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Abstract  
 

Forests host diverse ecosystems that involve various habitats. There are many complex interactions 

between living and non-living things in most forests. It is important to conduct observations and 

assessments in large forestlands where short-term and long-term direct or indirect negative impacts may 

occur so that they are known and measured. Scientific studies have been carried out by utilizing the 

various data offered by today's advanced technology with satellite imagery becoming more readily 

available. In this study, differenced Normalized Burn Ratio (dNBR=∆NBR) and satellite images with 

two different resolutions were used to generate pre- and post-wildfire spatial data. An area affected by 

wildfire in the Mediterranean Region of Turkey was selected as the study area. Google Earth Engine 

(GEE) and Geographic Information System (GIS) were used to delineate areas affected by wildfire using 

Sentinel-2 and Landsat 8 multispectral imagery. In order to compare the differences between the two 

sets of imagery, burn severity levels (low, medium-low, medium-high, and highest) and the effect of 

water surface were considered. For the most impacted burnt lands, areas detected with Sentinel 2 and 

Landsat 8 are 31.90% and 32.59%, respectively. However, burn severity classes were also observed in 

water surface areas likely due to interactions between land cover and water reflectance. The overall 

results support the use of both satellite platforms and the dNBR for burn severity mapping in medium- 

and large-scale post-wildfire studies. 
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1. Introduction 

Innovative engineering knowledge and technology 

should be used to achieve sustainable management of 

forest resources, and to achieve the best use of economic, 

social and environmental aspects for present and future 

generations (FAO, 2021). The concept of sustainability 

aims to eliminate factors such as pollution, waste and 

poverty, while paying attention to the development of 

factors such as employment, productivity, wages, capital, 

savings, profits, knowledge and education (Barrow, 

1993). In this case, it is necessary to use appropriate 

technology knowledge and systematic studies in the 

production of wood and wood-based products (such as 

timber production, wildfire prevention, carbon 

sequestration, drought, water quality, prevention of 

invasive species, pest control and economic benefits). Due 

to global climate change, various problems in forest 

ecosystems have become the focus of current research that 

addresses wildfires, droughts, and desertification that 

affect the natural structure of habitats (Çepel, 2003). As a  

 

result of improper land management and construction, 

many countries are struggling to address wildfires, 

droughts, invasive species, wildlife and insect damages 

(Stephens et al., 2018).  

Wildfire can cause loss of life and property, and have 

a negative impact on the forest ecosystem. It also reduces 

the efficiency and diversity of forest ecosystem services. 

Wildfires and accompanying impacts that can span many 

years and have irreparable consequences on ecosystems 

(Nasi et al., 2002). Thus, interest in studies (active 

interventions in forests with mechanical methods) within 

the concept of sustainable forestry in the prevention and 

reduction of wildfire has increased. Forest operations is 

one potential tool to help manage forest resources while 

helping meet societal needs for sustainable forest 

management and wildfire mitigation. 

Therefore, with the help of Geographic Information 

System (GIS) and Remote Sensing (RS) tools related to 

fire risk and severity in large forest areas, spatial models 
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can be effectively used for forestry research (Küçük and 

Bilgili, 2006; Ateşoğlu, 2014; Akay and Şahin, 2019). In 

order to monitor and evaluate changes in large-scale forest 

ecosystems, a variety of remotely sensed data products are 

available that span multiple years (i.e., Landsat and 

Sentinel) (Gülci et al., 2019; Wulder et al., 2005). Today, 

the cloud computing environment eliminates the 

limitations of large-scale data processing and evaluation, 

providing a huge advantage in research with high 

processor capabilities (Nemani et al., 2011; Cavdaroglu, 

2021; Konkathi and Shetty, 2021; Pan et al., 2021). 

Therefore, the use of RS and GIS technologies in many 

different scientific fields has been promoted and has 

rapidly increased with the development of technology. 

