
A Fast Method For Accessing Nodes In The Binary Search Trees  
 

 İbrahim Ates, Mustafa Akpınar, Beyza Eken, Nejat YUMUSAK 

 
 Sakarya University, Department of Computer Engineering, Serdivan-Sakarya, Turkey 

ibrahimates@yahoo.com 
 
 

Abstract: In this study, a method that makes easy to process in the search trees is presented. A data 
structure which uses this method is also explained. It is explained how this method is used for strings. 
Performance comparisons with other trees like AVL, RB tree are showed. A hash table and a balanced 
binary search tree are used to implement this data structure. It is built the categorized subtrees according to 
data. Hash table is used to access data in the subtrees. It is aimed to process on relatively less amount of 
data collections instead of large amount of data collections. In this way the numbers of the process will be 
decreased. It will make positive affect on the program performance. 
 
Keywords: Balanced binary search tree, Hash table, AVL, RB Tree, Salkim Tree 
 
 

Introduction 
The study of data structures is core to computer science. A wide range of container structures have 

been developed to meet different problem situations. The focus on data structures that efficiently store large 
collections of data (Tremblay J. P., 2003; Ford W. and Top W. 2002). 
 

Data structure determines performance of the software. When program use large collections of data 
then data structure selection is getting more important.  The structures have operations to access items, insert 
items and remove items from the collection. Effectiveness of a program depends on performance of deletion, 
insertion and searching process (Robson R, 1999; Weiss M. A., 1994). 
  

Data can be stored in a memory sequentially or associatively. Data structures which are stored 
sequentially save data with position in a memory. When a data with value is wanted to be found, O (n) times 
search will be needed. Data structures, which save data with value in memory, are more suitable in this 
situation. This type of data structures is called associative data structures. These data structures are updated by 
using values, instead of using positions in associated data structures. Tree, is an example of this kind of data 
type (Larsen Kim S., 2000). AVL (Adelson Velskii and Landis) and Red-Black trees are the most important 
examples of tree data structure. 
 
 
AVL Trees 
 

AVL trees are binary search trees which are locally balanced. Depth of the AVL trees is arranged as O 
(logn). This means that AVL trees have the same depth of the left and right sub trees. The difference between 
left and right sub trees of any node can be one or zero. Cost of AVL algorithms is O (logN), when these 
algorithms are used for building tree, deletion, insertion and searching process (Larsen Kim S., 2000, Gabarró 
J. and Messeguer X., 1998; Cameron H. and Wood D., 1994). 
 

AVL (Adel’son-Vel’skii and Landis) trees are efficient data structures for implementing dictionaries. 
AVL trees are binary search trees which are locally balanced; that is, for any internal node, the heights of its 
left and right subtrees may differ by at most one. The local balance at each node guarantees that the height of 
an n-key search tree will always be bounded above by 1.44 log(n +2). Since AVL trees are the most efficient 
method of balancing binary search trees, they are utilized in a wide variety of applications such as databases, 
operating systems, and symbol tables in compilers. 
 

TOJSAT : The Online Journal of Science and Technology- April 2013, Volume 3, Issue 2

1 www.tojsat.net



T, an AVL tree, is a binary tree in which the difference between the heights of the left and right 
subtrees of any node is at most one. Elements from a totally-ordered domain are stored in the leaves with 
smaller data to the left of larger ones. For each internal node v, we use k (v) to refer to the key value stored in 
it and l(v) and r(v) to denote the left and right children, respectively. Moreover, k (v) always equals the key 
value of the largest element stored in node v’s left subtree. Such trees are usually referred to the literature as 
external AVL trees. 
 

When we insert a new node into an AVL tree, some external nodes are replaced by a new internal node 
(and two external nodes as its children), and the height of the parent of new node may have been increased by 
one. As a result, if the height of newly inserted node is increased, the property of AVL tree may be lost at the 
ancestors of this new node. When the insertion causes an AVL tree to loose its balance, applying exactly one 
of the four rotations—single rotations LL or RR and double rotations LR or RL—will restore it. 
 
Red-Black Trees 
 

The red–black tree is a balanced binary search tree whose height is O(log n) and dictionary operations 
such as search, insertion, and deletion are performed in O(log n) time in sequential computation, where n is 
the number of nodes in the red–black tree. 
 

In Red-Black tree (RB tree), every node has RED or BLACK attributes. Tree operations, except 
insertion, are costed O (log n) in RB tree. Insertion of an element will violate balance of tree which must be 
rebalanced. Rebalance process can be achieved with a simple operation, called rotation (Park H. and Park K., 
2001; Cameron H. and Wood D., 1994). 
 

Let root(T) denote the root node of a red–black tree T and item(x) denote the item stored in node x. Let 
p(x) denote the parent of node x and pn+1(x) the parent of pn(x), n≥1. Let rchild(x) denote the right child of 
node x and lchild(x) the left child of x. The successor of node x is the node with the smallest item larger than 
item(x). The predecessor of node x is the node with the largest item smaller than item(x). Each node x has a 
space for its item, a bit for its color (red or black), and three pointers to p(x), lchild(x), and rchild(x). If a node 
does not have a parent or a child, nil is stored in the corresponding pointer. We will regard nil as a pointer to 
an external node (leaf) and the nodes holding items as internal nodes. 

