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Abstract: In this paper, the mechanism of rain-wind-induced vibration of inclined 
cables is further studied based on the theory of multi-degree-of-freedom cable 
element (Ma, 2003). After both influence of axial and out-of-plan vibrations of cable 
are neglected, the in-plan vibrations of cable are studied and the influence of water 
rivulet on aerodynamic forces are considered. A two degree-of-freedom nonlinear 
model of the coupling system is developed and the governing equations for the 
vibration amplitude are derived. Then Hurwitz discriminant is used to evaluate the 
kinematic stability of the system. When the damper or the stiffness of the system is 
negative, self-excited vibrations of the cable will occur, which is the essence of rain-
wind-induced vibration. Because there exits a limited cycle, the free vibration of the 
nonlinear system has a steady amplitude. By means of the harmonic balance method, 
the dynamic responses of the system are calculated. Numerical example is given to 
show that the developed model is reasonable and effective. 
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INTRODUCTION 

Rain-wind-induced vibration of an inclined cable is a severe vibration with large 
amplitude, which might cause fatigue damage in short periods and should be mitigated in 
engineering. Such dynamic behavior is a solid-liquid-wind interaction problem with complicated 
mechanism. The forming and the moving of water rivulet on the surface of a cable in wind and 
rain circumstance changes cable section and aerodynamic forces; the latter, on the other hand, 
affects the vibration of the cable and the water rivulet. The interactions among the cable, the 
water rivulet and aerodynamic forces induce self-excited vibration of the system, namely rain-
wind-induced vibration. Because of so many infecting factors and the nonlinear characteristics, 
the mechanism of such vibration is complex and difficult to analyze. 

Hikami and Shiaishi (1988) firstly observed rain-wind-induced vibrations on Meikonishi 
Bridge in Nagoya, Japan, where the amplitudes of inclined cables were observed up to 55cm 
under wind of velocity 14m/s. During the vibration, a water rivulet was observed to appear on the 
lower surface of the cable, oscillating in circumferential direction with the same frequency of the 
cable. Further wind tunnel experimental research showed that the cable oscillations were mostly 
of single mode in the vertical plane and that the formation position of water rivulets depended on 
mean wind velocity. Based on further wind tunnel test results and field measurement results, 
Matsumoto et al. (1992, 1995, 2003) concluded that the formation of upper water rivulet and the 
axial flowing might be the inducement of rain-wind-induced vibrations. Bosdoginni and Oliver 
(1996) compared the tunnel test results between fixed water rivulet model and moving water 
rivulet model and indicated that the position, not the moving, of upper water rivulet was the 
primary cause of the vibration.      

Compared with experimental research, analytical study is relatively limited. Yamagushi 
(1990) proposed a two-degree-of-freedom galloping model, considering the cable as a horizontal 
rigid cylinder. After Peng (2001), Xu, Wang (2003) and Wilde, Witkowski (2003) described the 
movement of rivulet as simple harmonic circumferential oscillating at the frequency of the cable, 
the plane model was further studied, and the analytical results were compared with those from 
wind tunnel tests. It turned out that such analytical models could capture main dynamic features 
of inclined cylinders with either moving rivulet or artificial fixed rivulet. However, because the 
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plane model assumes that the vibration of cable and rivulet is same along cable length, it might 
not be applicable to an integral cable. A multi-degree-of-freedom cable model was developed by 
Ma in 2003, where the inherent modes were used to simulate the dynamic curve of the cable, and 
the oscillation of rivulet was explored. However, as a further study, this paper presents a two 
degree-of-freedom nonlinear model of the coupling system after both influence of axial and out-
of-plan vibrations of the cable being neglected. Then Hurwitz discriminant is applied to evaluate 
the kinematic stability of the model and the harmonic balance method is employed to calculate 
the amplitude of the cable.  

Theoretical model  
The mechanical model is shown in Fig.1, where x is chord direction of the cable, and θ is 

the inclination angle. S is the average tension along the chord. z1 is the local orientation in the 
moving direction of the cable. ),()(),( 0 txxtx γββ +=  is the instant position of the rivulet, 

)(0 xβ and ),( txγ are the initial position and oscillating angle of the rivulet, respectively. )(xU  
and ),( txU RE  are wind velocity and relative velocity.  

