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Abstract. This work focuses on the development of a multivariate function approximating method by using
cubic Transformational High Dimensional Model Representation (THDMR). The method uses the target
function’s image under a cubic transformation for High Dimensional Model Representation (HDMR)
instead of the function’s itself.
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Introduction

When a natural event is analyzed, the number of factors affecting the event is higher than calculated. General way to
overcome this is to eliminate or ignore some of factors which will be less effective. However as the investigated event
complicates, the number of affecting factors increases. Nowaday computer technology cannot be suitable to the calculation
limitations on this type of problems. High Dimensional Model Representation (HDMR) is perhaps the most fruitful solution to
those multidimensional problems. Various HDMR versions were suggested in order to tackl with different problem types
encountered. Factorized HDMR is one of them. The main problem with FHDMR is that unlike additivity measures of HDMR,
multiplicativity measures of FHDMR is unfortunately not well ordered. This led to the Logarithmic HDMR. The main idea
behind Logarithmic HDMR was to initially transform what is basically a function of multiplicative nature to one that is of
additive nature. This would enable us to expand the transformed problem using plain HDMR and then transform back the
individual terms. Previous works was focused on the HDMR constancy optimization under an affine transformation (Yaman,
2008 and Yaman, Demiralp, 2009), conic transformation (Giindogar, Baykara, Demiralp, 2010 and Giindogar, Baykara,
Demiralp, 2011) and quartic transformation (Sen, 2011). We shall consider in this work a cubic transformation and attempt to
find optimal parameters for such a transformation leading to a new approximation.

Transformational high dimensional model representation

Let us consider a function f (Xl,X2,..., Xy ) of N independent variables X, X,,...,X, which has a non-additive structure. A

transformation T can be chosen which yields a new multivariate function @(X,,..., Xy )

TF (X5 X0 Xy ) = (X5 X000y ) (1)

If we apply the HDMR expansion to ¢ we will get

N
P(Xseees Xy ) = @0 + D0 (X )+ ooty (X Xy ) -
=

Addititivity measures o, ((p) s can be defined for this expansion in the usual HDMR manner.
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These measures will be different from those obtained by applying HDMR expansion to the original function f . Obviously the

difference will be dependent on the specific choice of the transformation T . Since the basic philosophy of HDMR is to be able
to represent the function with as few and as less variate terms as possible , we would prefer o, and o, to be as close to 1 as

possible. In this study we choose to deal only with o, and attempt to maximize it.
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Cubic Transformational high dimensional model representation

A polynomial can be used as THDMR’s operator for choosing the transformation suggested in (1). Here the degree of the
polynomial will be taken to be three. The linear combination coefficients of the cubic will be assumed to vary with
independent variables. They will be regarded as operators dependent on the algebraic operators each of which multiplies its
operand with a different independent variable. This gives flexibility to the relevant transformation and they can be selected so
as to approximate the HDMR expansion optimally.

TF (oo Xy ) = @(Xysevs Xy ) = 8 (Koo Xy )+ (X Xy ) T8, (X Xy ) F2 25 (X X ) £
Since only o, (go) will be under consideration, ¢ will be approximated by the constant component ¢,
p=a,+af+a,f’+a,f’ =g,

which gives the approximate equality
f =~ i/—A+\/A2 +B’ +i/—A—\/A2 +B’
2
f,~ (—%H?J\}/—A+VAZ +B’ +[—%+i%} V-A—+ A’ +B°

2
f, z[—%ﬂgj AN-A+V A + B +[—%+i%}3 ~A-+A*+B’,

(€))

where

. - 2a; ;
RN P S o o O S P L R )
20 q a; 27a; 3la, 3a

In this work we will consider only f,. The other roots may be considered analogically. The aim here is to find convenient
forms for @,,8,,a, and a,that maximize o, in (2). To this end &,,8,,8, and @, will be taken in L, class. Hence

orthonormal basis of the Hilbert space H (M) will be taken into consideration. Orthonormality will be defined in terms of the
inner product as

(uj,uk):.[dVW(xl,...xN Wy (XX YU (XX ) =8y, 1< k<0
\

where V =[a,b]x...x[ay,b,] represents the hyperprism which is the HDMR construction domain and W (X,...X, ) the

multiplicative weight function used in HDMR. The individual weight functions will be chosen as constants, normalized over
the corresponding domain and dV is the product of individual differentials dx,...dx, .

