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Abstract: A distributed optimal control problem for a system described by bio-heat equation 

for a homogeneous plane tissue is analytically investigated such that a desired temperature of 

the tissue at a particular point of location of tumour in hyperthermia can be attained at the end 

of a total time of operation of the process due to induced microwave on the surface of the 

tissue which is taken as control. Here the temperature of the tissue along the length of the 

tissue at different times of operation of the process are numerically calculated which display 

the rise of the desired temperature of the tumour. 
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Introduction 

Computer simulation plays a vital role in treating rise of temperature of tumour to it’s therapeutic value by means of 

optimal distributions of the applied heat source and surface cooling temperature. In this respect, the consideration of 

physiological responses of the patient at the time of hyperthermia treatment, the region of the tissue affected by 

tumour, the anatomial feature of the treated patient and blood flow rates of the tissue should be taken into account 

with much importance for achieving the temperature of the tumour to it’s therapeutic value avoiding the damage of 

healthy tissue due to overheating.  

Deng and Liu (2002) investigated analytical solutions described by bio-heat transfer equation due to transient 

heating on the skin surface with the aid of Green’s function . Dhar and Sinha (1989) carried out analytically a 

distributed optimal control problem in a multilayered tissue to attain desired rise of temperature of the tumour by 

controlling surface cooling temperature . Wagter (1986)  made an important contribution on optimization in plane 

tissue by multiple electro – magnetic applicaitors. Butkovasky (1969)  had studied the fundamentals of optimal 

control problems in distributed parameter system. Dhar and Sinha (1988) developed an optimal control problem 

analytically to attain desired temperature of the tumour by induced heat source at least possible time.  

An analytical investigation was developed on computations for optimization problems in hyperthermia by finite 

difference method (Das et. al., 1999). Kowalski and Jin (2003) carried out analytically on optimization in 

hyperthermia by electro – magnetic annular phased arryays. In  Loulou and Scott (2002)  investigated a study on 

thermal dose optimization in hyperthermia using conjugate gradient method.  Bagaria and Johnson (2005)  studied 

analytically optimal control problem in bio-heat equation to achieve ideal hyperthermia condition using expliicit 



finite difference method. An analytical investigation was performed on optimization of radio – immunotherapy 

interations with hyperthermia in  Kinuya et. al. (2004). In course of investigation on empirical dose construciton for 

oncological hyperthermia  Szasz and Vincze (2006) developed Pennes equation by inducing the entire energy 

balance.  Rapoport et. al. (2009)  studied on chemotherapeutic intervention on tumours by ultrasound.  Liu and Chen 

(2009)  studied analytically the prediction of temperature in tissues described by bio-heat transfer problem in a bi-

layered spherical tissue by considering blood perfusion and metabolism. Shih et. al. (2008) investigated the 

feasibility of heating on tumour by high intensity focussed ultrasound in thermal surgery.  

Kuznetsov (2006)  investigated optimal control problem to maximize temperature in the tumour at the end of time of 

the process due to spatial volumetric heat generation by assuming fixed total volumetric heat generation over the 

duration of the process. With the aid of conjugate gradient method, a distributed optimal control problem for a 

system described by bioheat equation in a homogeneous plane tissue due to induced microwave was investigated by 

Dhar and Dhar (2010) and Dhar et. al. (2012). 

In this paper, a distributed optimal control problem described by bio-heat equation for a homogeneous tissue is 

analytically investigated such that a desired temperature of the tissue at a particular point of location of tumour can 

be attained at the end of total time of operation of the process by means of controlling induced microwave on the 

surface of the tissue when the surface cooling temperature is constant. Here the switching time during which the 

microwave power is operative has been obtained by using conjugate gradient method under calculus of variation.  

A numerical temperature distributions of the tissue at different times on various values of total time of operation 

have been obtained which displays the rise of desired temperature of the tumour. 

Mathematical Analysis 

The one dimensional bio-heat equation (Deng 2002, Dhar 1989) can be written as,  
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We would like to attain the desired temperature *  at the point 1= xx , where the tumour is located at the end of

the total time T of the process by controlling optimally Q(t). 



Thus the functional (Butkovasky 1969, Loulou 2002)  
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is to be minimized. 

The first term designates the square deviation of the temperature * from ),( tx    at 1= xx .

Let us write a functional J, given by  (Butkovasky 1969, Loulou 2002) 
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where ),( tx  is the auxiliary function. 

By considering  Qm as constant, the first variation of the function J can be written as,  
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with the help of equations (2) and (3). By assuming J  to vanish for any 

)t(Q),T,x(),t,o(),t,x(),t,L(x , )(tu  and taking ),(),,( tLox  both equal to 

zero, a system of auxiliary function ),( tx  is obtained as, 
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 and the optimal values of the controls Q(t) and u(t) stand, 
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Here the conjugate gradient method with the aid of calculus of variation has been used (Butkovasky 1969, Loulou 

2002).  Considering atxtx ),(=),(1 and expressing ),(1 tx  in Finite Sine Transform, given by,
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  where np  are positive, real roots of the equation,  
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the equation (1) with the help of equations (2), (3) and (13) stands,  
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Finally we get,  
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The solution of equation (14) with the help of equation (15) stands,  
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The corresponding solution of equation (7) with the help of equations (8) and (9) can be written as, with the help of 

earlier Finite Transform,  
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for mp  are roots of the equation (13). 