RS tools can be effectively used for fire prevention 

projects, assessment and monitoring purposes, as well as 

detecting areas affected by wildfires, estimating fire 

severity and burn severity/ratio (Chuvieco, 2009; Fuller, 

2000). RS (satellite or unmanned aerial vehicle-based 

imagery) related to wildfires can be divided into general 

groups including 1) fire intensity and severity, 2) 

determining the amount of potentially combustible 

materials, and 3) pre- and post-fire forest restoration 

(Wing et al., 2014). For example, Erten et al., (2004) 

performed a supervised classification method with 

Landsat TM satellite imagery to identify burnt areas and 

vegetative regrowth. Gülci et al., (2016) conducted an 

assessment of forest conditions after timber harvesting by 

using thermal imagery. Arıcak et al. (2012) determined 

potential combustible material characteristics in 

forestlands (tree species, mixture, crown closure, and age 

stages) within the scope of using high-resolution satellite 

imagery to identify fire-sensitive areas. Çoban and 

Özdamar (2014) investigated the relationship between 

wildfires, and topography and land cover dynamics using 

the Normalized Vegetation Difference Index (NDVI) and 

NBR index (Çoban and Özdamar, 2014). Atun et al. 

(2020) used the Normalized Burning Ratio (NBR), the 

differenced Normalized Burning Ratio (dNBR) and 

Relative Burning Ratio (RBR) index to determine the risk 

level of wildfires and fire-disturbed forests through the use 

of Sentinel 2 multispectral bands. Sabuncu and Özener 

(2019) explored an index correlation between NBR, 

NDVI, dNBR and the differenced Normalized Vegetation 

Difference Index (dNDVI) derived from Landsat spectral 

bands to determine the areas damaged by wildfire 

(Sabuncu and Özener, 2019). In addition, Gülci (2021) 

applied the dNBR index to study the effect of burning 

severity on the unit price of timber in stumpage sales. 

In this study, pre-fire and post-fire mapping and burn 

severity/ratio estimation were carried out using band ratio, 

which is one of the traditional methods. The results of 

obtained dNBR estimations by using Sentinel 2 MSI and 

Landsat 8 were compared and discussed statistically. The 

response of dNBR to water-covered surfaces was also 

evaluated based on the sensitivity of fire detection. 

 

2. Materials and methods 

2.1. Materials 

2.1.1. Study area 

The study area is located at 35º 25ʹ 10ʺ - 37 º 18ʹ 15ʺ 

east longitudes and 35º 34ʹ 35ʺ -37º 22ʹ 10ʺ north latitude 

within the border of Karaisalı and İmamoglu districts of 

Adana Province in the eastern Mediterranean region. 

Turkish red pine and maquis are widely distributed as 

typical species reflecting the Mediterranean region. The 

average elevation of the land in the study area ranges 

from 200-250 m, with a river located within the fire area 

(Figure 1). 

 

 
Figure 1. Geographical location of the study area, post-fire view on satellite image and elevation map 



 Eur J Forest Eng 2021, 7(2):57-66 

59 

2.1.2. Satellite Images and Features 

The satellite images of the study area that were 

acquired were Sentinel-2 (S2) Multispectral Instrument 

(MSI) and the Landsat 8 (L8). These satellites provided 

multispectral images with different temporal and spatial 

resolutions, and are useful for examining burn severity. 

S2 consists of two satellites named S2A and S2B.  

S2A was launched in 2015 and S2B was launched in 

2017. They orbit at an angle of 180 degrees to each other, 

and their orbits are inclined at 98.5 degrees. The mission 

of S2 is to observe climate change, land monitoring, 

emergency management and security. It is equipped with 

high-resolution multispectral bands with resolutions of 

10 m, 20 m and 30 m (Table 1) (ESA, 2021).  

 

The L8 with Operational Land Imager (OLI) and 

Thermal Infrared Sensor (TIRS) sensors was launched 

on February 11, 2013. Sensor wavelengths include blue 

band (0.433-0.453 μm) and short-wave infrared band 

(1,360-1,390 μm). It has strong water vapor absorption 

capacity and can be used for ocean observation in coastal 

areas. The band characteristics, center wavelength and 

resolution of L8 are given in Table 2 (USGS, 2021). 

A variety of images were acquired from the satellites 

representing a temporal range of pre- and post-fire (Table 

3). The imagery such that cloud cover was minimized 

were selected.  

