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Abstract 

 

Detection of volatile organic compound (VOC) vapors, which are known to have carcinogenic effects, 

is extremely important and necessary in many areas. In this work, the sensing properties of a cobalt 

phthalocyanine (CoPc) thin film at six different VOC vapors (methanol, ethanol, butanol, isopropyl 

alcohol, acetone, and ammonia) concentrations from 50 to 450 ppm are investigated. In this sense, it is 

observed that the interaction between the VOC vapors and the CoPc surface is not selective. It is shown 

that using machine learning algorithms the present sensor, which is poorly selective, can be transformed 

into a more efficient one with better detection ability. As a feature, 10 seconds of responses taken from 

the steady state region are used without any additional processing technique. Among classification 

algorithms, k-nearest neighbor (KNN) reaches the highest accuracy of 96.7%. This feature is also 

compared with the classical steady state response feature. Classification results indicate that the feature 

based on 10 seconds of responses taken from the steady state region is much better than that based on 

the classical steady state response feature.  
 

 

Keywords: Volatile organic compound (VOC), machine learning, classification, k-nearest neighbor 

(KNN) 

 

 

1. Introduction 
 

The detection of volatile organic compound (VOC) vapors selectively has a great importance 

in wide range of areas from indoor air quality control to early diagnosis of certain diseases [1-

5]. In this sense, gas sensors offer many advantages including low cost, high response and 

recovery times, and low power consumption [6]. Among the various types of gas sensors based 

on different operating principles such as acoustic wave-based, calorimetric, capacitive, optical, 
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etc. resistive type gas sensors are of special importance. In its simplest form, a resistive type 

gas sensor consists of a sensing element and a transducer which is capable of converting energy 

of one kind into energy of another kind. High sensitivity exhibited by phthalocyanines (Pcs) 

and their derivatives in the form of measurable changes in their conductivity when exposed to 

reducing or oxidizing gases makes them natural choices for VOC vapor sensing. Pcs as sensing 

elements in resistive type gas sensors have been studied intensively because of their open 

coordination sites for axial ligation [7]. As a result of their conductivity, Pcs exhibit excellent 

sensing characteristics of various gases such as NO2 [8], CO2 [9], SO2 [10], VOCs [11], etc.  

 

 The main drawback of Pc based sensing devices is indeed their lack of selectivity towards VOC 

vapors which strongly limits their use in sensing applications. This is a problem that must be 

solved, especially if it is aimed to manufacture high-tech devices such as an electronic nose. 

One essential part of an electronic nose is a system that finds a relationship between the sensor 

response and the gas type in order to detect gases selectively. This can be achieved by utilizing 

machine learning approach where feature extraction and classification are two important steps. 

As the feature plays a key role in the performance of classification, it should represent the 

characteristic of original high dimensional gas sensor data set efficiently. When this is made, 

finding a successful classification algorithm is usually easier. Since the maximum value 

represents the final steady-state feature of the entire dynamic response process in the final 

balance, which reflects the maximum reaction degree change of sensors responding to vapors, 

it is usually used as the most widely used and simple electronic nose feature [12]. Therefore, 

many previous works have made contributions based on the steady state response feature in 

various gas sensor applications [13-16]. 

 

In this work, for the detection of six different VOC vapors (methanol, ethanol, butanol, 

isopropyl alcohol, acetone, and ammonia) of nine different concentrations from 50 ppm to 450 

ppm, the experiment was carried out using a resistive type gas sensor based on CoPc (cobalt 

phthalocyanine) surface. It is observed that the interaction between the vapors and the surface 

is not selective enough. In order to solve this problem, it is aimed that the system can distinguish 

vapors with the use of machine learning algorithms. As many studies did for extracting robust 

information from the sensor response curve, we also used the steady state response. However, 

results show that classification accuracy was very low when only the steady state response was 

used in our work. Hence, it is thought that not only one response but also a few seconds of 

responses from the steady state region could be used in order to utilize more information from 

the response curve. Without any additional feature processing technique, the 10s data extracted 

from the response curve after the sensor reaches 90% of its maximum value were directly used 

without taking into account the other information in the whole response curve. The performance 

of this feature was tested by various machine learning classification algorithms such as Decision 

Tree, Support Vector Machine (SVM), K-nearest Neighbor (KNN), and Ensemble Method.  

 

The structure of this paper is as follows: In Section 2 and 3, the measurement and the sensing 

results are presented. Section 4 introduces the preprocessing stage. Section 5 describes the 

extracted feature from the gas sensor data set, and Section 6 introduces the classification results 

of the algorithms. Finally, Section 7 presents the conclusion of our work. 

