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1. Introduction  

Solitons are particular exact solutions of some nonlinear partial differential equations. Although 

there is no strict definition of solitons or solitary waves, they are characterized mainly by some common 

features: A solitary wave is a local disturbance or pulse which retains its shape during propagation. A 

soliton is a solitary wave that preserves its shape and velocity after interacting with other solitary waves. 

They are only affected by a phase shift after interactions and in this sense, they behave like particles. 

There are many nonlinear integrable differential equations that have soliton solutions such as the 

Korteweg-de Vries (KdV) equation, Boussinesq equation, nonlinear Schrödinger equation, sine-Gordon 

equation, et cetera. 

 Soliton theory begins with a phenomenon that the Scottish engineer J. Scott Russell observed by 

chance. Russell detected that a body of water set in motion by a canal boat, travels a long distance along 

the canal maintaining its shape and speed. As a result of later experiments done on this observation, he 

empirically derived a relation between the speed and the amplitude of the wave: 𝑐2 = 𝑔(ℎ + 𝑎), where 

𝑐 is the speed, 𝑎 is the maximum amplitude, ℎ is the depth of the water and 𝑔 is the acceleration due to 

gravity. This equation implies that the speed of the wave is related to its amplitude and a larger wave 

moves faster than a small one. Russell's work [1] triggered many debates on the subject, many of which 

were critical of his results. In the 1870s both Boussinesq [2] and Rayleigh [3] independently obtained 

similar results, which confirm Russell. They also showed that these long water waves have a 𝑠𝑒𝑐ℎ2 

wave profile. Whereas the differential equation which is satisfied by this function remained unknown 

for about two more decades. Thus, the explanation of the phenomenon observed by Russell remained 

unsolved for more than 60 years. Finally, in 1895, a mathematical model proposed by Korteweg and de 

Vries achieved this task. This model is known as the KdV equation [4] and has been studied extensively 

in every aspect ever since. In its standard form, the equation is given by  

 𝑢𝑡 + 𝛼𝑢𝑢𝑥 + 𝛽𝑢𝑥𝑥𝑥 = 0. (1) 
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Here the constants 𝛼 and 𝛽 are arbitrary and can be set to any values by scaling transformations 

of 𝑢, 𝑥, and 𝑡. The conventional choice is given by 𝛼 = 6 and 𝛽 = 1. This is one of the most important 

equations in the soliton theory and it is ubiquitous in physics problems, such as water waves, fluid 

mechanics, and plasma physics. There are two competing terms in this equation as in other nonlinear 

wave models. These terms ensure the coherence of the wave so that, it maintains the waveform and 

continues to propagate over a long period of time. The last linear term in the equation is the origin of 

the dispersion observed. On the other hand, the second term is a nonlinear term, and it steepens the wave 

and finally causes disintegration. When these competing effects are balanced, a stable waveform is 

formed. 

The modern era of solitary waves began in 1955 with the studies of Fermi, Pasta, and Ulam (FPU) 

on a numerical model of a discrete nonlinear mass-spring system [5]. They tried to show that a smooth 

initial state would eventually relax to an equipartition of energy among all modes because of 

nonlinearity. Contrary to the expectations, results showed that the equipartition of energy among the 

modes did not occur. They put all the energy in a few lowest modes of the corresponding linear model 

at the beginning. In the linear problem, the energy in each mode would stay unchanged and no new 

mode would be excited. In the nonlinear problem, the energy is transferred from low modes to higher 

ones, and the expectation was a continuation of this process until the energy is completely distributed 

over all modes. Whereas, when the model starts to process, the energy is exchanged between various 

low-order modes, and it eventually returns to the lowest mode again. Hence, in the end, a series of 

recurring states show up. The next milestone is the work done by Zabusky and Kruskal on FPU results 

in 1965 [6]. In this study, they tried to understand why the recurrence phenomenon occurs and for this 

aim, they investigated a continuous model of the nonlinear mass-spring system. In fact, they analyzed 

the initial value problem of the KdV equation (1) in the form 𝑞𝑡 + 6𝑞𝑞𝜉 + 𝛿2𝑞𝜉𝜉𝜉 = 0 with a finite and 

small 𝛿2, i.e., for a weak nonlinear modulational term. What they get when starting with a smooth initial 

state 𝑞(𝜉, 0)~cos⁡(2𝜋𝜉), was summarized as follows: “Initially the wave steepened in regions where it 

had a negative slope, a consequence of the dominant effects of nonlinearity over the dispersive term. As 

the wave steepens, the dispersive effect then becomes significant and balances the nonlinearity. At later 

times, the solutions develop a series of eight well-defined waves, each like 𝑠𝑒𝑐ℎ2 functions with the 

taller waves ever catching up and overtaking the shorter waves. These waves undergo nonlinear 

interaction according to the KdV equation and then emerge from the interaction without a change of 

form and amplitude, but with only a small change in their phases. Another surprising fact is that the 

initial profile reappears very similarly to the FPU recurrence phenomenon" [6]. All these strange 

phenomena led the researchers to think that there are some conservation laws that operate in the 

background and somehow the KdV equation is integrable. After that, several conserved quantities were 

calculated by Zabusky-Kruskal, Whitham, and Miura. Miura also found one of the last pieces of the 

puzzle by introducing the famous Miura transformation [7]. He proved that another important integrable 

nonlinear differential equation, which is called the modified KdV (mKdV) equation, also has an infinite 

number of conserved quantities. Moreover, all these conserved quantities can be related to the 

corresponding counterparts in the KdV equation via the Miura transformation. The next step toward the 

integrability of the equation was the construction of an inverse scattering transformation method. 

Consequently, the complete integrability of the KdV equation was shown in a series of papers by 

Gardner et al. [8-10] and Zakharov and Faddeev [11].  

Ryogo Hirota introduced another powerful method to find the exact solutions of the KdV equation 

[12,13] in 1971. Hirota’s method is the most suitable method for obtaining multi-soliton solutions of 

nonlinear differential equations. Soliton solutions can also be studied by using other methods like 

inverse scattering transformation, Bäcklund transformation, Darboux transformation, or Painleve 

expansion method. Especially, the inverse scattering method is a very powerful technique to obtain exact 
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solutions to nonlinear equations; nevertheless, its application to practical problems requires a bit of 

cumbersome work. On the other hand, Hirota’s method is much more manageable in this sense. After 

all these great achievements, soliton solutions of many nonlinear differential equations in 1-dimension, 

as well as higher dimensions, were studied extensively by using various methods [14-19]. 

