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Abstract: Machining of metal matrix composites (MMC's) is very important process and has been a major 
problem that attracts many researchers to study of characteristics of MMC's during machining process like 
turning, milling and drilling. This paper concerns with the potential of using feed forward backpropagation 
neural network in prediction of torque and thrust force during dry drilling of aluminum-copper/silicon carbide 
composites produced by stir casting method. The effect of the addition of copper as alloying element and silicon 
carbide as reinforcement particles to Al-4wt.% Mg metal matrix has been investigated by using artificial neural 
networks. The mean absolute relative errors between experimental and predicted values from network were 
2.03% for torque,  and 3.46% for thrust force. Therefore, it is suggested that by using ANN outputs, it is possible 
to predict the results of cutting parameters in drilling process which will be in a good agreement with the 
experimental ones.  
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1 Introduction 

Metal–matrix composites (MMCs) are new class of materials that consist of a non-metallic phase 
distributed in a metallic matrix with properties that are superior to each of the constituent used 
(Tosun&Muratoglu,2004).Composite materials are usually classified on the basis of the physical or chemical 
nature of the matrix phase, e.g., polymer matrix, metal-matrix and ceramic matrix composites.  

Particulate metal matrix composites (PMMC) are cheaper in both raw materials and fabrication 
processes and have potential for applications requiring relatively large volume production. The relative ease of 
fabrication of MMCs is also another favorable factor. As they can be produced by many well known methods, 
such as casting, powder metallurgy, and metal spray processes (Tosun&Muratoglu,2004). All such processes are 
readily available for manufacturing unreinforced alloys. In addition, the use of a secondary process, such as 
rolling, forging, extrusion and heat treatment, can be applied only to improve properties of composites without 
incurring significant damage to the reinforcement (Tosun&Muratoglu,2004). 

Aluminum matrix composites (AMCs) refer to a class of light weight and high performance aluminum 
centric material systems. The reinforcement in AMCs could be in the form of continuous/discontinuous fibers, 
whisker or particulates, in volume fractions ranging from a few percent to 60% [3], they are usually reinforced 
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by Al2O3, SiC, and C  (Tosun&Muratoglu,2004; Candan&Bilgic,2004; 
Wain,Thomas,Hickman,Wallbank&Teer,2005; Ramulu, Rao&Kao,2002). Properties of AMCs can be tailored to 
the demands of different industrial applications by suitable combinations of matrix, reinforcement and 
processing route. In the last few years, AMCs have been utilized in high-tech structural and functional 
applications including aerospace, defense, automotive, sport instruments and thermal management areas.  

However, because of the poor machining properties of MMCs, drilling of such materials is considered 
as a challenging task for manufacturing engineers. Unlike machining of conventional materials, many problems 
are presented during drilling of MMCs, such as tool wear and 
burr(Ramulu,Rao&Kao,2002;Cotterell&Kelly,2002; Monaghan&Reily,1992;Kilickap,Akır,Aksoy&Inan,2005) . 
Cutting forces during drilling of aluminum are generally low and because aluminum is a good conductor of heat 
and since most aluminum alloys melt at relatively low temperatures (i.e. less than 660 °C), cutting temperatures 
and tool wear rates are also low (Ramulu,Rao&Kao,2002;Cotterell&Kelly,2002). When cut under proper 
conditions with sharp tools, aluminum alloys acquire fine finishes through turning, drilling and milling, 
minimizing the necessity for grinding and polishing operations. Aluminum is commonly machined with high 
speed steel, diamond and carbide tooling; silicon nitride based ceramic tools are generally not used with 
aluminum because of the high solubility of silicon in aluminum (Cotterell&Kelly,2002). The major 
machinability concerned with aluminum alloys includes tool life, chip characteristics, chip disposal and surface 
finish (Cotterell&Kelly,2002).  

The final surface finish expressed as surface roughness, Ra, during the machining of Al/SiC MMC's is 
much lower than that obtained during the machining of the matrix alloy alone(Tosun&Muratoglu,2004; 
Monaghan&Reily,1992;Kilickap,Akır,Aksoy&Inan,2005). Monaghan & Reily(1992) attributed the improved 
surface finish to the burnishing or honing effect produced by the action of small SiC particles trapped between 
the flank face of tool and the workpiece surface. 