 

2. VOC sensing measurement 

  
Spin coated thin film of 5'-6'-Bis(17',25',32'-trinitro-phthalocyaninyl) (1,4,7,10-tetrathia-12-

crown) dicobalt(II) on interdigital array (IDAT) of Au electrodes was used as sensing element. 

The synthesis details of the sensing layer, shown in Figure 1, were described in [17]. After the 
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spin coating of the sensory layer, coated IDA was installed in a home-made detection cell with 

a capacity of 5×10-4 liters. During the VOC sensing experiments, the carrier gas was dry 

nitrogen with a purity of 99.8% and the desired level of relative humidity was obtained by 

bubbling the carrier gas through liquid VOC. The experimental setup used during VOC vapor 

sensing studies is shown in Figure 2. For studying the sensing behaviour of organic vapours 

with 5'-6'-Bis(17',25',32'-trinitro-phthalocyaninyl) (1,4,7,10-tetrathia-12-crown)dicobalt(II) 

(CoPc) thin film, it was exposed to six different VOC vapours (methanol, ethanol, butanol, 

isopropyl alcohol, acetone, and ammonia) and the variations in the sensor current with time 

were recorded under the applied constant voltage of 0.5 V. 
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Figure 1. Structural formula for 5'-6'-Bis(17',25',32'-trinitro-phthalocyaninyl) (1,4,7,10-

tetrathia-12-crown)dicobalt(II) 

 

 

Well-defined concentrations of VOC vapors were prepared by mixing the carrier gas with the 

target vapors. The concentration of the target vapors was varied from 50 to 450 ppm by using 

mass flow controllers (Alicat Scientific Inc.). In a typical sensing experiment, the sensor surface 

was exposed to VOC vapor for 20 min. and then purged with carrier gas for another 20 min. to 

reset the baseline. Total flow rate of the carrier gas was adjusted as 100 standard cubic 

centimetre (sccm) during the purging experiments. All sensing experiments were performed at 

a cell temperature of  28  °C. 

 
Figure 2. Schematic of the VOC vapor sensing configuration 
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3. Sensing results 
 

The response recovery characteristic of CoPc thin film with exposure of six organic vapours 

methanol, ethanol, isopropyl alcohol, butanol, acetone, and ammonia is shown in Figure 3 at 

different concentrations as labeled in this figure. We observed that CoPc film exhibits an 

increase in current after the exposure of all the VOC vapors even during ammonia exposure. 

We also observed during sensing studies of these six organic vapors that after nine cycles of 

exposure-purging stages, the sensor response recovers to 90% of its initial value. This finding 

indicates that the interaction between CoPc and VOC vapors is reversible. The maximum 

increase in sensor current has been observed for methanol vapours, followed by acetone for all 

concentrations of investigated VOC vapors.  

 

The sensitivities (S) of the CoPc thin film towards VOC vapors have been calculated from the 

measured dynamic characteristics of the sensor using the following equation 

               
0I

IΔ

vC

1
S              (1) 

where Cv is the concentration of the VOC vapor under investigation, I is the change in sensor 

current and I0 is the baseline current of CoPc thin film before the exposure of the VOC vapours. 

As is clear from Figure 3, for the same concentrations of VOC vapors, maximum sensitivity 

(0.0232 ppm-1) has been observed for methanol vapor while minimum sensitivity (0.0024 ppm-

1) is observed for isopropylalcohol vapor. It should be mentioned here that the sensitivity values 

towards methanol is nearly the same for acetone vapor. The similar trend of sensitivity has been 

observed for ethanol (0.0083 ppm-1) and butanol (0.0077 ppm-1), and for isopropylalcohol 

(0.0024 ppm-1) and ammonia (0.003 ppm-1) vapors, respectively. This reveals that the 

interaction between the VOC vapors and the CoPc surface is not selective. 

 

 
Figure 3. Sensitivities of CoPc thin film towards VOC vapors investigated 

 

 

As it can be understood by Figure 3, the present sensor is poorly selective and it is not possible 

to provide a real identification among considered vapors with traditional methods. Hence, we 

utilized machine learning approach in order to give the system a way to identify the vapors by 

itself, as explained in the next sections. 
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4. Preprocessing 
 

The collected data should be preprocessed before the feature extraction step. Since data 

processing in a machine learning system directly determines the input, it is an indispensable 

step before training a model. There are no general guidelines to determine the appropriate data 

preprocessing technique, so the technique to be used varies from application to application. 

