking T → ∞, we obtain∫
∞

s
Eq+1 (t)dt ≤ cE (s) .

Thus, Komornik’s Lemma (with σ = q = m+/2−1) implies the desired result.

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

[1] S. Antontsev, Wave equation with p(x, t)-Laplacian and damping term: blow-up of solutions, C. R. Mecanique, 339 (2011), 751-755.
[2] S. Antontsev, Wave equation with p(x, t)-Laplacian and damping term: existence and blow-up, Differential Equations Appl., 3 (2011), 503-525.
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[25] H. Yüksekkaya, E. Pişkin, S. M. Boulaaras, B. B. Cherif, S. A. Zubair, Existence, nonexistence, and stability of solutions for a delayed plate equation

with the logarithmic source, Adv. Math. Phys., 2021 (2021), 1-11.
[26] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, Springer, 2000.
[27] M. L. Santos, J. Ferreira, C. A. Raposo, Existence and uniform decay for a nonlinear beam equation with nonlinearity of Kirchhoff type in domains with

moving boundary, Abstr. Appl. Anal., 8 (2005), 901-919.
[28] M. Shahrouzi, On behaviour of solutions for a nonlinear viscoelastic equation with variable-exponent nonlinearities, Comput. Math. with Appl., 75(11)

(2018), 3946-3956.
[29] M. Tucsnak, Semi-internal stabilization for a nonlinear Euler-Bernoulli equation, Math. Method. Appl. Sci., 19 (1996), 897-907.
[30] S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36.


	Introduction
	Preliminaries
	Stability of solutions