 

 
Table 1. Features of Sentinel-2 MSI instruments 

Sentinel-2 Bands Central wavelengths (μm) Resolution (m) 

1-Coastal aerosol 0.443 60 

2-Blue 0.490 10 

3-Green 0.560 10 

4-Red 0.665 10 

5-Red edge-1 0.705 20 

6- Red edge-2 0.740 20 

7- Red edge-3 0.783 20 

8-Near infrared (NIR) 0.842 10 

8A-Near infrared narrow 0.865 20 

9-Water vapor 0.945 60 

10-Shortwave infrared/Cirrus 1.375 60 

11- Shortwave infrared-1 (SWIR1) 1.610 20 

12- Shortwave infrared-2 (SWIR2) 2.190 20 

 

 
Table 2. Features of Landsat 8 instruments 

Landsat 8 Bands Wavelengths (μm) Resolution (m) 

1-Coastal / Aerosol  0.433 - 0.453 30 

2-Blue 0.450 - 0.515 30 

3-Green 0.525 - 0.600 30 

4-Red 0.630 - 0.680 30 

5- Near infrared (NIR) 0.845 - 0.885 30 

6- Short wave infrared-1 (SWIR1) 1.560 - 1.660 30 

7- Short wave infrared-2 (SWIR2) 2.100 - 2.300 30 

8-Panchromatic 0.500 - 0.680 15 

9-Cirrus 1.360 - 1.390 30 

10-Termal infrared (TIRS1) 10.30 - 11.30 100 

11-Termal infrared TIRS2) 11.50 - 12.50 100 
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Table 3. General information about the images used in this study 

Sensor IDs 
Image 

count 

Date interval 

Pre-wildfire Post-wildfire 

LANDSAT/LC08/C01/T1_SR 4 July 01th -17th ,  2021 August 02nd -18th , 2021 

COPERNICUS/S2 17 July 02nd  - 24th , 2021 August 01th -18th , 2021 

  

2.2. Methods 

2.2.1. The Production of the Fire Severity Maps 

The detailed information given on the UN-SPIDER 

(United Nations Platform for Space-based Information 

for Disaster Management and Emergency Response) 

online platform was followed (UNOOSA, 2018). Burn 

severity maps were created by processing multispectral  

band satellite  images  in  Google Earth Engine (GEE)  

 

(Figure 2) (Gorelick et al., 2017). Then, the maps 

obtained in the cloud environment were transferred to a 

computer workstation for further evaluation. A series of 

GIS operations such as classification, overlay, clipping, 

calculation and visualization were carried out using 

ERDAS (Erdas, 1997) and ArcGIS 10 software (Esri, 

2013).  
 

 
Figure 2. Screenshot of the online interface of the GEE code editor 

 

Prediction maps of burn severity were created using 

S2 and L8 multispectral bands. The differenced 

normalized burn ratio (dNBR) technique was used to 

create burn severity maps. dNBR (Equation 1) is 

obtained by taking the difference of the NBR (Equation 

2) index pre- and post-fire (Key and Benson, 2006; 

Miller and Thode, 2007; Keeley, 2009). Band 8 (NIR) 

and Band 12 (SWIR) were used for S2-based fire maps 

(Equation 1). Band 5 (NIR) and Band 7 (SWIR-2) were 

used for L8-based fire maps (Equation 2). 

 

𝑁𝐵𝑅 =
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
                  (1) 

 

𝑑𝑁𝐵𝑅 = 𝑁𝐵𝑅𝑃𝑟𝑒−𝑓𝑖𝑟𝑒 − 𝑁𝐵𝑅𝑃𝑜𝑠𝑡−𝑓𝑖𝑟𝑒            (2) 

 

2.2.2. Definition of Burn Severity Classes 

The unitless numbers obtained from dNBR are divided 

into 7 categories in order to correctly separate the burned 

area from the unburned area (Table 4). The classes 

recommended by USGS-FIREMON (United States 

Geological Survey-Fire Impact Monitoring and Inventory 

Protocol) were considered in the classification of burn 

severity (USDA, 2006). The first three categories were 

assumed to be areas that were not affected by fire, 

unburned or unexposed to fire. 
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Table 4. Burn severity levels obtained calculating dNBR (USDA, 2006) 

Classes Severity levels dNBR value 

1 Enhanced regrowth, high (post-fire) <-0.25 

2 Enhanced regrowth, low (post-fire) -0.25 to -0.10 

3 Unburned -0.10 to 0.10 

4 Low severity 0.10 to 0.27 

5 Modorate- low severity 0.27 to 0.44 

6 Moderate- high severity 0.44 to 0.66 

7 High severity >0.66 

 

2.2.3. Accuracy Assessment 

The accuracy analysis of the classified maps was 

carried out on the reference image produced by the 

combination of spectral bands in the visible range. The 

accuracy analysis was performed to understand the 

success of unburned and burned area classification, not 

the estimated accuracy of the burn severity value. 