Among different techniques, in this research, in order to reduce the effect of the baseline on the 

data and ensure the reliability of the data, the baseline subtraction method was applied to the 

raw data first. In order to eliminate the impact of the baseline on the data, baseline values were 

subtracted from sensor responses. 

 

The method is as shown in Equation (2), where 𝑅(𝑡) value is the dynamic response value, 𝑅(0) 

is the baseline value, which is the minimum sensor response value when exposed to a reference 

gas. That is, the preprocessed data is equal to the difference between the response value and the 

baseline value.  

 

                                                        𝑌𝑆 =  𝑅(𝑡)  −  𝑅(0)                                                                (2)                                                                                                                                                                                                                                                                   
 

5. Feature extraction 
 

Feature extraction step helps to reduce the amount of redundant data from the original high 

dimensional gas sensor data set. The steady state region reflecting the sensing dynamics at the 

sensor surface is of special interest in this work. In other words, we followed the idea of utilizing 

the steady-state feature, which is the “gold-standard” for chemo-sensory feature extraction [18]. 

The steady state response feature, which is one of the most traditional features, only samples 

one data from the original response curve of each concentration cycle. But in our approach, we 

use 10 s response values of the steady state region, in order to utilize more information. The 

data used for classification is displayed in Figure 4. 

 
Figure 4. The feature extracted from each response curve 

 

 

In order to obtain successful classification results, only a few seconds of sensor data after the 

response curve reaches 90% of its maximum value were directly used without taking into 

account the other information in the whole response curve. Since the data acquisition device 

recorded data with 2 seconds period, 6 data were taken from each concentration region during 
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10 seconds. Thus, for i-th gas type and its j-th concentration cycles taken data can be denoted 

as  

 

                                                𝑅𝑖𝑗 = [𝑟𝑖𝑗1, 𝑟𝑖𝑗2, 𝑟𝑖𝑗3, 𝑟𝑖𝑗4, 𝑟𝑖𝑗5, 𝑟𝑖𝑗6]                                              (3) 

 

As there are 9 different concentrations varied from 50 ppm to 450 ppm for each gas, totally the 

number of samples in sub-data set for classification is 6 × 6 × 9 = 324 (54 samples per class 

for six classes). Besides, another data set which consists of the maximum value of each 

concentration region was also generated for a comparison of classification results. Since there 

are 9 concentrations, 9 maximum values were used for each gas, and totally the data set has 

6 × 9 = 54 samples. 

 

6. Classification 
 

Classification step addresses the problem of finding a relation between the sensor responses 

and the gas types using the 10 s responses in the steady state region.  For each type of gas, the 

dataset consisted of 54 samples is randomly split into 60% training and 40% test sets. So, the 

training set contains 192 samples for six gas types, and the test set contains the remaining 

samples that were not used during the training process.  

 

 Due to the small amount of data, k-fold cross validation method was used to avoid overfitting. 

According to the method, the classifier is trained with k−1 splits and validated on the missing 

split. The method is performed k times until all of the data is used for validation. In our work, 

we have used 5-fold cross valdiation. In order to compare the performance of classification 

algorithms, classification accuracy was utilized as a performance metric. It is obtained by 

dividing the number of correctly recognized samples into the total number of samples. 

Furthermore, since the training set and test set are randomly selected from the original gas 

sensor dataset, we performed train-test procedure 10 times to avoid bias in the classification 

process. Then, the final classification accuracy of each classifier was calculated by averaging 

of ten iterations. Each classification algorithm was learned from the same training set and test 

its classification accuracy on the same test data. Hence, the best classification method is clearly 

the one with the highest accuracy. 

 

The classifiers used in this work and their descriptions are given in Table 1, and the performance 

of these algorithms is evaluated through their accuracy, reported in Table 2.  Results indicate 

that KNN algorithm achieves the highest classification accuracy among the considered 

classification algorithms. KNN algorithm is based on the idea of classifying a sample with 

unknown class by a plurality vote of its k nearest neighbor classes. The choice of the value for 

the parameter k and the distance metric are two parameters that affect the performance of the 

algorithm. In this work, 96.7% accuracy is obtained with KNN algorithm when the distance 

metric is chosen as euclidean (The value of k can be chosen as 1 or 10).  Besides, an ensemble 

tree method also gave high classification accuracy, but KNN is faster, simpler and easier to 

implement. 
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Table 1. Classification algorithms used in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Classifier Description 