In this study, we introduce the Hirota direct method to obtain the multi-soliton solutions of various 

differential equations. The plan of the paper is as follows. We will review the method in detail in the 

second section. In that section, the method is explained on a well-known example, the KdV equation. 

The soliton solutions up to the third order are constructed explicitly and then solutions are generalized 

to the N-soliton case. The third section is devoted to the nonlinear Schrödinger equation where focusing 

and defocusing nonlinear Schrödinger equations are presented. The soliton solutions of these equations 

are called bright and dark solitons respectively. Both, bright and dark soliton solutions of focusing and 

defocusing nonlinear Schrödinger equations, up to the two-solitons are calculated by the Hirota direct 

method. The fourth section includes a conclusion and discussions. 

2. Hirota Direct Method 

In this section, we will discuss the Hirota direct method to find the N-soliton solutions of any 

integrable nonlinear differential equation by following [13]. We will explain the method by reviewing 

its application to the KdV equation, which is also important for historical reasons in the sense that, it is 

the first introduced equation for explaining the previously observed solitary wave phenomenon. Having 

equipped with these tools our next goal will be to handle the nonlinear Schrodinger equation.  

Multi-soliton solutions can be obtained by the inverse scattering transform [8-11], the dressing 

method [20-23] and the Hirota method [13]. The Hirota method is algebraic rather than analytic which 

can be treated as one of its advantages. The Hirota direct method also called bilinear method was first 

proposed by Hirota to obtain the N-soliton solutions of the KdV equation [12]. It is an efficient method 

for searching soliton solutions of the nonlinear evolution equations. 

First, we will introduce the Hirota differential operator (from now on we will use D-operator in 

short) and then show how a nonlinear differential equation can be brought into the Hirota bilinear form 

by using those operators. The D-operator is a bilinear operator which acts on a pair of functions to 

produce a new function. We will work in 2-dimensional spacetime (𝑡, 𝑥), but definitions can be extended 

to higher dimensions.  

The Hirota D-operator is given by  

 
𝐷𝑥𝑖

𝑚 = (
𝜕

𝜕𝑥𝑖
−

𝜕

𝜕𝑥𝑖′
)
𝑚

,⁡⁡⁡⁡⁡𝑥𝑖 = (𝑡, 𝑥)⁡⁡ 
(2) 

where 𝑚 is a positive integer. It acts as a product of a pair of functions: 

 𝐷𝑥𝑖
𝑚(𝑓 ∙ 𝑔) = (

𝜕

𝜕𝑥𝑖
−

𝜕

𝜕𝑥𝑖′
)
𝑚

𝑓(𝑥, 𝑡) ∙ 𝑔(𝑥′, 𝑡′)|𝑥′=𝑥,𝑡′=𝑡 . 
(3) 

In what follows, we give some properties of the D-operator for later convenience. Equation (3) 

can be written for 𝑥𝑖 = 𝑥 more explicitly as: 

 𝐷𝑥
𝑚(𝑓 ⋅ 𝑔) = ∑ (−1)𝑘(𝑚

𝑘
)𝑓𝑘𝑔(𝑚−𝑘)

𝑚
𝑘=0  , (4) 

where 𝑓𝑘 stands for 𝑓𝑘 ≡ 𝜕𝑥
𝑘𝑓 and (𝑚

𝑘
) is the binomial coefficient. The anti-symmetrization property of 

the D-operator with respect to the second function is   

 𝐷𝑥𝑖
𝑚(𝑔 ⋅ 𝑓) = (−1)𝑚𝐷𝑥𝑖

𝑚(𝑓 ⋅ 𝑔). (5) 

Because of these properties, if we take the first or second function as a constant function, for 

example, if 𝑔 = 1, we get  

 𝐷𝑥𝑖
𝑚(𝑓 ⋅ 1) = 𝜕𝑥𝑖

𝑚𝑓 . (6) 
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On the other hand, if we take 𝑓 = 𝑔 we then obtain 

 𝐷𝑥𝑖
𝑚(𝑓 ⋅ 𝑓) = 0,⁡⁡⁡𝑖𝑓⁡𝑚 = 𝑜𝑑𝑑 (7) 

and for even m, the first few equations are 

 𝑚 = 2:⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐷𝑥𝑖
2 (𝑓 ⋅ 𝑓) = 2(𝑓𝑓𝑥𝑖𝑥𝑖

− 𝑓𝑥𝑖
2),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

⁡⁡𝐷𝑥𝐷𝑡(𝑓 ⋅ 𝑓) = 2(𝑓𝑓𝑥𝑡 − 𝑓𝑥𝑓𝑡),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑚 = 4:⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐷𝑥𝑖
4 (𝑓 ⋅ 𝑓) = 2(𝑓𝑓𝑥𝑖𝑥𝑖𝑥𝑖𝑥𝑖

− 4𝑓𝑥𝑖
𝑓𝑥𝑖𝑥𝑖𝑥𝑖

+ 3𝑓𝑥𝑖𝑥𝑖
2 ),⁡⁡⁡ 

⋮⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡   

 

(8) 

 

 

The following properties are especially useful for studying soliton solutions. Using the definition  

𝜙𝑖 = 𝑘𝑖𝑥 + 𝜔𝑖𝑡 + 𝛼𝑖 , where constant coefficients 𝑘𝑖, 𝜔𝑖 and 𝛼𝑖 denote the wave number, angular 

momentum, and phase factor respectively, then 

 𝐷𝑥
𝑚𝐷𝑡

𝑛(𝑒𝜙1 ⋅ 𝑒𝜙2) = (𝑘1 − 𝑘2)
𝑚(𝜔1 − 𝜔2)

𝑛𝑒𝜙1+𝜙2 , (9) 

and 

 𝐷𝑥𝑖
𝑚(𝑒𝜙1 ⋅ 𝑒𝜙1) = 0 . (10) 

The second part of the Hirota method includes the transformation of the dependent variable of the 

equation. The underlying motivation for such a transformation is to express the original equation as a 

quadratic equation of the dependent variable so that, the leading order derivative and the nonlinear term 

have the same degree and the same number of derivatives. Mainly three kinds of transformations are 

commonly used: logarithmic, rational, or arctan transformations. Once the equation is brought into a 

quadratic form it can be bilinearized via D-operators.   