Although the basis mentioned above has an infinite number of elements, in practice a finite number of elements will be taken
into consideration.

m n p
3, (X% )= 22Uy, a (X% ) = kZa&”uk, a, (%, ) = 28Uy, & (%% ) = Y allu,. (4)
j =1

j=2
With these expressions in hand, the constancy measurer o, (¢) will be a function of the parameters a(jo) ,al, a,(2) , af’ where
2<j<m 1<k<nl<l<p, 1<s<t.

Thus

o, (9) =0, (¢, al”,..a af‘),...,a,ﬂl),al(z)...,a(pz),af”,...,af")).
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Using (4) ¢ can be expressed as

(X, Xy ) =

i=2

n p t
al’u, +(z aﬁ”ukj f +(Z a,(z)u,j f2 +(z af)usj f? (5)
k=1 1=1 s=1

To obtain the constant HDMR term ¢, both sides of (5) are to be integrated with respect to X,...X, over V under the weight

function W .

=2 v B=1 k=1 A=l
lzpllal(Z)_[dV (lﬁwﬁ (%, )JuI f? +Za§3)jdv lj[Wﬁ (%, )}JS f’
Z v -1 s=1 v 1

Defining vectors 7 and

0)

n=(al

seees Ay s

.
0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
al” af),...,aﬁ),af)...,ag),af),...,af)),zz(r§),...,riﬁq),r}),...,rrﬂ),r})...,rﬁ)),rf),...,r“)

With the elements of vector 7 defined as

where

7" =[av []jwﬂ(xﬁ)}ij =(u;,h), 7 =[dv (]ﬂ[wﬁ(xﬂ)}kf = (U, f),

\ \

o= [ T 5, £ =12 = [ [T ) o (),

v p=1 \

(6)

2<j<m 1<k<nl1<lI<p, 1<s<t.

h(Xl,...XN ) appearing in the first inner product in (6) is a function which has the constant value 1 for all x, in the hyperprism

domain [al,bl]x ...><[aN ,by ] @, can now be written as an inner product ¢, =77 . Since ¢, has a constant value, the square

of its norm will be equal to the square of the function ¢, .

loull = (o) ()" =nze"n- off

On the other hand can be expressed in terms of the above defined vector 7 and a square matrix C which can be expressed in

terms of its blocks as

where

K L N S

r M P T
C=| 1 T

N P R Y

sT Tt Y' Z

wo=(uppu ). 2< jk<m, L, :(uj,fuk),2£j£m,1£ksn,

K
M. =(uj,f2uk),lsj,kSn, Njkz(uj,fzuk),zstm,lsks P,

]

=(u,f'u ), 1<jk<p, P, =(u,fu ), 1<j<n1<k<p,
k (] k) jk (J k)

R
S :(uj,f3uk),2§jsm,lﬁkst,Tjk :(uj,f“uk),lstn,lskgt,
ijz(uj,fsuk),ISJ

IA

piskst Z;, =(u,flu ). 1< jk<t
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C is a symmetric, positive definite matrix. Norm square of ¢ can be expressed in terms of C and 7 as

2 T
el =ncn’.
So the constancy measurer o, becomes

2 TT
Lol _m'r ™
el nCn

Our aim is to maximize o, which can be written as a Rayleigh quotient as

_ chfl/ZTTchl/Zy
y'y

Oy

where y=C"?;" . However, a Rayleigh quotient takes its maximum value at the maximum eigenvalue of its kernel, in this

1/2

case C"?77"C™"2. Similarly y is the eigenvector corresponding to the maximum eigenvalue. An analysis of the kernel will

give the maximum eigenvalue and the corresponding eigenvector of it. They are respectively,
o,=7'C'r, y=C"r.
The equation for y gives us the vector " in (7) that maximizes o, as
n'=C"y=C"r.

