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Abstract
Multistage pair ranked set sampling (MSPRSS) is a rank-based design that improves sta-
tistical inference with respect to simple random sampling of the same size. It is applicable
when exact measurement is difficult, but judgment raking of the potential sample units can
be done fairly accurately and easily. The ranking is usually performed based on personal
judgment or a concomitant variable, and need not be totally free of errors. This article
deals with estimating the cumulative distribution function in MSPRSS. The proposed es-
timator is theoretically compared with its contenders in the literature. The findings are
supported by numerical evidence from simulation, and real data in the context of body
fat analysis. Finally, a cost analysis is performed to show the advantage of the estimator.
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1. Introduction
Ranked set sampling (RSS) is a sampling technique that enhances inferential methods by

incorporating the experimenter’s judgment or additional information on the characteristic
of interest. In this design, units sampled from the population are first informally ranked.
Utilizing the ranks of the units, a subset of the sample is actually quantified. A reasonable
method for ranking the units is to employ a concomitant variable.

For comparable sample sizes, RSS-based methods are generally superior to their coun-
terparts in simple random sampling (SRS). The improvement in precision stems from the
structure, in the form of the sampler’s ranking, added to the data. Obviously, such a
structure is absent in SRS.

McIntyre [16] proposed RSS as a method for obtaining better estimates of crop yield.
Many statistical methods have been studied under this scheme. Bouza-Herrera and Al-
Omari [3] discuss some new developments in this area. Some applications include auditing
[8], environmental studies [9, 18], cluster randomized designs [19], and medicine [15].
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To draw a ranked set sample of size mn using set size m, the following procedure is
replicated for n cycles:

(1) First, m independent simple random samples of size m are drawn from the popu-
lation.

(2) The elements of the ith (i = 1, . . . , m) sample are ordered, and the unit with rank
i is identified.

(3) Finally, m units identified in step 2 are measured.
The final sample is given by {Xij : i = 1, . . . , m ; j = 1, . . . , n}, where Xij be the ith
judgement order statistic from the jth cycle. If the ranking process is not affected by
errors, it is said that perfect ranking holds. Otherwise, imperfect ranking happens.

The basic RSS protocol has been modified, in different ways, to redress its shortcomings
for specific situations. Frey and Feeman [6, 7], Frey [5], and Mahdizadeh and Zamanzade
[10,11,14] are examples of recent works on generalizations of RSS. Muttlak [17] introduced
pair ranked set sampling (PRSS) that reduces the number of sampled units from the
population to almost half of that in RSS. A pair ranked set sample of size mn using set
size m is obtained by replicating the next procedure for n cycles:

(1) First, k independent simple random samples of size m are drawn from the popu-
lation, where k is equal to m/2 or (m + 1)/2 if m is even or odd.

(2) The elements of the ith (i = 1, . . . , k) sample are ordered, and the units with ranks
i and m + 1 − i are identified.

(3) Finally, m units identified in step 2 are measured.
If Yij denotes the ith judgement order statistic from the jth cycle, then the final sample
is given by {Yij : i = 1, . . . , m ; j = 1, . . . , n}. Under the perfect ranking setup, the units
with ranks i and m + 1 − i, where i = 1, . . . , k in each cycle of PRSS have a positive
correlation.

To reduce possible errors in the judgment rankings, small values of m are used in
the above designs. There exist generalizations of RSS and PRSS which allow to attain
higher efficiency with a fixed set size. These are known as multistage ranked set sampling
(MSRSS) and multistage pair ranked set sampling (MSPRSS). In this article, we study
the cumulative distribution function (CDF) estimation in the latter design.

In Section 2, MSRSS and MSPRSS procedures are delineated. In Section 3, the CDF
estimator based on MSPRSS is presented, and its mathematical properties are treated.
In Section 4, the estimator and its competitor in MSRSS are compared by means of
simulation and a real data set. Section 5 presents a cost analysis to demonstrate merit of
the suggested estimator. In Section 6, we conclude with a summary. Figures are gathered
in an appendix.

2. Multistage schemes
Accuracy of the judgment ranking process has a large impact on the efficiency of RSS.

Small choices for m helps to lower the judgmental errors. MSRSS is a modification of RSS
capable of attaining higher efficiency, given a fixed m. Al-Saleh and Al-Omari [1] studied
estimating the population mean in MSRSS.