Considering u(t) as constant, the value of optimal control Q(t) can be obtained from equation (10) with the help of 

equations (17) , (18) , (19) and (20). 

Here we have assumed that the time dependent  Q(t) )( 3Wm   is only controllable input variable which is 

piecewise constant function of time that changes value at certain specified discrete instants considered as switching 

times  (Wagter, 1986). 

For the sake of simplicity we consider only one specified switching time 1= tt . Thus, according to equation (10)

one can write  
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where Q(t) assumes two extreme values in )(0, 1t  and ),( 1tT , as one considers Q(t) a singular control, which can

be obtained with the help of equations (16) - (21) by means of simulation. 



Results and Discussions 

Data used in computation are given as follows : 

c = 3770 J kg-1 0 C-1 

 = 998  kgm-3 

k = .5 Wm-1 0 C-1 

h = 6 Wm-2  0C -1 

a = 370C 

*
 = 430C 

L = .01 m, 

x1 = .006m 

 = 3000 Wm-3   0 C-1 

Qm = 33800 Wm-3 

0 = 250C 

T = 600s, 800s, 1000s 

u(t) = 20oC 
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Fig 1 : Temperature(0c) distribution of the tissue along the length of the tissue(mm)
       for Q(t)=338083 wm-3,  0<=t<=500;   Q(t)=9857 wm-3 , 500< =t<=600; 

t=600(s) t=300(s)t=500(s)
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Fig 2 : Temperature(0c) distribution of the tissue along the length of the tissue(mm) 
    for Q(t)=316053 wm-3,  0<=t<=700;   Q(t)=10512 wm-3 , 700< =t<=800; 
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Fig 3 : Temperature(0c) distribution of the tissue along the length of the tissue(mm) 
 for Q(t)=305144 wm-3,  0<=t<=900;   Q(t)=10823 wm-3 , 900< =t<=1000; 

Fig 1 displays the temperature of the tissue along the length of the tissue for  Q(t) = 338083 Wm-3 , 0  t  500 ; 

Q(t) = 9857 Wm-3 , 500  t  600. Fig 2 depicts the temperature of the tissue along the length of the tissue subject to 

Q (t) = 316053 Wm-3 , 0  t  700 ;  Q (t) = 10512 Wm-3 , 700  t  800. In Fig 3 the temperature of the tissue along 

it’s length due to the application of optimal volumetric heat generation rate Q (t) = 305144 Wm-3 , 0  t  900 ;   

Q(t) = 10823, 900  t  1000. It is observed that desired temperature 430C at the particular tumour point x1 = .006m 

is attained at the end of operation of the process T = 600s , 800s and 1000s in Fig 1 , Fig 2 and Fig 3 respectively.   

Further it requires mentioning that as the total time of operation of the process increases from T =600s to 1000s, the 

switching time increases with the decrease of  Q(t) in the first time segment of operation and corresponding increase 

of Q(t) in the second time segment of operation. Again the temperature of the tissue on left side of the tumour 

steadily increases and attains the desired temperature 43oC on the point of tumour at the end of the process. On the 

right side of the tumour, the temperature rapidly decreases to arterial temperature 370C till the end of the process as 

we consider the cases at T = 600s , T = 800s and T = 1000s displayed in Fig 1, Fig 2 and Fig 3 respectively. Thus 

the temperature of the healthy tissue is not been overheated above 43oC.  

Conclusion  

This analytical study may be extended for further developments considering different times of operation and also 

different locations of the tumour having various lengths of the tissue.  

It is to note that in the paper [Dhar and Dhar, 2010] the desired tumour temperature is attained within the total time 



of the operation of the process (switching time t1 (say)). Here, the microwave is switched off during the second time 

segment (t1, T) . But, in this paper the desired temperature of the tumour is attained at the end of operation of the 

process at time T. In this case the microwave is not switched off but its intensity is substantially reduced in the 

second time segment (t1, T). 
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Nomenclature:  

c = specific heat of tissue, J/kg oC 

h = heat transfer coefficient between the skin and the ambient air, CWm 02 /

k  = thermal conductivity of tissue, CmW 01 /

L = length of the tissue, m  

x1 = location of the tumour, m  

 = temperature, 0C 

a
= arterial temperature, 0C 

0
= initial temperature, 0C 

u(t) = temperature of the surrounding medium, 0C 

*  = desired temperature to be attained, 0C 

T = Total time of the process, s  

t1 = switching time, s 

Q(t) = optimal heat generation rate due to volumetric heating, Wm-3 

 = density of tissue, kg m-3 

 = dirac – delta function. 

 = product of flow and heat capacity of blood, W m-3 / 0C  

Qm = rate of metabolic heat generation, Wm-3 
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