Now, let us assume that a nonlinear differential equation is brought into the Hirota bilinear form 

by using one of the above transformations of the dependent variable and any combination of D-

operators. This bilinear form is expressed by the equation 𝐵(𝑓 ⋅ 𝑓) = 0 where B denotes a polynomial 

of D-operators. The N-soliton solution is obtained by taking a perturbative expansion for the function f 

such that 

 𝑓 = 1 + ∑ 𝜖𝑖𝑓𝑖
∞
𝑖=1 , (11) 

where the parameter 𝜖 is a formal parameter, which can be set equal to 1 after getting all order solutions. 

When this expansion is plugged into the bilinear equation 𝐵(𝑓 ⋅ 𝑓) = 0 and then grouped in order of the 

powers of 𝜖 one gets the following set of equations: 

 𝜖0:⁡⁡⁡⁡𝐵(1 ⋅ 1) = 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝜖1:⁡⁡⁡⁡𝐵(𝑓1 ⋅ 1 + 1 ⋅ 𝑓1) = 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡𝜖2:⁡⁡⁡⁡𝐵(𝑓2 ⋅ 1 + 𝑓1 ⋅ 𝑓1 + 1 ⋅ 𝑓2) = 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡⁡⁡⁡⁡⁡𝜖3:⁡⁡⁡⁡𝐵(𝑓3 ∙ 1 + 𝑓2 ∙ 𝑓1 + 𝑓1 ∙ 𝑓2 + 1 ∙ 𝑓3) = 0⁡⁡
⋮⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡𝜖𝑛:⁡⁡⁡⁡𝐵 (∑𝑓(𝑚−𝑗)

𝑚

𝑗=0

⋅ 𝑓𝑗) = 0⁡.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

 

(12.0) 

(12.1) 

(12.2) 

(12.3) 

 

 

 

(12.n) 

This procedure is quite general and can be applied to any explicit bilinear operator expression. It 

can be proved that if the original equation admits an N-soliton solution, then the perturbative expansion 

(11) will truncate at the  𝑛 = 𝑁 term, and hence, the convergence problem will be solved automatically. 

2.1. KdV equation 

In this section we will review the application of the Hirota method for the KdV equation as our 

first example, obtaining solutions up to 3-solitons explicitly. Then N-soliton solutions are given. In this 

section, we follow [13]. Let us recall Equation (1) in its standard form 
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 𝑢𝑥𝑥𝑥 + 6𝑢𝑢𝑥 + 𝑢𝑡 = 0 (13) 

with the boundary condition 𝑢 → 0⁡ as |𝑥| → ∞. To bring this equation into a quadratic form we will 

apply two successive transformations for the dependent variable 𝑢. We define 𝑢 = 𝑣𝑥 and after 

integrating with respect to 𝑥 we get the potential KdV equation 

 𝑣𝑡 + 3𝑣𝑥
2 + 𝑣𝑥𝑥𝑥 = 𝑐(𝑡) , (14) 

where 𝑐(𝑡) is an arbitrary function of 𝑡 and it can be set to 0 after applying boundary conditions 𝑣,

𝑣𝑥, 𝑣𝑡, 𝑣𝑥𝑥, 𝑣𝑥𝑥𝑥 → 0⁡⁡𝑎𝑠⁡⁡|𝑥| → ∞. Now, if we choose a logarithmic transformation for the new variable 

such that 

 𝑣(𝑥, 𝑡) = 2ln⁡(𝑓(𝑥, 𝑡))𝑥 (15) 

and insert this into Equation (14), we find 

 𝑓𝑓𝑥𝑥𝑥𝑥 − 4𝑓𝑥𝑓𝑥𝑥𝑥 + 3𝑓𝑥𝑥
2 + 𝑓𝑓𝑥𝑡 − 𝑓𝑥𝑓𝑡 = 0. (16) 

As it can be seen from Equation (16), this is a quadratic equation of the dependent variable 𝑓 and 

it satisfies the previously mentioned property. Equation (16) can be written in terms of D-operators:  

 (𝐷𝑥𝐷𝑡 + 𝐷𝑥
4)(𝑓 ⋅ 𝑓) = 0. (17) 

Hence, the bilinearization operator B can be written as 𝐵 ≡ 𝐷𝑥𝐷𝑡 + 𝐷𝑥
4. 

2.2. Soliton solution:  

The 1-soliton solution can be obtained by choosing the leading order term in the expansion (11) 

to contain only one exponential factor, and then solving the set of Equations (12) by orderwise iteration. 

For this aim, the following ansatz can be used: 

 𝑓1 = 𝑒𝜃1 ⁡⁡⁡⁡; ⁡⁡⁡⁡⁡𝜃1 = 𝑘1𝑥 + 𝜔1𝑡 + 𝛼1 (18) 

where  𝑘1, 𝜔1⁡⁡𝑎𝑛𝑑⁡⁡𝛼1  are constants. Since Equation (12.0) is trivial, we start with Equation (12.1): 

 𝑓1,𝑥𝑡 + 𝑓1,𝑥𝑥𝑥𝑥 = 0⁡. (19) 

Ansatz (18) satisfies Equation (19) provided that the dispersion relation 𝜔1 = −𝑘1
3,⁡⁡⁡⁡(𝑘1 ≠ 0) is 

satisfied. Equation (12.2) corresponds to  

 ⁡𝑓2,𝑥𝑡 + 𝑓2,𝑥𝑥𝑥𝑥 = −(𝐷𝑥𝐷𝑡 + 𝐷𝑥
4)(𝑓1 ⋅ 𝑓1) (20) 

and if we use the results of the previous order here, we see that the right-hand side of Equation (20) 

vanishes. Hence, we can choose 𝑓2(𝑥, 𝑡) = 0. Continuing to the next-order equations with these results, 

one can show that all the next-order solutions can be fixed to zero, 𝑓𝑖(𝑥, 𝑡) = 0, for 𝑖 ≥ 2. Consequently, 

by setting 𝜖 = 1 we end up with 

 𝑓 = 1 + 𝑒𝜃1 (21) 

for the 1-soliton solution. It is an easy task to obtain the original function 𝑢(𝑥, 𝑡) = 2(ln 𝑓)𝑥𝑥 by going 

backward starting from the result (21) 

 𝑢(𝑥, 𝑡) =
𝑘1

2

2
sech2 𝜃1

2
⁡.  (22) 