Utilizing these equalities we can construct a function for ¢,. To complete this we can express ¢,,d,,8,,8, and a, in terms of

matrix algebraic entities. ¢, can be written in compact form as
p,=nr=1Cr.

We define a vector ¢ with (m+n+p+t—1) elements §:[é‘z,...,ém,él,...,én,fl,...,fp,fl,...,flT and express a,,a,,a, and

a, more compactly as
a, = 7 V&), a = D, a, = n?E?, a, = e,

Here the vectors 7", 7", n® 7% and £©,&0, @ £0) are explicitly defined as

79 <[00, ] " =[a"...a ] 1 =[a?..2,? ], n =[39....0° ],

5(0) = [52,”.’5"]]"' > 5(1) :[51""’§n ]T > 5(2) :I:gla'"ﬂ‘fpjr > 5(3) = [‘fla'"a‘ft]T .

To proceed we define (M+n+ p+t—1)x(m+n+ p+t—1) projection matrices PP, and P, as

m-1 . m+n—1 ; m+n+p-1 .
R=>eg . P=> ee . P= > ee,
p=1 p=m S=m+n

Where e, is the unit vector in (m +n+p+t —1) dimensional space. Utilizing these projection operators a,,3,,a, and a, can

be approximated as

a, :ﬂplég:TTcilplfs q :77P2§ = TTC?Isz:
& =nPE=T'CIPE a=n(1-P-P,-P)E=r'C"(1-R-P-R)S

where | identity matrix. If now these substitutions are introduced into (3) we obtain
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2
'C'PE-7'CT'r B
7'C(1=R-P.=R)¢
Tchlplé_Tchlz_ ~ l TTC_IP3§TTC_]P2§ . n
TCT(1-R-P,—P,)¢ H[c'(1-R-P,-P)¢]
e oL detreretre L 2[CPeT
1 _ 2
. 2 I:Z'TCI(I—PI—PZ—P3)§j| 27[TTC71(|—P1—P2—P3)§:|3
o[<c re] come
27[7"C(1-R-P,-P)¢] | 7C(1-R-P-P)¢
T T~-1 2
27 ['C'P¢]
3[rTC’1(I—P1—P2—P3)§T

'C'RE-7CT'r
TC(I-R-P P

T'C'RECTCTIRE
(e (1-P—P,-R)¢ ]

r'C'Peé-7'CT'r
T'CH(1-P-P,-R)¢

N

Tl Tl - 3
N _% T ZC PSr CTRS |- 2[7"CR¢E] 3
; [FC(1-R-P.-R)¢] 27[7'C (1-R-P,-P)¢]
o[rcee] rowe
2 —
27[7'C (1 -R-P,-P)¢] e -R=R-R)e
- TA-l 2
27 ['c'Pé]

(7' (1-R-P,~P)¢T
o
3c/'C'(1-R-P,-PR)¢&’

To simplify this expression we can use a spectral decomposition of C™' as

m+n+p+t—1 1

C'= Z P50
p=1 /1,5

where 4, is an eigenvalue of C and ¢, is an eigenvector corresponding to the eigenvalue 4; . A good approximation will be

to use the minimal eigenpairs of Cas C™' =, ¢, @' -

Conclusion

In this study we inserted certain flexibilities into the approximation. Because we want to improve its quality. Hence we applied
HDMR on the image of the original function under a third degree transformation. The coefficients of the transformation are
chosen to make the error of HDMR approximation as small as possible and this increases the efficiency of the method.
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