To draw an rth stage ranked set sample of size mn using set size m, the following
procedure is replicated for n cycles:

(1) First, mr+1 units are randomly identified from the population.
(2) Next, the mr+1 units are randomly divided into mr−1 sets of size m2.
(3) Steps 1 and 2 of RSS algorithm are done on each set in step 2 to have a (judgement)

ranked set of size m. This yields mr−1 (judgement) ranked sets of size m.
(4) Step 3 is done on the mr−1 ranked sets to have mr−2 second stage (judgement)

ranked sets of size m.
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(5) Step 3 is repeated until ending in an rth stage (judgement) ranked set of size m.
(6) Finally, m units identified in step 5 are measured.

The final sample is denoted by {X
(r)
ij : i = 1, . . . , m ; j = 1, . . . , n}, where X

(r)
ij is the ith

judgement order statistic in the jth cycle. We note that the usual RSS is obtained by
selecting r = 1.

It was mentioned that PRSS decreases the number of sampled units by almost half, as
compared with RSS. Sparked by this idea, Mahdizadeh and Zamanzade [12] introduced
MSPRSS, and applied it for estimating the population mean. An rth stage pair ranked
set sample of size mn using set size m is obtained by replicating the next procedure for n
cycles:

(1) First, krm units are randomly identified from the population, where k is equal to
m/2 or (m + 1)/2 if m is even or odd.

(2) Next, the krm units are randomly divided into kr−1 sets of size km.
(3) Steps 1 and 2 of PRSS algorithm are done on each set in step 2 to have a (judge-

ment) pair ranked set of size m. This yields kr−1 (judgement) pair ranked sets of
size m.

(4) Step 3 is done on the kr−1 pair ranked sets to have kr−2 second stage (judgement)
pair ranked sets of size m.

(5) Step 3 is repeated until ending in an rth stage (judgement) pair ranked set of size
m.

(6) Finally, m units identified in step 5 are measured.
Similarly, {Y

(r)
ij : i = 1, . . . , m ; j = 1, . . . , n} is the final sample, where Y

(r)
ij is the ith

judgement order statistic in the jth cycle. Clearly, PRSS is obtained by selecting r = 1.
MSPRSS is a viable alternative to MSRSS as it needs fewer number of sampling units.

For example, by setting m = 3, r = 5 and n = 1, MSRSS and MSPRSS would require
random samples of sizes 729 and 96, respectively. For common choices of the design
parameters, the ratio of number of units used in MSRSS to that in MSPRSS is given by
τ = (m/k)r. Figure 1 shows values of τ for m ∈ {3, 4, 5} and r ∈ {1, 2, 3, 4, 5, 6}. It
emerges that for fixed m, τ is increasing in r. Surprisingly, the ratio could be larger than
60 in some cases. This provides evidence that using MSPRSS is better suited for practical
situations.

3. The CDF estimation
Suppose Z1, . . . , Zm is a random sample from a population with distribution function

F . The CDF estimator in SRS is given by

F̂ (t) = 1
m

m∑
i=1

I (Zi ≤ t) , (3.1)

with I(.) being the indicator function.
In what follows, we assume that MSRSS and MSPRSS procedures are performed using

n = 1 since the relative efficiency is invariant when n changes. The notation for a sample
of size m drawn from F under the two designs is therefore simplified as X

(r)
1 , . . . , X

(r)
m and

Y
(r)

1 , . . . , Y
(r)

m . Results of this section may be easily extended for the general case. The
corresponding CDF estimators are denoted by F̂

(r)
RSS(t) and F̂

(r)
PRSS(t), i.e.

F̂
(r)
RSS(t) = 1

m

m∑
i=1

I
(
X

(r)
i ≤ t

)
(3.2)

and
F̂

(r)
PRSS(t) = 1

m

m∑
i=1

I
(
Y

(r)
i ≤ t

)
. (3.3)
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Al-Saleh and Samuh [2] investigated estimator (3.2). In the following, properties of esti-
mator (3.3) is studied in the perfect ranking setup. For a technical reason in some proofs,
it is assumed that F (t) cannot be 0 or 1.

If k is the same as given in the MSPRSS, then k∗ is defined as

k∗ =
{

k if k is even,
k − 1 if k is odd.

This convention will be helpful in proving some results.
The expectation and variance of F̂

(r)
PRSS(t) are now obtained.