A red–black tree is a binary search tree satisfying the following red–black properties (Park H. and Park 
K., 2001).  
 
    1. Every node is either red or black. 
    2. Every external node (nil) is black. 
    3. If a node is red, then both its children are black. 
    4. Every simple path from a node to a descendant leaf contains the same number of black nodes. 
 
The red–black properties can be rewritten using nonnegative ranks instead of red and black colors  
 
    (a) If x is any node with a parent, rank(x)≤rank(p(x))≤rank(x) + 1. 
    (b) If x is any node with a grandparent, rank(x)<rank(p2(x)). 
    (c) If x is an external node, rank(x) =0 and rank (p(x)) =1 if x has a parent. 
 

The above conditions (a)–(c) are called balance conditions. The rank of node x corresponds to the 
number of black nodes in any simple path from x to a descendant leaf. Hence, rank (p(x)) =rank(x) + 1 if x is 
black and rank (p(x)) =rank(x) otherwise. Note that rank(x) need not be stored in x. (Park H. and Park K., 
2001; Cameron H. and Wood D., 1994). 
 

TOJSAT : The Online Journal of Science and Technology- April 2013, Volume 3, Issue 2

2 www.tojsat.net



 
Salkim  Tree 
 

A data structure is a systematic way of organizing and accessing data. It is focused on data structures 
that store large collections of data. It is needed new data structures that can efficiently add and remove items 
without involving the entire collection of elements. In this study, Salkim tree is proposed to address this 
problem. 

 
A hash table and RB binary search tree are used together to build Salkim tree. Collision case of hash 

table is used to categorize data. Selected hash function generates same index for different data in same 
category. Data are stored in a special form of binary search tree. In this form, root has one element which 
provides connection between tree and hash table. Data are stored in meaningful subtrees instead of one tree. 
When a process is needed for an element, process will work in related subtrees instead of all trees. 
 
Implementation 
 

When this data structure is wanted to build for letters, records are generated for each letter in hash 
table (Hrádek J., 2003; Zobel J., 2001). For this aim, hash function is used to generate index. Index value 
shows location of each letter in hash table. The root addresses of each subtree are stored in hash table. Hash 
function is shown in equation 1. 
 

                                                   H(x)=ascii(x)-65    (1) 
      

 
Address records of subtrees are generated statically in hash table. Initial value of address records are 

NULL.When a string is wanted to be added to the structure, firstly hash table is checked whether subtree is 
created or not. If related subtree is created then string will be added to this subtree, otherwise a root will be 
created and string will be added to this root. The address of the created root will be written to the related place 
in the hash table. 

 
Searching process of an element; hash table is checked whether related subtree exists or not. If subtree 

does not exist, no need more completion, it can be said that element does not exist in structure. Otherwise 
searching process will continue in related subtrees. 

 
For example, lets assume that ‘train’ word is wanted to search in structure, Firstly index value of  ‘t’ is 

calculated using hash function (index value of ‘t’ is equal to 19). 19 th section of hash table is checked 
whether any address exists or not. If 19 th section value of hash table is NULL, then it can be said that ‘train’  
does not exist in the structure, otherwise ‘train’ word  will be searched in ‘t’ subtree. If ‘train’ word is wanted 
to search in any tree, all trees must be searched though it does not exist. This situation increases the cost of  
searching process in an ordinary binary search tree. 

 
For example, cost of searching an element, in a balanced tree with 26000 elements, is 15.  Salkim 

trees’s cost is 10 in the same situation (when all letter categories have 1000 element). 
 

TOJSAT : The Online Journal of Science and Technology- April 2013, Volume 3, Issue 2

3 www.tojsat.net



Assuming that number of element is N and number of element started with ‘i’ is Ni, 
 

                                           N=Na+Nb+ … +Ni+ … Nz    (2) 
     

 
Assuming that all element is not started with ‘i’, it can be said that 

 
                                                   Log2N>log2Ni                                           (3)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 

 
 

Figure 1. To access subtrees using hash table 
 

      
 

1 2 25 26 

A 
0X6F00 

B 
NULL 

Z 
0X3F26 

Y 
NULL 

 
 

Zone 

Zoo  

   

 Zinc 

Z 

Zero  

Zeal Zest 
 Zoom 

Avid  

  

 Atom 

A 

Apex  

Ape Apt Aunt   Avow 

TOJSAT : The Online Journal of Science and Technology- April 2013, Volume 3, Issue 2

4 www.tojsat.net



Results 
 

An application program is written to analyse building structure, inserting an item and searching an 
item performances of AVL, RB tree and Salkim. 
 

Performances of building structure are examined for five different data sets. Amount of data in data 
sets are 25000, 275000,350000, 550000, 1100000. X axis of figures demonstrates these data sets. Y axis 
demonstrates process time. Build performance of those data structures is shown in Figure 2.  