KNN - 1 Preset: Weighted KNN 

Number of neighbors: 10 

Distance metric: Euclidean 

Distance weight: Squared inverse 

Standardize data: true 

KNN - 2 Preset: Fine KNN 

Number of neighbors: 1 

Distance metric: Euclidean 

Distance weight: Equal 

Standardize data: true 

Tree-1 Preset :Fine Tree 

Maximum number of splits: 100 

Split criterion: Gini’s diversity index 

Surrogate decision splits: Off 

Tree-2 Preset: Coarse Tree 

Maximum number of splits: 4 

Split criterion: Gini’s diversity index 

Surrogate decision splits: Off 

SVM-1 Preset: Fine Gaussian SVM 

Kernel function: Gaussian 

Kernel scale: 0.25 

Box constraint level: 1 

Multiclass method: One-vs-One 

Standardized data: true 

SVM-2 Preset: Quadratic  SVM 

Kernel function: Quadratic 

Kernel scale: Automatic 

Box constraint level: 1 

Multiclass method: One-vs-One 

Standardized data: true 

Ensemble - 1 Preset: Bagged Trees 

Ensemble method: Bag 

Learner type: Decision Tree 

Number of learners: 30 

Ensemble - 2 Preset: Boosted Trees 

Ensemble method: AdaBoost 

Learner Type: Decision Tree 

Maximum number of splits: 20 

Number of learners: 30 

Learning rate: 0.1 
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Table 2. Classification performance of the algorithms.   

 

Classifier Classification 

Accuracy (%) 

(with data set 

including only steady 

state response) 

Classification Accuracy (%) 

(with data set including 10 s 

responses from steady state 

region) 

KNN - 1 9.1 96.2 

KNN - 2 8.3 96.7 

Tree -1 21.2 61.5 

Tree - 2 25.4 38.1 

SVM - 1 17 44.4 

SVM - 2 22 30.6 

Ensemble - 1 8.3 95.6 

Ensemble - 2 8.3 73.6 

 

 

The obtained classification results point out that using 10 s responses from the steady state 

region of the sensor curve gives much better accuracy when compared with traditional steady 

state response feature. As can be seen from Table 2, while steady state feature achieves 

maximum accuracy rate of 25.4%, the proposed feature method achieves maximum accuracy 

rate of 96.7%. The performance of KNN – 2 model with confusion matrices for train and test 

data is illustrated in Figure 5 and Figure 6.  

 

 
Figure 5. Confusion matrix of KNN - 2 model for train data 
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Figure 6. Confusion matrix of KNN - 2 model for test data 

 

 

Besides, in order to obtain the best classification accuracy with KNN algorithm, the optimum 

k value should be found. For this purpose, the above mentioned KNN-1 and KNN-2 algorithms 

were run with different k values from 1 to 10. Since KNN-1 model is based on weighting, the 

value of k does not affect the accuracy of the algorithm. Classification accuracy results for 

different k values for KNN-2 model, which is based on euclidean metric without weightening, 

are illustrated in Figure 7. It is observed that as the number of k values increases, the accuracy 

value decreases. 

 

 
Figure 7. Accuracy of the KNN model for different k values 

 

 

7. Conclusion 
 

In this work, the sensing performance of a resistive type gas sensor based on CoPc thin film 

was investigated with respect to six different VOC vapors (methanol, ethanol, butanol, 

isopropyl alcohol, acetone, and ammonia) concentrations from 50 to 450 ppm. In order to solve 



106 

the issue of selectivity while using a single gas sensor, machine learning algorithms were 

applied to the gas sensor data set. Results indicate that fast and high classification accuracy is 

obtained by using only 10 s data from the steady state region of the sensor curve. Among various 

classification algorithms; KNN, which is one of the fast and easy to implement algorithms, 

achieved the highest accuracy (96.7%), which is a notable achievement with a single resistive 

gas sensor. Besides, the performance of the feature proposed in this study was compared with 

the traditional steady state response feature, and it was found that the proposed feature provides 

much better classification accuracy. Therefore, it is shown that the most necessary information 

that helps to distinguish between the different types of VOC vapors can be gained not using 

only one response from the steady state region but also a few seconds of responses taken from 

the steady state region. As KNN is easy to implement and works very fast, it is one advantage 

of the proposed method in this study. In addition to this, whereas in many applications a single 

feature can not fully reflect the characteristics of sensor responses, in this work using only one 

feature based on a single sensor, high classification accuracy was obtained. In addition to this, 

though there are many researches based on acoustic wave sensors for the detection of the vapors 

investigated in the literature, the number of resistive based sensor studies we have introduced 

in this study is quite limited. As a result, our model has great potential in practical applications 

for solving the issue of selectivity while using a single gas sensor. 
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