The use of artificial neural networks (ANNs) represents a new methodology in many different 
applications of composite materials including prediction of mechanical properties of aluminum based materials 
(Durmus,Ozkaya&Meric,2006;Altinkok&Koker,2005;Altinkok&Koker,2006;Zhang,Friedrich&Velten,2002;Ga
nsen,Raghukandan,Kathikeyan&Pai,2005;Lee,Almond&Harris,1999)It is a promising field of research in 
predicting experimental trends and has become increasingly popular in the last few years as they can often solve 
problems much faster compared to other approaches with the additional ability to learn from small experimental 
data. Forouzan and Akbarzadeh (2006) used ANN in prediction the effect of thermo-mechanical parameters on 
mechanical properties of aluminum alloy AA3004. They found that well-trained ANN models provide fast, 
accurate and consistent results, making them superior to all other techniques. Lin,Bharracharyya&Kecman 
(2003) used ANN and multiple regression methods in analyzing machining parameters of aluminum alloy 
reinforced with silicon carbide particles with attention on tool wear. They found that ANN has ability to predict 
tool wear accurately from feed force.Genel, Kurnaz&Durman (2003) used multiple-layer feed-forward artificial 
neural network (ANN) modeling for tribological behavior of short alumina fiber reinforced zinc–aluminum 
composites. The specific wear rate and coefficient of friction obtained from a series of the wear tests were used 
in the formation of training sets of ANN (Genel,Kurnaz&Durman,2003). They found that ANN is an excellent 
prediction technique for both parameters if it is well trained. 
 
2 EXPERIMENTAL SETUP AND PROCEDURE 

2.1 Materials 
The test materials studied in this work were a mixture of aluminum (commercial grade Al, ~99% 

purity) and copper granules with an average particle size of 0.425 mm and ~97% purity as a matrix and silicon 
carbide as reinforcement particles. About 1000 g of commercial grade Al ingots and different weight percentages 
of copper powder (0, 1, 2, 3, 4, and 5 wt.%) was taken to prepare the base metal matrix by casting method. 
Specific quantities of silicon carbide powder with an average particle size of 75μm and purity exceeds 99.5% of 
5 and 10 vol.% were added to the matrix alloy. Finally, magnesium (~99% purity ingots) added in small 
quantities (fixed weight percentage 4wt.%) in the final stage to promote wettability between metal matrix and 
reinforcement particles (Candan&Bilgic,2004; Hassan,Tashtoush&Alkhalil,2007) 

2.2 Processing 
The synthesis of the particulate metal matrix composites used in the present study was carried out by 

the stir casting method (compocasting method). Aluminum ingots and copper granules melted together at 850 
°C. The amount of SiC powder pre-oxidized at 900°C for about 30 minutes to form a layer of SiO2 on their 
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surface in order to improve their wettability with molten aluminum( Maghanaki,Lajevardi&Akhlagi,2004; 
Tekman, Ozdemir, Cocen & Onel,2003). were incorporated into the melt. Mg added to the melt in the final stage 
prior to pouring task to enhance the wettability between metal matrix and reinforcement particles. The pouring 
temperature was maintained at 580-600 °C in semisolid state. Then the mould was left in air to cool down to 
room temperature. Finally the obtained cast bars turned to small specimens of 25 mm diameter and 40 mm in 
length to be used in the drilling experiments.  

2.3 Drilling Test 
There are many types of drills but the simplest and most often used is the twist drill. This drill is simple and 
cheap to produce but its cutting geometry is complicated (Wyatt&Trmal,2006). The drilling test was carried out 
on a vertical machining center (Q&S Drillmaster, England). A general purpose 8.5 mm diameter high speed steel 
(HSS) twist drills (U.fA Germany) were utilized in the drilling process. The test was carried out under 
predetermined machining parameters with cutting speed of 300 rpm and feed rate of 0.229 mm/rev without using 
any lubricants.  

The drilling torque and thrust force were measured with a multi-component dynamometer (TeLC 
BKM2000, Germany). The dynamometer signals were then processed to make them suitable for computer 
capture. This was achieved via charge amplifiers and an analog to digital (A/D) converter, then to the computer. 
The surface finish of each drilled hole was measured using Taylor-Hobson (Surtronic 3P) type instrument. 
Surface roughness readings were taken at least at three positions spaced at 120° intervals around the hole 
circumference and approximately mid-way down the depth of the hole and the averaged values were used in the 
training of the ANN. Quanta 200 Digital scanning electron microscopy (SEM) was used to analyze the quality of 
drilled holes in some investigated specimens.  