2.3. Soliton solution:  

In a similar way, the 2-soliton solution needs two exponential factors for the leading order term 

in the expansion of the function 𝑓. One can start with the ansatz 

 𝑓1 = 𝑒𝜃1 + 𝑒𝜃2 , (23) 

where 

 𝜃𝑖 = 𝑘𝑖𝑥 + 𝜔𝑖𝑡 + 𝛼𝑖 (24) 

with constant coefficients 𝑘𝑖, 𝜔𝑖, 𝛼𝑖. Equation (12.1) again gives the relations 
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 𝜔𝑖 = −𝑘𝑖
3⁡⁡, (𝑘𝑖 ≠ 0) , (25) 

but the right-hand side of Equation (12.2) is not zero anymore and we have  

 𝑓2,𝑥𝑡 + 𝑓2,𝑥𝑥𝑥𝑥 = 3𝑘1𝑘2(𝑘1 − 𝑘2)
2𝑒𝜃1+𝜃2 . (26) 

It can be shown that the solution to this equation is given by 

 𝑓2 = 𝑒𝐴12𝑒𝜃1+𝜃2 , (27) 

with the constant coefficient 

 𝑒𝐴12 = (
𝑘1−𝑘2

𝑘1+𝑘2
)2 . (28) 

The next order Equation (12.3) is  

 𝑓3,𝑥𝑡 + 𝑓3,𝑥𝑥𝑥𝑥 = −𝐵(𝑓1 ⋅ 𝑓2 + 𝑓2 ⋅ 𝑓1) , (29) 

and the right-hand side of this equation is zero, since 𝐵(𝑓1 ⋅ 𝑓2) = 𝐵(𝑓2 ⋅ 𝑓1) = 0. In that case one can 

choose 𝑓3 = 0 and similarly all higher order terms can be set to zero as well, i.e. 𝑓𝑖 = 0, (𝑖 ≥ 3). Finally, 

we get 

 𝑓 = 1 + 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃1+𝜃2+𝐴12 , (30) 

and hence the 2-soliton solution is given by 

 
𝑢(𝑥, 𝑡) = −2

𝑘1
2𝑒𝜃1 + 𝑘2

2𝑒𝜃2 + (𝑘1
2𝑒𝜃2 + 𝑘2

2𝑒𝜃1)𝑒𝜃1+𝜃2+𝐴12 + 2(𝑘1 − 𝑘2)
2𝑒𝜃1+𝜃2

(1 + 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃1+𝜃2+𝐴12)2
 

    

(31) 

This result can also be rearranged in terms of hyperbolic trigonometric functions however, for 

later convenience we keep it in this form. Now, let us continue with the 3-soliton solution. 

2.4.  Soliton solution and generalization:  

The 3-soliton solution goes in a similar way, except that the ansatz for the first term of the 

expansion (11) has one more exponential factor: 

 𝑓1 = 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3 (32) 

When this form is inserted into Equation (12.1), dispersion Equations (25) are obtained. After a 

few algebraic calculations, the next-order term in the expansion can be written as 

 𝑓2 = 𝑒𝐴12𝑒𝜃1+𝜃2 + 𝑒𝐴13𝑒𝜃1+𝜃3 + 𝑒𝐴23𝑒𝜃2+𝜃3 (33) 

from Equation (12.2). Here, the coefficients are  

 
𝑒𝐴𝑖𝑗 = (

𝑘𝑖 − 𝑘𝑗

𝑘𝑖 + 𝑘𝑗
)2,⁡⁡⁡⁡⁡𝑖, 𝑗 = 1,2,3⁡𝑎𝑛𝑑⁡𝑖 < 𝑗⁡⁡. 

(34) 

If we proceed with Equation (12.3), we see that the right-hand side of Equation (29) does not 

vanish anymore, and the solution to Equation (12.3) can be given by 

 𝑓3 = 𝑒𝐴123𝑒𝜃1+𝜃2+𝜃3 (35) 

with the constant coefficient  

 𝑒𝐴123 = 𝑒𝐴12𝑒𝐴13𝑒𝐴23 . (36) 

The perturbative expansion will cease at this order as stated before. It can be checked that since 

 𝐵(𝑓1 ⋅ 𝑓3 + 𝑓2 ⋅ 𝑓2 + 𝑓1 ⋅ 𝑓3) = 0 (37) 

the next order equation (12.4) 

 𝑓4,𝑥𝑡 + 𝑓4,𝑥𝑥𝑥𝑥 = 0  (38) 

can be solved by setting 𝑓4 = 0 indeed. Finally, all following orders can be set to zero in the same 

fashion. Hence, we reach the 3-soliton solution by setting the expansion parameter 𝜖 = 1: 

 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓 = 1 + 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3 + 𝑒𝐴12𝑒𝜃1+𝜃2 + 𝑒𝐴13𝑒𝜃1+𝜃3 + 𝑒𝐴23𝑒𝜃2+𝜃3 

+𝑒𝐴123𝑒𝜃1+𝜃2+𝜃3 ⁡.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
(39) 
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We see that this solution includes no additional freedom and is totally obtained from the preceding 

parameters. We will not get into details but, unlike the previous orders, the 3-soliton solution is quite 

restrictive and closely related to the integrability of the equation. The 3-soliton solution guides us to 

obtain the N-soliton solution which contains a finite polynomial of exponential factors given below 

 

𝑓(𝑥, 𝑡) = ∑ exp( ∑ 𝐴𝑖𝑗

1≤𝑖<𝑗≤𝑁

𝜇𝑖𝜇𝑗 + ∑𝜇𝑗𝜃𝑗

𝑁

𝑗=1

)
𝜇𝑖=0,1
1≤𝑖≤𝑁

⁡. (40) 

Proof of this can be found in [13]. Here, it should be noted that the combination of lower-order 

solutions in the form given above to get higher-order solutions is possible only for integrable equations. 

For a detailed discussion see [24], [25].  This is called the Hirota integrability condition. Hirota 

integrability can be used equivalently instead of the usual integrability because no counterexamples have 

been found so far. 

3. Nonlinear Schrödinger equation 

In this section, we will present another important class of nonlinear differential equations, the 

nonlinear Schrödinger (NLS) equation. The NLS equation is an extension of the well-known linear 

Schrodinger equation, and it can be defined as an approximation to a wide class of nonlinear wave 

equations [26] that arise in many branches of physics such as plasma physics, nonlinear optics, and fluid 

dynamics. The most common applications of the NLS equation include self-focusing of beams in 

nonlinear optics, modeling of the propagation of electromagnetic pulses in nonlinear optical fibers which 

act as waveguides, and stability of Stokes waves in water. In hydrodynamics, the NLS equation describes 

the dynamics of surface gravity waves in finite or infinite depth, depending on the ratio between the 

water depth and wavelength. It is also shown that the nonlinear modulation of a quasi-monochromatic 

wave is described by the NLS equation. For a further discussion see [27], [28] and references therein. 