Classification accuracy was demonstrated by assigning a   

 

 

total of 120 randomly selected control points to the two 

classes in the study area and were divided equally. 

A confusion matrix table was used in the accuracy 

analysis to consider user error, producer error, and Kappa 

value (Congalton, 2001). Then, visual controls were made 

by superimposing the merged images of the land cover in 

the visible range (RGB) on the estimated map (Figure 3). 

 

 
Figure 3. L8 (a-b) and S2 (c-d) pre- and post-wildfire images 

 

3. Results and discussion 

3.1.  Maps of Wildfire and Severity Classes 

Considering the limited size of the study area, GEE 

was able to complete the creation of the fire severity 

maps within a few minutes. Spectral band images with 

desired properties were easily exported from the cloud 

environment. Therefore, GEE has an advantage in terms 

of processor and data storage costs in comparison to non-

cloud based computing options. With the help of the code 

editor, the prediction map was generated by selecting the 

L8 and S2 multispectral bands with the least cloudiness. 

For S2 and L8, the total area of the study object is 

calculated to be 16569.15 and 16586.73 hectares, 

respectively (Figure 3). Data losses occurred as a result  

 

of images having different resolutions and image 

processing. Therefore, the total area difference of the 

study boundary as captured by the two satellites was 

calculated to be approximately 0.1%. In addition, the 

water surface area in the S2 and L8 images was 

calculated to be approximately 1300 hectares. Although 

no fire was observed, the detection sensitivity of burning 

severity by L8 was lower than the S2. In Sentinel 2, the 

cloudy area was estimated as the area with high 

vegetation growth class in the dNBR-based burn severity 

map. In the study area, in forest areas with no road 

network or low road density, the severity of burning was 

estimated to be higher (Figure 4). 
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Figure 4. The dNBR burn severity maps of S2 (a) and L8 (b) 

 

  Thanks to the high resolution images of the S2, more 

spatial detail is available and consequently, the S2 

imagery can produce better quality visual maps than the 

L8 imagery. The S2 imagery can also be an effective 

factor in correctly estimating the highest burn severity 

class from other burn classes (Quintano et al., 2018). The 

areal performance difference between the S2 (↓) and L8 

(↑) images is 69% in the detection of the estimated area of 

the high burn severity class. In the L8 satellite image, it is 

estimated that the total size of the burnt area increased by 

505.5 hectares. When evaluating the entire study area, the 

average of the absolute difference between the percentage 

of burned and unburned areas is approximately 1.23%. 

  Considering only the classes within the boundaries of 

the area exposed to the fire (Figure 1;3), the average of the 

absolute differences in the percent of the areal distribution 

of burn severity was calculated at about 2% (Table 5) in 

the dNBR-based burning severity classes (Figure 4). 

Areas with different burn severity classes (low (4), 

medium-low (5), moderate- high (6) and high burn 

severity (7)) were estimated to account for about 28% of 

the total area. There was a partial decrease in the burn 

severity class areas after subtracting water surface area 

from the total area. 

  Different variables (such as stand parameters and 

topography) that are effective in increasing or reducing the 

severity of burning within the forestry range can be used 

as parameters in GIS analysis. However, it is necessary to 

investigate the dNBR results of different forest types (such 

as canopy stratification and stand structure) to determine 

the estimated success rate of burn severity for different 

forest stands (Cocke et al., 2005; Çoban and Özdamar, 

2014). In addition, it should be taken into account that 

there is no universally accepted classification when using 

satellite imagery to determine the burn severity in places 

where wildfires occur. For example, Gülci (2021), who 

examined post-fire harvesting and stumpage sales, did not 

find a high relationship between the severity of the fire and 

the price demand of forest contractors in the forest stands. 
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Table 5. The ratio of unburned and burn severity estimated using the multispectral bands of the S2 and L8 satellites 