Proposition 3.1. Let F be the population distribution function, and F
(r)
i (i = 1, . . . , m)

be that of Y
(r)

i . It holds that E
(
F̂

(r)
PRSS(t)

)
= F (t) and

V ar
(

F̂
(r)
PRSS(t)

)
= 1

m2

[
m∑

i=1
F

(r)
i (t)

(
1 − F

(r)
i (t)

)
+ 2

k∗∑
i=1

Cov
(

I
(

Y
(r)

i ≤ t
)

, I
(

Y
(r)

m+1−i ≤ t
))]

.

Proof. The unbiasedness directly follows from the identity F (t) =
∑m

i=1 F
(r)
i (t)/m, which

is given by Proposition 1 in [12]. The variance expression is derived in view of the estimator
form. �

The following lemma is helpful in studying effect of increasing r on the variance of
F̂

(r)
PRSS(t).

Lemma 3.2. Let {X1, . . . ,Xn} be jointly distributed binary random variables, with the
corresponding order statistics X(1) ≤ · · · ≤ X(n). Then, Cov

(
X(i),X(j)

)
≥ 0, for any

i ̸= j, where i, j = 1, . . . , n.

Proof. Without loss of generality, assume that i < j. If pi = E
(
X(i)

)
(i = 1, . . . , n), then

we have

E
(
X(i)X(j)

)
= P

(
X(i) = X(j) = 1

)
= P

(
X(i) = 1

)
= pi.

This means that

Cov
(
X(i),X(j)

)
= E

(
X(i)X(j)

)
− E

(
X(i)

)
E
(
X(j)

)
= pi − pi pj

= pi(1 − pj),

which completes the proof. �

Suppose Y
(r−1)

1 , . . . , Y
(r−1)

m is drawn from F , and the ith order statistic of this sample is
denoted by Y

(r−1)
(i) . From MSPRSS algorithm, it follows that Y

(r)
i

d= Y
(r−1)

(i) . This property
plays a central role in proving the next result.

Proposition 3.3. For fixed m and t, the variance of F̂
(r)
PRSS(t) is decreasing in r.
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Proof. We have

V ar
(
F̂

(r−1)
PRSS (t)

)
= 1

m2 V ar

(
m∑

i=1
I
(
Y

(r−1)
(i) ≤ t

))

= 1
m2

[
m∑

i=1
V ar

(
I
(
Y

(r−1)
(i) ≤ t

))

+
m∑

i ̸=j=1
Cov

(
I
(
Y

(r−1)
(i) ≤ t

)
, I
(
Y

(r−1)
(j) ≤ t

)) ]

= 1
m2

[
m∑

i=1
V ar

(
I
(
Y

(r−1)
(i) ≤ t

))

+ 2
k∗∑

i=1
Cov

(
I
(
Y

(r−1)
(i) ≤ t

)
, I
(
Y

(r−1)
(m+1−i) ≤ t

))
+ R

]
,

with R being sum of covariances of the form Cov
(
I
(
Y

(r−1)
(i′) ≤ t

)
, I
(
Y

(r−1)
(j′) ≤ t

))
, on

condition that i′ and j′ cannot be writen as i and m + 1 − i for some i ∈ {1, . . . , k∗}.
Owing to the previous lemma, R ≥ 0, implying that

V ar
(
F̂

(r−1)
PRSS (t)

)
≥ 1

m2

[
m∑

i=1
V ar

(
I
(
Y

(r−1)
(i) ≤ t

))

+ 2
k∗∑

i=1
Cov

(
I
(
Y

(r−1)
(i) ≤ t

)
, I
(
Y

(r−1)
(m+1−i) ≤ t

)) ]

= 1
m2

[
m∑

i=1
V ar

(
I
(
Y

(r)
i ≤ t

))

+ 2
k∗∑

i=1
Cov

(
I
(
Y

(r)
i ≤ t

)
, I
(
Y

(r)
m+1−i ≤ t

)) ]

= V ar
(
F̂

(r)
PRSS(t)

)
,

that completes the proof. �

The following result allows to compare the variances of F̂ (t) and F̂
(r)
PRSS(t).

Proposition 3.4. For fixed m and t, F̂
(r)
PRSS(t) is more efficient than F̂ (t).