The integrability of the NLS equation has been shown by Zakharov and Shabat by using the inverse 

scattering method [20].  

In this section, we mainly follow the references [13] and [28]. The derivation of the NLS equation 

and the related definitions can be found in detail in [28]. Soliton solution technic can be found in [13] 

and [29].       

The NLS equation is given by  

 𝑖𝑞𝑡 +
1

2
𝑞𝑥𝑥 + 𝑝|𝑞2|𝑞 = 0 , (41) 

where p is a parameter that takes values 𝑝 = ∓1. The equation for 𝑝 = 1 is called the focusing NLS 

(fNLS) equation and it has an N-envelop solution [20, 30]. The case for 𝑝 = −1 is called defocusing 

NLS (dNLS) equation and it is shown that it has a dark pulse solution [30]. We will keep this parameter 

undetermined and at the end, possible values of the parameter will be considered separately. 

Bilinearization of the NLS equation goes as follows: a transformation of the dependent variable is 

defined as follows  

 
𝑞(𝑥, 𝑡) =

𝑢(𝑥, 𝑡)

𝑣(𝑥, 𝑡)
⁡⁡, 

(42) 

where 𝑢(𝑥, 𝑡) is a complex function and 𝑣(𝑥, 𝑡) is a real function. Exploiting Equation (42) and D-

operators, Equation (41) can be split into two distinct equations: 

 
(𝑖𝐷𝑡 +

1

2
𝐷𝑥

2) (𝑢 ∙ 𝑣) = 0 
(43) 

and 

 1

2
𝐷𝑥

2(𝑣 ∙ 𝑣) − 𝑝|𝑢|2 = 0⁡. 
(44) 
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  Now let us expand new functions 𝑢 and 𝑣 into series 

 𝑢(𝑥, 𝑡) = 𝜖𝑢1 + 𝜖2𝑢2 + 𝜖3𝑢3 + ⋯⁡ , 

⁡𝑣(𝑥, 𝑡) = 1 + 𝜖𝑣1 + 𝜖2𝑣2 + ⋯⁡⁡⁡⁡⁡⁡⁡⁡ , 
(45) 

with the assumption that all the functions 𝑢1, 𝑢2,⋯ , 𝑣1, 𝑣2, ⋯ go to zero as |𝑥| → ∞, which is the 

boundary condition also satisfied by the original function 𝑞. Keeping in mind that, 𝐵 = 𝑖𝐷𝑡 +
1

2
𝐷𝑥

2 for 

Equation (43) and 𝐵 =
1

2
𝐷𝑥

2 for Equation (44), one can expand the equations in powers of 𝜖 as before. 

This gives us 

 
𝜖𝑛: 𝐵 (∑ 𝑢𝑘 ∙ 𝑣𝑛−𝑘

𝑛

𝑘=1

) = 0 

⇒ ⁡𝑖𝑢𝑛,𝑡 +
1

2
𝑢𝑛,𝑥𝑥 = −𝐵 (∑ 𝑢𝑘 ∙ 𝑣𝑛−𝑘

𝑛−1

𝑘=1

)⁡⁡, 

(46) 

and 

 

𝜖𝑛: 𝐵 (∑ 𝑣𝑘 ∙ 𝑣𝑛−𝑘

𝑛

𝑘=0

) = 𝑝 ∑ 𝑢𝑘 ∙ 𝑢𝑛−𝑘
∗

𝑛−1

𝑘=1

 

⇒⁡𝑣𝑛,𝑥𝑥 = 𝑝 (∑ 𝑢𝑘 ∙ 𝑢𝑛−𝑘
∗

𝑛−1

𝑘=1

) −
1

2
𝐷𝑥

2 (∑ 𝑣𝑘 ∙ 𝑣𝑛−𝑘

𝑛−1

𝑘=1

)⁡. 

(47) 

 

 

 

 
 

respectively. 

3.1. Soliton solutions  

3.1.1 Soliton solution:  

After getting the bilinearization of the equation, one can now start seeking the soliton solutions. 

As we saw in the previous section the N-soliton solution is given by defining the first order function of 

the expansion (45) as a sum of N exponential term: 𝑢1 = ∑ 𝑒𝜃𝑖𝑁
𝑖=1  where θi is defined as in Equation 

(24). Let us start by taking 𝑁 = 1 for the 1-soliton solution. If one takes  𝑛 = 1 in Equation (46) it gives 

the following linear equation 

 𝑖𝑢1,𝑡 +
1

2
𝑢1,𝑥𝑥 = 0 . (48) 

Inserting the ansatz for the 1-soliton solution into Equation (48) gives the condition 𝜔1 =
𝑖

2
𝑘1

2 

which defines the dispersion relation of the wave. The equation for the function 𝑣 at the same order of 

𝜖, i.e., taking 𝑛 = 1 in Equation (47), 

 𝑣1,𝑥𝑥 = 0 (49) 

allows us to choose 𝑣1 = 0. Hence, we have  

 𝑢1 = 𝑒𝜃1 ⁡, 

𝑣1 = 0.⁡⁡⁡⁡⁡ 
(50) 

For the next order, taking 𝑛 = 2, Equations (46) and (47) can be read as 

 𝑖𝑢2,𝑡 +
1

2
𝑢2,𝑥𝑥 = −𝐵(𝑢1 ∙ 𝑣1), 𝑣2,𝑥𝑥 = 𝑝|𝑢1|

2 − 𝐵(𝑣1 ∙ 𝑣1)  

 
(51) 

respectively. It can be shown that, since 𝐵(𝑢1 ∙ 𝑣1) = 0 = 𝐵(𝑣1 ∙ 𝑣1), one can choose 𝑢2 = 0 from the 

first of Equation (51). On the other hand, the second equation gives the solution  
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 𝑣2 = 𝑒𝜃1+𝜃1
∗+𝐴11  (52) 

with 

 𝑒𝐴11 =
𝑝

(𝑘1 + 𝑘1
∗)2

⁡. (53) 

Therefore, one can see that the function 𝑣 is real as assumed. It can be verified that all the next 

order terms in the expansion (45) can be set to zero, 𝑢𝑖 = 𝑣𝑖 = 0, (𝑖 ≥ 3). In this way, the 1-soliton 

solution is obtained by setting 𝜖 = 1 as 

 
𝑞 =

𝑢

𝑣
=

𝑒𝜃1

1 + 𝑒𝜃1+𝜃1
∗+𝐴11

⁡. 
(54) 