  

Performance of building structures

0
2
4
6
8

10
12
14
16

1 2 3 4 5

Data Set

P
ro

ce
ss

 T
im

e(
sn

)

AVL
RB
Salkim

 
Figure 2.  Performances of building structures 

 
 

Table 1. Performance values of building structure test. 
 

Data Set Number of Data AVL RB Salkim 

1 25.000 0,17 0,17 0,15 

2 275.000 2,173 1,956 1,833 

3 350.000 2,46 2,303 2,18 

4 550.000 5,56 4,506 4,156 

5 1.100.000 14,006 11,237 9,124 
 
 

Insertion performance of AVL, RB and Salkim tree is shown in Figure 3 and Table2. Note that all data 
structure was including 25000 elements before insertion test. Insertion performance is tested for four cases, in 
first case 100000, in second case 1000000, in third case 5000000, and in fourth case 10000000 elements are 
added into each structure. 
 

TOJSAT : The Online Journal of Science and Technology- April 2013, Volume 3, Issue 2

5 www.tojsat.net



Insertion Performances

0

5

10

15

20

25

30

35

40

1 2 3 4

Data Set

P
ro

ce
ss

 T
im

e(
sn

)

AVL
RB
Salkım

 
Figure 3. Performances of insertion item 

 
 

Table 2. Performance values of insertion item test 
 

Data Set Number of  inserted data AVL RB Salkim 

1 100.000 0,341 0,29 0,25 

2 1.000.000 4,87 3,475 2,56 

3 5.000.000 18,326 15,02 12,083 

4 10.000.000 36,532 30,014 25,543 

 
 

Search performance of structures is shown in Figure 4 and Table3. Note that all data structure was 
including 25000 elements before search test. Search performance of structures is tested for four cases. In first 
case 100000, in second case 1000000, in third case 5000000, and in fourth case 10000000 elements are 
searched on each structure. 
 

TOJSAT : The Online Journal of Science and Technology- April 2013, Volume 3, Issue 2

6 www.tojsat.net



Searching Performances

0

10

20

30

40

50

60

1 2 3 4

Data Set

P
ro

ce
ss

 T
im

e(
sn

)

AVL
RB
Salkım

 
Figure 4.Performances of searching item 

 
Table 3. Performance values of searching item test 

 
Data Set Number of searched data AVL RB Salkim 

1 100.000 0,451 0,341 0,25 

2 1.000.000 3,395 2,744 1,542 

3 5.000.000 20,92 13,71 10,752 

4 10.000.000 48,037 32,837 27,01 

 
 
 
Conclusion 
 

Performance of Salkim tree is better than AVL and RB tree which are preferred in a lot of applications. 
Especially, search performance and insertion performance of Salkim tree’s superiority is getting clearer when 
number of data increase. 

 
 

Acknowledgement 
 

We would like to thank people who are worked in Akcasu Software Corporation and Oea International 
Inc. Implementing of this study would be harder without their help. 
 
 
 

TOJSAT : The Online Journal of Science and Technology- April 2013, Volume 3, Issue 2

7 www.tojsat.net



 
 References 
 

Tremblay J. P., (2003), Tremblay J. P., “Data Structures and Software Development”, Prentice Hall 
 
Ford W. and Top W. (2002), “Data Structures with C++ using STL”, Prentice Hall 
 
Robson R., (1999), “Using the STL”, Springer Publishing Company 
 
Weiss M. A., (1994), “Data Structures and Algorithm Analysis in C++”, Addison-Wessley 
 
Larsen Kim S., (2000), “AVL Trees with Relaxed Balance”, Journal of Computer and System Sciences, 
Volume 61, Issue 3, Pages 508-522. 
  
Gabarró J. and Messeguer X., (1998), “Parallel dictionaries with local rules on AVL and brother trees”, 
Information Processing Letters, Volume 68, Issue 2, 30 October 1998, Pages 79-85. 
 
Cameron H. and Wood D., (1994), “Balance in AVL trees and space cost of brother trees”, Theoretical 
Computer Science, Volume 127, Issue 2, Pages 199-228. 

 
Park H. and Park K., (2001), “Parallel algorithms for red–black trees”, Theoretical Computer Science, 
Volume 262, Issues 1-2, Pages 415-435. 
 
Cameron H. and Wood D., (1994), “Insertion reachability, skinny skeletons and path length in red-black 
trees”, Information Sciences, Volume 77, Issues 1-2, Pages 141-152. 

 
Hrádek J., Kucha M. and Skala V., (2003), “Hash functions and triangular mesh reconstruction”, 
Computers & Geosciences, Volume 29, Issue 6, Pages 741-751. 
 
Zobel J., Heinz S. and Williams Hugh E., (2001), “In-memory hash tables for accumulating text 
vocabularies”, Information Processing Letters, Volume 80, Issue 6, Pages 271-277. 
 

 

TOJSAT : The Online Journal of Science and Technology- April 2013, Volume 3, Issue 2

8 www.tojsat.net