3 MODELING WITH NEURAL NETWORKS 
Artificial neural networks (ANN) are considered as artificial intelligence modeling techniques. They 

have highly interconnected structure similar to brain cells of human neural networks and consist of large number 
of simple processing elements called neurons, which are arranged in different layers in the network. Each 
network consists of an input layer, an output layer and one or more hidden layers. One of the well-known 
advantages of ANN is that the ANN has the ability to learn from the sample set, which is called training set, in a 
supervised or unsupervised learning process. Once the architecture of network is defined, then through learning 
process, weights are calculated so as to present the desire output (Rogier&Geatz,2003; Negnevitsky,2005) 

3.1 Data Set and Processing 
The input to individual ANN nodes must be numerical value and fall in the closed interval [0, 1]. 

Because of this conversion method the normalization technique was used in the proposed ANN according to the 
following formula: 

valueminimum-valuemaximum
 valueminimum -einput valu valueNormalized =       (1) 

Output values resulted from ANN also in the range [0, 1] and converted to their equivalent values based on 
reverse method of normalization technique. 

3.2 Learning rules and validation 
Neural networks are adaptive statistical devices. This means that they can change the values of their 

parameters (i.e., the weights) as a function of their performance. These changes are made according to learning 
rules which can be characterized as supervised (when a desired output is known and used to compute an error 
signal) or unsupervised (when no such error signal is used). Sigmoid function is the most common activation 
function in ANN because it combines nearly linear behavior, curvilinear behavior, and nearly constant behavior, 
depending on the value of the input [22-24]. The sigmoid function is sometimes called a squashing function, 
since it takes any real-valued input and returns an output bounded between [0, 1]; (Rogier&Geatz,2003; 
Negnevitsky,2005) 

xe
xfy −+
==

1
1)(       (2) 

Back propagation neural networks represent a supervised learning method, requiring a large set of complete 
records, including the target variables. As each observation from the training set is processed through the 
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network, an output value is produced from output nodes. These values are then compared to the actual values of 
the target variables for this training set observation and the errors (actual-output) are calculated. Normalized root 
mean square error value (NSE) was used to evaluate the training performance of the ANN (Abdelhay,2002): 

∑
∑ −

= 2

2
0 )(

θ
θθ

NSE                                                      (3) 

Where θ can be the experimental value of torque or thrust force and θ0 represents the predicted output value for 
each output node. More details about back-propagation training algorithm are included in 
literature(Altinkok&Koker,2005; 
Gansen,Raghukandan,Kathikeyan&Pai,2005;Frouzan&Akbarzadeh2006;Rogier&Geatz,2003; 
Negnevitsky,2005;Abdelhay,2002). 

4 RESULTS AND DISCUSSION 

The purpose of the present work was to determine the effect of the addition of alloying element 
(copper), and reinforcement particles (silicon carbide), on aluminum drilling process.  The most important 
factors, which determine the condition of the work material that can influence the outcome of the machinability, 
are Lin,Bharracharyya&Kecman,2003)alloy chemistry, additions, physical and mechanical properties, 
morphology, size and volume fraction of the constituent phases, microstructure (grain refining and 
modification), porosity, and heat treatment.  

4.1 ANN structure and results 
The ANN was implemented using fully developed feed forward back propagation network. For the training 
problem at hand the following parameters were found to give good performance and rapid convergence: two 
input nodes; namely: Cu (wt.%) and SiC (vol.%), two hidden layers with 5 neurons and three output neurons 
(torque, thrust force and surface roughness). Sigmoid activation function was selected to be the transfer function 
between all layers. The ANN architecture is shown in Fig. 1. 

A total dataset consists of 42 samples was used to train and test the network. Among them 32 samples 
were used in training process and 10 used in testing process. This dataset was obtained from compocasting 
process and considered as cast samples without any further post treatment except cleaning and cutting of the 
obtained bars. After many trials, learning rate and momentum are experimentally selected to be 0.65 and 0.20, 
respectively.  

However, the main quality indicator of a neural network is its generalization ability, its ability to predict 
accurately the output of unseen data and this was achieved by testing data set. Absolute relative errors between 
experimental and predicted values from ANN were used to evaluate the performance of the proposed ANN in 
prediction technique. The mean absolute relative errors were: 2.03% for torque, 3.46% for thrust force, and 
6.48% for surface roughness. The maximum absolute relative errors were 8.42% for torque, 12.02% for thrust 
force and 29.55% for surface roughness. However, the highest value of error corresponds to surface roughness 
could be processed as outlier point which appeared due to large variation as a result of drilling process and/or 
surface finish testing due to nature of aluminum based surfaces which consider as ductile material. This level of 
error is satisfactory and smaller than errors that normally arise due to experimental variation and instrumentation 
accuracy.  