Now, let 𝑘1 = 𝑎 + 𝑖𝑏 as a general complex number. Plugging this definition into Equation (54) 

and setting  𝑝 = +1 to deal with the fNLS solution gives 

 
𝑞(𝑥, 𝑡) = 𝑎𝑒

𝑖[𝑏𝑥+
𝑎2−𝑏2

2
𝑡]

sech[𝑎(𝑥 − 𝑏𝑡) + 𝛼2] 
(55) 

where 𝛼2 is a constant. If one chooses 𝑝 = −1, i.e., if the dNLS case is considered, one can see 

that the coefficient (53) becomes negative, and one gets 

 

𝑞(𝑥, 𝑡) = −𝑎
𝑒

𝑖[𝑏𝑥+
𝑎2−𝑏2

2
𝑡]

sinh[𝑎(𝑥 − 𝑏𝑡) + 𝛼2]
⁡. (56) 

This solution has a singularity and therefore does not yield a soliton solution for the dNLS 

equation. This situation will be considered in detail in section 3.2, before that let us continue 

investigating the 2-soliton solution. 

3.1.2 Soliton solution 

As one can see above, since the 1-soliton solution contains 𝜖2 terms, it is reasonable to expect 

that for the 2-soliton solution we should go up to the 𝜖4 orders. For  𝑁 = 2 one starts with the ansatz   

 𝑢1 = 𝑒𝜃1 + 𝑒𝜃2 ⁡⁡, (57) 

which satisfies Equation (48) with the dispersion relation 𝜔𝑖 =
𝑖

2
𝑘𝑖

2, (𝑖 = 1,2). Equation (49) 

gives 𝑣1 = 0 as before. Since the right-hand side of the first equation and the second term in the right-

hand side of the second equation in (51) vanish, these equations give us  

 𝑢2 = 0, 

𝑣2 = 𝑒𝜃1+𝜃1
∗+𝐴11 + 𝑒𝜃1+𝜃2

∗+𝐴12 + 𝑒𝜃2+𝜃1
∗+𝐴21 + 𝑒𝜃2+𝜃2

∗+𝐴22 
(58) 

respectively. The constant factors are given by 

 𝑒𝐴𝑖𝑗 =
𝑝

(𝑘𝑖 + 𝑘𝑗
∗)2

⁡. (59) 

If we proceed to the third-order equations by taking 𝑛 = 3 in Equations (46) and (47) we get 

 
𝑖𝑢3,𝑡 +

1

2
𝑢3,𝑥𝑥 = −𝐵(𝑢1 ∙ 𝑣2 + 𝑢2 ∙ 𝑣1), 𝑣3,𝑥𝑥

= 𝑝(𝑢1𝑢2
∗ + 𝑢2𝑢1

∗) − 𝐷𝑥
2(𝑣1 ∙ 𝑣2) 

 

(60) 

respectively. One can show that the right-hand side of the second equation in (60) vanishes. On the other 

hand, the non-vanishing part on the right-hand side of the first equation can be written as  

⁡⁡𝐵(𝑢1 ∙ 𝑣2) = 𝑝
(𝑘1 − 𝑘2)

2

(𝑘1 + 𝑘1
∗)(𝑘2 + 𝑘1

∗)
𝑒𝜃1+𝜃2+𝜃1

∗
+ 𝑝

(𝑘1 − 𝑘2)
2

(𝑘1 + 𝑘2
∗)(𝑘2 + 𝑘2

∗)
𝑒𝜃1+𝜃2+𝜃2

∗
⁡. 

(6

1) 

One can solve the set of equations (60) to obtain the following results:   

 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑢3 = 𝑒𝜃1+𝜃1
∗+𝜃2+𝐵121 + 𝑒𝜃1+𝜃2+𝜃2

∗+𝐵122 ,⁡⁡⁡⁡⁡⁡⁡⁡ 

⁡⁡⁡⁡⁡𝑣3 = 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

(62) 
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where 

 
𝑒𝐵𝑖𝑗𝑘 =

𝑝(𝑘𝑖 − 𝑘𝑗)
2

(𝑘𝑖 + 𝑘𝑘
∗)2(𝑘𝑗 + 𝑘𝑘

∗)2
⁡.⁡⁡ 

(63) 

For 𝑛 = 4 one can write the fourth-order equations as   

 
𝑖𝑢4,𝑡 +

1

2
𝑢4,𝑥𝑥 = 0, 𝑣4,𝑥𝑥 = 𝑝(𝑢1𝑢3

∗ + 𝑢3𝑢1
∗) −

1

2
𝐷𝑥

2(𝑣2 ∙ 𝑣2). 

 

(64) 

The solution of the first equation is obvious and after a bit of long but straightforward calculations 

the solution of the second equation can be obtained as   

 𝑢4 = 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡    

⁡⁡⁡⁡𝑣4 = 𝑒𝜃1+𝜃1
∗+𝜃2+𝜃2

∗+𝐶1212 ⁡, 
(65) 

where  

 
𝑒𝐶𝑖𝑗𝑘𝑙 =

𝑝2(𝑘𝑖 − 𝑘𝑗)
2
(𝑘𝑘

∗ − 𝑘𝑙
∗)2

(𝑘𝑖 + 𝑘𝑘
∗)2(𝑘𝑖 + 𝑘𝑙

∗)2(𝑘𝑗 + 𝑘𝑘
∗)

2
(𝑘𝑗 + 𝑘𝑙

∗)
2⁡. 