Classes 

S2  L8  

Area (with water 

surface) % 

Area (excluded  

water surface) % 
Differences  

Area (with water 

surface) % 

Area (excluded 

water surface)  % 
Differences 

Unburned 72.29 72.92 -  69.63 69.65 - 

4 7.92 6.96 +  9.36 8.85 + 

5 4.83 4.65 +  5.27 5.02 + 

6 6.80 6.83 -  6.39 6.58 - 

7 8.16 8.64 -  9.35 9.90 - 

Total 100 100   100 100  

 

3.2. The Effect of Water Surface Area  

According to the results of dNBR, there is evidence of 

burn impacts in areas that are coincident with water 

surfaces. This includes 4-5-6 and 7-class burn areas 

including the range from low to high burn severity. 

Between 30.5% and 35.1% of the area burned for L8 and 

S2 are located on the water surface area and edge, 

respectively (Figure 5). This showed that in the use of the 

dNBR index, according to the L8 and S2 imagery, there 

may be detections in the fire damaged area classes in the  

 

areas covered with water (Bolton et al., 2015). Hence, in 

this and similar studies, attention should be paid to the 

effect of different land cover types on wildfire mapping. 

The amount of energy from the sun can cause significant 

differences in reflectance values, depending on the 

chemical composition and physical properties of the land 

cover and surface (Picotte et al., 2021). This will have an 

impact on the results obtained from the satellite images 

considering the wavelength sensitivity of instruments. 

 

 
Figure 5. The classes of the burn severity estimated in the water surface area. The spatial distribution of the dNBR 

classes generated by the S2 MSI (a), and the location in the S2 RGB image (b). The spatial distribution of the dNBR 

classes generated by L8 (c), and the location in the L8 RGB image (d). 
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3.3. Accuracy Analysis 

The burn severity maps generated by the two satellite 

images were divided into two types: burning zone and 

non-burning zone. Through this classification, the fire 

area prediction accuracy of L8 and S2 dNBR maps were 

91.67% and 93.33%, respectively. Taking into account the 

Kappa statistics,  the  classification success rate obtained  

 

from these two data sources is very high. In this study, the 

evaluation was conducted in two different classes. If the 

number of classes increases, the kappa value may change 

(Congalton, 2001). Both satellite images, which have a 

slight difference between them, have the potential for the 

production of wildfire maps (Table 6). 

 
Table 6. The results of the overall accuracy for L8 and S2 classification 

Sensor Classes Reference Classified Correct 
Producers 

Accuracy 

Users 

Accuracy 

Kappa 

Value 

L8 

Unburned 66 60 58 87.88 96.67  

Burned 54 60 52 96.30 86.67  

Total 120 120 110   0.8333 

S2 

Unburned 68 60 60 88.24 100  

Burned 52 60 52 100 86.67  

Total 120 120 112   0.8667 

 

4. Conclusions  

 In this study, dNBR technology was used to detect and 

map burned forest areas with high accuracy. However, 

there was a wrong estimate of the land surface covered by 

water. Land cover should be considered in the dNBR 

study to be applied to similar areas. As a result of 

processing S2 and L8 satellite images, similar spatial 

results were obtained. 

Archived satellite images such as Landsat 8 and Sentinel-

2 MSI have immense potential to be used in the 

determination and evaluation of forest area disturbance. 

Researchers and decision makers can consider the severity 

of wildfire in pre- and post-fire recovery or harvesting 

plans within the scope of forestry research. Image 

classification results can be used as spatial data in decision 

support systems as a quick means to detect and map fire 

areas. On the other hand, the effects of land cover types 

and stand parameters on the prediction performance of 

dNBR and burn severity should be studied. 

Forestry studies that require long-term planning, 

monitoring and evaluation, are very difficult without 

technology. Forests are natural habitats, which are 

affected by changes in climatic conditions and human 

activities. Therefore, technology is valuable in observing 

the forest and understanding the different relationships 

between forest and fire. Remote sensing technology can 

play an important role in the planning of the post-fire 

process, especially in the fight against wildfires. There are 

many developments that could be studied in the 

application of the dNBR method, but it was successfully 

applied in the detection of the fire zone in this study areas. 
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