Fig. 2 shows the comparison between experimental torque, thrust force and surface roughness values 
and corresponding ANN outputs for Al-4wt.%Mg-Cu alloys. While Fig. 3 shows the comparison between 
experimental torque, thrust force and surface roughness values and corresponding ANN outputs for Al- 4 
wt.%Mg-SiC composites. The columns represent measured values with ±10% error interval and continuous line 
represents ANN output. The ANN outputs seem to be in a good agreement with experimental values. 
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Fig. 1: The ANN architecture 

 
 

 

 

 
 

 

 

 

 
 

 

Fig. 2: Experimental values vs. predicted values for: 
a) torque, b) thrust force; and c) surface roughness 
with different Cu (wt.%). 
 

Fig.3: Experimental values vs. predicted values for: a) 
torque, b) thrust force; and c) surface roughness with 
different SiC (vol.%). 

 

4.2 Effect of copper and silicon carbide addition on the drilling of aluminum 
Hardness is one of the most important metallurgical parameters that can control the material 

machinability. In fact, aluminum alloys differ from many other metals in that the machinability of aluminum 
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generally improves as the hardness increases. Most automotive machine shops agree that a minimum hardness of 
80 Brinell is desirable (Tash, Samuel, Mucciardi&Doty, 2006). Copper and magnesium increase alloy hardness, 
improve the machined surface finish, and decrease the tendency of the alloy to build up on a cutting tool edge. 
Magnesium hardens the alloy matrix and, by doing so, reduces the friction coefficient between tool and 
workpiece which, in turn, results in shorter and tighter chips, and thus provides a better surface finish 
(Negnevitsky, 2003, Zhang, Friedrich & Velten, 2002). In the drilling results, it was also found that a lower 
copper content resulted in higher cutting forces (both torque and thrust force) (Zhang, Friedrich & Velten 2002).  
Fig. 2 shows the effect of Cu (wt.%) on the resulted torque, thrust force, and surface roughness of Al-based 
alloys, respectively. It is obvious that both torque and thrust force were lowered when the amount of copper was 
increased in the Al-4wt.%Mg matrix alloy. Also, a small addition of Mg improves the alloy machinability, 
lowering the cutting force and torque 
Lin,Bharracharyya&Kecman,2003;Tash,Mucciardi,Samuel,Valtierra&Doty,2006) 

Fig. 3 shows the experimental versus predicted values of different Al/SiC composites. The general trend 
of machinability which can be drawn from these figures can be stated as: when the amount of SiC increases in 
the metal matrix, the resulted machinability is improved (mainly by lowering torque) of Al-4wt.%Mg alloy. This 
may be attributed to the smearing of the softer Al- 4 wt.%Mg metal matrix to the cutting tool compared to the 
harder matrix containing SiC particles. This is valid for lower volume fractions of reinforcement particles; 
however, higher volume percentages of silicon carbide will also result in higher cutting forces compared to the 
matrix alone due to the presence of harder ceramic particles. Improvement in the surface finish was observed due 
to the presence of SiC particles as shown in Fig. 6c. Tosun and Muratoglu(2004) studied the drilling process of 
Al/17 vol.%SiC using different cutting tools and drilling parameters. They found that as the speed and/or feed 
rate increased the thickness of the matrix layer increased. As the feed rate increased, the cutting temperature 
increased and this may cause weakening of the binding between the matrix and the SiCP, thus the matrix softens, 
and motion of SiC occurred easily, and also the chips tend to be segmented easily with ductile tearing Tosun 
&Muratoglu,2004). The combined effect of increasing copper and silicon carbide amounts tends to improve the 
drilling of Al-Cu/SiC composites (lower values of torque and thrust force) compared to Al- 4 wt.%Mg alloy. 

5 CONCLUSIONS 
The aim of the present work was to illustrate the application of artificial neural network as prediction 

technique to estimate torque and thrust force as well as surface roughness of some Al-Mg-Cu alloys and their 
corresponding composites reinforced with 5 and 10 vol% of SiC in the drilling process. The ANN gives 
satisfactory results when compared to the experimental measurements. The mean absolute relative errors 
between experimental and predicted values from network were 2.03% for torque and  3.46% for thrust force,. 
Therefore, by using ANN values, satisfactory results may be estimated rather than measured and hence reducing 
testing time and cost. 
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