(66) 

We should emphasize that because of the symmetry of constant factors in the solutions, both 𝑣2 

and 𝑣4 are real functions as it is stated at the beginning. On the other hand, it can easily be shown that 

the coefficient  𝑒𝐶1212 is positive. The perturbative expansion is truncated at this order and all the higher 

order terms can be chosen as zero; indeed, 𝑢𝑛 = 𝑣𝑛 = 0, 𝑓𝑜𝑟⁡𝑛 ≥ 5. Therefore, we end up with  

 
𝑞(𝑥, 𝑡) =

𝑢1 + 𝑢3

1 + 𝑣2 + 𝑣4
 

(67) 

for 2-soliton solution. After taking 𝑝 = 1 and rearranging the terms one can write the solution for 

the fNLS equation as  

 
𝑞 =

Λ122⁡𝑒
𝑖𝜉1 cosh 𝜁2 +Λ121⁡𝑒

𝑖𝜉2 cosh 𝜁1
Λ1212 cosh(𝜁1 + 𝜁2) + Λ11Λ22 cosh(𝜁1 − 𝜁2) + Λ12Λ21 cos(𝜉1 − 𝜉2)

⁡⁡⁡, 
(68) 

where coefficients Λ𝑖𝑗𝑘𝑙 stand for the square root of the exponential coefficients with the same 

index structure in Equations (59), (63) and (66), 𝜁𝑖 =
𝜃𝑖+𝜃𝑖

∗

2
 and 𝜉𝑖 =

𝜃𝑖−𝜃𝑖
∗

2
 are the real and the imaginary 

parts of 𝜃 parameters respectively. This solution is nonsingular since the condition Λ1212 + Λ11Λ22 >

Λ12Λ21 is satisfied by definitions of the coefficients. If we look at the dNLS solution, we encounter the 

same problem as in the 1-soliton case. Namely, for the case of 𝑝 = −1, the second term in the 

denominator takes a minus sign and therefore the solution again includes a singularity.   

3.2. Soliton solution to the dNLS equation 

The soliton solutions obtained in the previous subsection are called bright solitons and they are 

characterized by the vanishing boundary values at infinity. Although the dNLS equation does not admit 

bright soliton solutions, it has been shown that by changing the boundary conditions it can support other 

kinds of soliton solutions which are called dark and gray solitons. They are typically in the form 

𝑞~ 𝑒𝑖𝑘𝑥𝑡𝑎𝑛ℎ(𝜔𝑡) and 𝑞~𝑒𝑖𝑘𝑥(cos 𝛼 + 𝑖 sin𝛼 tanh 𝜃) respectively and in this sense, dark solitons are 

a special case of the gray solitons in the limit cos 𝛼 → 0. Such solitons satisfy the boundary conditions 

|𝑞|2 → 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 as |𝑥| → ∞ and appear as localized dips on the finite background [28]. These kinds 

of solutions have been detected in various experiments [31-35].  

To bring the equation into bilinear form, an appropriate redefinition of the dependent variable 

with the above-mentioned boundary condition is given by 

 
𝑞(𝑥, 𝑡) = 𝜌𝑒𝑖𝜃

𝑢(𝑥, 𝑡)

𝑣(𝑥, 𝑡)
⁡,⁡⁡⁡⁡𝜃 = 𝛼𝑥 − 𝛽𝑡 

(69) 
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where 𝑢 and 𝑣 are real functions, 𝛼 and 𝜌 are real constants, and 𝛽 = 𝛼2 − 𝑝𝜌2. One can choose 𝑢/𝑣 →

1 as |𝑥| → ∞ without loss of generality. Substituting this definition into Equation (41) leads to two 

distinct equations as follows 

 
(𝑖𝐷𝑡 + 𝑖𝛼𝐷𝑥 +

1

2
𝐷𝑥

2) (𝑢 ∙ 𝑣) = 0, 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(
1

2
𝐷𝑥

2 + 𝑝𝜌2) (𝑣 ∙ 𝑣) = 𝑝𝜌2|𝑢|2⁡⁡. 

(70) 

Choosing the following ansatzes for the functions 

 ⁡⁡𝑢 = 1 + 𝜖𝑢1 + 𝜖2𝑢2 + ⋯⁡,⁡⁡ 

𝑣 = 1 + 𝜖𝑣1 + 𝜖2𝑣2 + ⋯⁡⁡ 
(71) 

one obtains, 

 

𝜖𝑛:⁡(𝑖𝜕𝑡 + 𝑖𝛼𝜕𝑥)(𝑢𝑛 − 𝑣𝑛) +
1

2
𝜕𝑥

2(𝑢𝑛 + 𝑣𝑛) = −(𝑖𝐷𝑡 + 𝑖𝛼𝐷𝑥 + 𝐷𝑥
2) ∑ 𝑢𝑘 ∙ 𝑣𝑛−𝑘

𝑛−1

𝑘=1

, 
(72

) 

and 

𝜖𝑛:⁡𝑣𝑛,𝑥𝑥 + 2𝑝𝜌2𝑣𝑛 = −
1

2
𝐷𝑥

2 (∑ 𝑣𝑘 ∙ 𝑣𝑛−𝑘

𝑛−1

𝑘=1

) − 𝑝𝜌2 (∑ 𝑣𝑘 ∙ 𝑣𝑛−𝑘

𝑛−1

𝑘=1

− ∑ 𝑢𝑘 ∙ 𝑢𝑛−𝑘
∗

𝑛−1

𝑘=1

) 
(7

3) 

 

 

3.2.1 Soliton solution 

Compared to section 3.1, we reached a different set of equations that require different ansatzes 

for solutions. We see that the leading order equation in Equation (72) contains both functions 𝑢 and 𝑣 

on the left-hand side. Thus, one can assume 

 𝑢1 = 𝑒𝜂1+2𝑖𝜙1 , 

𝑣1 = 𝑒𝜂1 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
(74) 

where 𝜂1 = 𝜅1𝑥 + 𝜔1𝑡 + 𝜏1 and all the coefficients 𝜅1, 𝜔1, 𝜏1 and 𝜙1 are real constants. If one solves 

the first order 𝜖 equations, which assume 𝑛 = 1 in Equations (72) and (73), one obtains  

 
𝜔1 =

𝜅1
2

2
cot𝜙1 − 𝛼𝜅1⁡, 

⁡⁡𝜅1
2 = −4𝑝𝜌2 sin2 𝜙1.⁡⁡⁡⁡ 

(75) 

As it can be seen from Equations (75), these coefficients and hence the related functions are real 

only for 𝑝 = −1. Therefore, we proceed with this p-value. One can easily show that solving the second-

order equations, which are given by 𝑛 = 2 in Equations (72) and (73), gives 𝑢2 = 0 =⁡𝑣2. All the 

higher-order terms in the expansion (71) can be set to zero by the same reasoning. Hence, after a few 

easy calculations one obtains the 1-soliton solution as 

 𝑞(𝑥, 𝑡) = 𝜌𝑒𝑖(𝜃+𝜙1) (cos𝜙1 + 𝑖 sin𝜙1 tanh
𝜂1

2
), (76) 

which defines a gray soliton. 