As the cable oscillations are mostly of a single mode in the vertical plane, the dynamic 
curve of the cable can be simulated through its inherent vibration in-plane mode functions. After 
both influences of axial and out-of-plan vibrations are neglected, the multi-degree-freedom model 
of Ma (2003) may be simplified as 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 1 Model of the system of cable and rivulet 
 

wwwww fqkqkqcqm =+++ 2
12111111                                                              (1) 

 γγ qqgqmqm ww  12221 =+                                                                       (2) 

                                                    γ 
                                               β0 
 
 
 
 
 
 
 
θ 

TOJSAT : The Online Journal of Science and Technology - July  2011, Volume 1, Issue 3

Copyright © 2011 - www.tojsat.net



10 
 

where ∫=
l

wdxMm
0

2
11 φ , ∫=

l

w dxmDm
0 021 cos2/ βφφ γ , ∫






=

l
dxDmm

0

2
2

22 2 γφ , 

∫=
l

w dxmDg
0 0

2
1 sin2/ βφφγ , ∫=

l

wzw dxFf
0 1φ , ∫∫ ∫ ′′′′+′′−=

l

w

l l

www dxzdxz
l

EAdxSk
0 10 0 111 φφφφ ,   

)()(cos)( 0 xxx wφβφγ = , )(xγφ  is the vibration mode of the rivulet, wφ is the in-plane mode function 

of the cable, 11c , l and D are the damper coefficient, chord length and the diameter of the cable, k is the 
rotation stiffness of the rivulet,  z1(x) is the initial curve function of the cable, ),( txw  is the vertical 
dynamic displacement, EA is the section stiffness, M  and m are the mass per unit length of the cable and 
the rivulet. 1zF  is the wind pressure component in z1direction: 

2/]cossin[ **2
1 ααρ ⋅+⋅−= LDREz CCDUF                                                             (3) 

where )(αLC , )(αDC  are lift and drag coefficient, respectively and may be expressed as 
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where )()(),( xtqtx γγ φγ = , )()(),( xtqtxw ww φ= . 
 
Combining equation (1), (3), (4), (5), we get 
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ww ξω ,  are the circular frequency and damper ratio of the cable. 

Similarly, equation (2) may be rewritten as 

γγ qqmgqqmm ww  2212221 // =+                                                                              (8) 

 
Judgment for the stability of the governing equation 
 

The linearized equation of the system is 

0=++ KqqCqM                                                                                      (9) 
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The characteristic polynomial of equation (9) is  

( ) ( )21
22**2* )det( eeG ++=+⋅+⋅= λλλλλλ KCM                                        (10) 

where 111 ce = , γγω kme w
*2
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Equation (9) remains stable, when all the eigenvalues of equation (10) has negative real part. According to 
Hurwitz criterion, the condition requires that the inequalities   

2,10 => igi                                                                               (11) 

be satisfied, where 21211 , eegeg == .  Since 2e  is positive for usual wind velocity, the stability of 

equation (11) only depends on the sign of 1e , or c11. When damper of the system c11is positive, the system 
remains stable; otherwise rain-wind-induced vibration occurs. The result is similar to that of the plane 
models and wind-tunnel test results.  

 
Calculations for cable amplitude  
 
As the nonlinear terms of response appear in the right side of equation (7), the amplitude of cables will not 
increase unlimitedly. There exists steady vibration with constant amplitude for the system when rain-wind-
induced vibration occurs. The harmonic balance method is employed in the paper.  
 
The dynamic response of steady vibration of the cable can be expressed as 

tAq ww ωcos=                                                                                     (12a) 

tAq ww ωω sin−=                                                                                   (12b) 

tAq ww ωω cos2−=                                                                                  (12b) 
Considering phase difference，the dynamic response of rivulet can be expressed as 
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tAtAq ωωωω γγγ cossin 21 +−=                                                                   (13b) 
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2 +−=                                                                  (13c) 

Substituting (12) and (13) into (7), and considering that coefficients of tt ωω sin,cos  equal to those on 
the other side of the equation, one gets 
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Thus the nonlinear governing equation (7) is changed into an algebra equation group (14), containing 
unknowns 21 ,,, γγω AAAw . 

Example 
The longest cable of Yangzi River Bridge is 334m long. The parameters of the cable are as following (Peng 
2001): diameter D=0.145m, Section stiffness EA=1,900,000 kN, mass density M =85kg/m, damper ratio ξ w 
=0.1%, inclination angle θ=29o. The mass density of the rivulet is 0.17kg/m. The stability judgment 
parameters are shown in Fig. 2 indicating that the rain-wind vibration occurs with the wind speed between 
8.4m/s and16.4m/s. The stable amplitudes with different wind speeds are shown in Fig. 3 with comparison 
of Peng’s results (2001).  

 

                                                        
Figure 2. The stability parameters of the system  with different wind speed 

 

                                                             
Figure 3.  Amplitudes of the cable with different wind speed 
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CONCLUSION 
 

Considering the in-plane vibration of the cable and the influence of the rivulet position to 
the aerodynamic forces, a two-degree-freedom model is derived to analyse the rain-wind-
vibration of inclined cables and the harmonic balance method is employed to calculate the 
vibration amplitudes. From analysis above, it may be concluded that the mechanical essence of 
the complex dynamics phenomenon is a self-excited nonlinear vibration with constant amplitude 
induced by negative damper.  
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