3.2.2 Soliton solution 

In order to derive the 2-soliton solution we take two exponential functions in the ansatzes for the 

leading order functions 

 𝑢1 = 𝑒𝜂1+2𝑖𝜙1 + 𝑒𝜂2+2𝑖𝜙2 , 

⁡𝑣1 = 𝑒𝜂1 + 𝑒𝜂2 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
(77) 

where 𝜂𝑖 = 𝜅𝑖𝑥 + 𝜔𝑖𝑡 + 𝜏𝑖. When these ansatzes plugged into Equations (72) and (73) with 𝑛 = 1, it 

gives the dispersion relations 
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𝜔𝑖 =

𝜅𝑖
2

2
cot𝜙𝑖 − 𝛼𝜅𝑖⁡, 

𝜅𝑖
2 = −4𝑝𝜌2 sin2 𝜙𝑖⁡.⁡ 

(78) 

The next order terms in the expansion (71) can be obtained with 𝑛 = 2 in equations (72) and (73) 

and with the help of Equation (77), as 

 𝑢2 = 𝑒𝜂1+𝜂2+2𝑖(𝜙1+𝜙2),

⁡⁡𝑣2 = 𝑒𝜂1+𝜂2+𝐴12 ⁡.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
 (79) 

Also, one can show that the coefficient in 𝑣2 is given by 

 

𝑒𝐴12 =

[
 
 
 
 sin (

1
2

(𝜙1 − 𝜙2))

sin (
1
2

(𝜙1 + 𝜙2))
]
 
 
 
 
2

. (80) 

The perturbative expansion is truncated at this level and all the higher-order terms can be set to 

zero as before, 𝑢𝑛 = 0 = 𝑣𝑛, 𝑛 ≥ 3. Here we see that the coefficient given by the equation (80) is 

positive for real 𝜙’s and by using that, one can write the solution as 

 
𝑞 =

𝜌𝑒𝑖(𝜃+2𝜙+)

Δ12 cosh 𝜂+ + cos𝜂1

{Δ12 cosh𝜂+ cos(2𝜙+) + cosh 𝜂− cos(2𝜙−)

+ 𝑖Δ12 sinh 𝜂+ sin(2𝜙+) + 𝑖 sinh 𝜂− sin(2𝜙−)}⁡, 

(81) 

where the coefficient Δ12 stands for the square root of the coefficient given by equation (80), 𝜂∓ =
𝜂1∓𝜂2

2
 

and 𝜙∓ =
𝜙1∓𝜙2

2
. Consequently, one obtains the 2-soliton solution of the dNLS equation as in Equation 

(81), and this procedure can be repeated in each following order to obtain the N-soliton solution. 

Although the calculations become more cumbersome and complex as more terms are added at each 

higher level, the application of the method is quite systematic and clear. In this sense, the Hirota direct 

method is one of the most powerful methods to obtain N-soliton solutions of any integrable nonlinear 

differential equation.  

4. Conclusion 

Solitary wave solutions of nonlinear differential equations are an active research topic. These 

solutions appear in a variety of types, such as solitons, kinks, peakons, cuspons, and others. They play 

a significant role in almost every branch of physics from fluid dynamics [36] and oceanography [37] to 

Bose-Einstein condensation [38] and cosmology [39]. Solitons are a special type of solitary wave 

solutions due to their particle-like properties and because of that, they attract a great deal of interest. It 

is now quite well understood that solitons appear as a result of a balance between the competing 

properties, weak nonlinearity, and dispersion. Soliton solutions can be obtained by various methods. 

Although the inverse scattering technic is the most powerful one, its applicability to practical problems 

is a bit troublesome. Bäcklund transformation, Darboux transformation, Painleve expansion method can 

be mentioned as other solution technics. However, the Hirota method is the most efficient way to obtain 

the multi-soliton solutions of nonlinear differential equations. Many soliton equations, such as the 

nonlinear Schrödinger equation [18], the 2-dimensional Toda lattice [40], the AKNS hierarchy [41] and 

some equations constrained from the high-dimensional KP hierarchy [42] admit solutions in Hirota 

forms. Recent researches have shown that the Hirota method can also be used to construct soliton 

solutions with rogue-like phenomena [43].  These are localized waves both in time and in space and 

Peregrine solution [44] was the first example of this kind of solution. They represent an unexpected 

wave event on an otherwise flat background and are observed in water waves [45] and in optical fibers 

[46]. Because of that property, they are called “waves that appear from nowhere and disappear without 



Middle East Journal of Science  (2022) 8(2):157-172                  https://doi.org/10.51477/mejs.1029348 

 

 169 

a trace”. Recently, for high-dimensional soliton equations, there are a lot of work on lump solutions by 

the Hirota method [47]. Furthermore, the Hirota method can also be used to solve the nonlinearization 

systems of Lax pairs [48, 49]. The advantage of the Hirota method is that it does not depend on Lax 

pairs.  

Recently, the supersymmetric (susy) extensions of integrable systems are another hot topic that 

has been studied a lot. N=1 susy extension of the KdV equation is defined by Manin and Radul [50], 

and Mathieu [51]. N=2 susy extension of the KdV equation is defined in [52] and later other susy 

extensions of the KdV equation have also defined [53]. In a similar fashion, susy extensions of the other 

integrable systems are defined as well [54, 55]. The integrability of these susy extended models have 

been proved by similar methods to the original bosonic counterparts: infinite number of conservation 

laws, a bihamiltonian structure, the Lax operator etc. Another method of integrability is the existence of 

soliton solutions and for this aim, Hirota method has also been adapted to bilinearize supersymmetric 

systems [56-58].      

In this study, we give an overview of the Hirota direct method. We construct the bilinear forms 

and study the multi-soliton solutions of the KdV and the nonlinear Schrödinger equations by using 

Hirota's method. We explicitly demonstrate how both bright/dark one and two-soliton solutions of the 

nonlinear focusing/defocusing Schrödinger equations can be obtained. We showed that fNLS equation 

admits bright soliton solutions for the vanishing boundary value at infinity. An appropriate redefinition 

of the dependent variable splits up the equation into a set of bilinear equations which are to be solved to 

obtain the term of the solution by term. On the other hand, dNLS equation admits dark soliton solutions 

by changing both the boundary condition and the definition of the dependent variable. The powerful 

property of Hirota's method is that it gives solutions in terms of a series of exponential functions and 

this series expansion truncates at a certain finite order for any soliton degree. Hence, one can obtain 

soliton solutions of any degree directly without dealing with the initial value problem of the related 

differential equation. 
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