Proof. Thanks to Proposition 3.3, we need to prove the statement for r = 1. Let
Z(1), . . . , Z(m) be the order statistics of Z1, . . . , Zm. By an argument similar to proof
of Proposition 3.3, one can write

V ar
(

F̂ (t)
)

= 1
m2 V ar

(
m∑

i=1
I
(
Z(i) ≤ t

))

= 1
m2

 m∑
i=1

V ar
(
I
(
Z(i) ≤ t

))
+

m∑
i ̸=j=1

Cov
(
I
(
Z(i) ≤ t

)
, I
(
Z(j) ≤ t

))
≥ 1

m2

[
m∑

i=1
V ar

(
I
(
Z(i) ≤ t

))
+ 2

k∗∑
i=1

Cov
(
I
(
Z(i) ≤ t

)
, I
(
Z(m+1−i) ≤ t

))]
= V ar

(
F̂

(1)
PRSS(t)

)
,

as was to be shown. �
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It can be formally shown that the CDF estimator in RSS surpasses its PRSS analog.
This is so because

V ar
(
F̂

(1)
PRSS(t)

)
= 1

m2 V ar

(
m∑

i=1
I
(
Y

(1)
i ≤ t

))

= 1
m2

[
m∑

i=1
V ar

(
I
(
Y

(1)
i ≤ t

))

+ 2
k∗∑

i=1
Cov

(
I
(
Y

(1)
i ≤ t

)
, I
(
Y

(1)
m+1−i ≤ t

)) ]

≥ 1
m2

[
m∑

i=1
V ar

(
I
(
Y

(1)
i ≤ t

))]
= V ar

(
F̂

(1)
RSS(t)

)
,

where the inequality is verified as any pair of sample order statistics have a positive co-
variance. One would expect this property to hold for any r > 1. This is supported by
simulation results, but a mathematical reasoning does not seem to be an easy job. The
difficulty roots in the fact that units resulted from first stage in MSPRSS are dependent.
We close this section with a conjecture.

Conjecture 3.5 For fixed m, r and t, F̂
(r)
RSS(t) is more efficient than F̂

(r)
PRSS(t).

4. Numerical studies
A simulation study was used to assess the performance of F̂

(r)
PRSS(t) by comparing it to

F̂ (t) and F̂
(r)
RSS(t) in terms of variance. For each scenario under consideration, we determine

the relative precisions (RPs)

RP1(t) =
Var

(
F̂ (t)

)
Var

(
F̂

(r)
PRSS(t)

)
and

RP2(t) =
Var

(
F̂

(r)
RSS(t)

)
Var

(
F̂

(r)
PRSS(t)

) ,

where variance estimation is based on 100,000 samples. Having defined the RPs in this
way, values greater than unity signify the preference of F̂

(r)
PRSS(t).

We note that above RPs are independent of the parent distribution F . For each com-
bination of m ∈ {3, 4, 5} and r ∈ {1, 3, 5}, the RPs were computed at quantiles of order
p ∈ (0, 1). The results from our precision comparison appear in Figures 2-4.

It is observed that our estimator beats its SRS rival in all situations. For each m and
p, values of RP1 are increasing in r. The CDF estimator in MSPRSS is outperformed
by that in MSRSS as RP2 values are generally smaller than unity. The efficiency loss
from using MSPRSS instead of MSRSS is more pronounced with even m, especially when
p approaches 0.5 (see Figure 3). All these trends are in agreement with the theoretical
results in Section 3.

The above simulation experiment is based on the perfect ranking assumption. We now
use a real data set to see how judgment ranking errors affect the suggested estimator.
Mahdizadeh and Zamanzade [13] used this data set†, that includes measurements of 15
variables for 252 men. Body fat percentage (X) and abdomen circumference (Y ) are

†It is accessible at http://lib.stat.cmu.edu/datasets/bodyfat
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the two variables considered for any man. Thanks to its high degree of accuracy, dual-
energy X-ray absorptiometry is now a popular method for body fat analysis. The use of
this technology is, however, hampered by the implementation cost. Here, Y serves as a
readily accessible measure of obesity. Exact quantification of X is expensive with respect
to the judgment ranking using Y . In this situation, employing the RSS-based sampling
techniques is fitting.

Suppose we aim to estimate the CDF of X in the population consisting of the 252
men. The two RPs defined above were determined using 100,000 samples drawn with
replacement from the population. In so doing, m ∈ {3, 5} and r ∈ {1, 2, 3} were chosen.
Also, the ranking phase was based on Y . It is worth noting that X and Y have a correlation
coefficient of 0.81. Figures 5 and 6 display the results that reveal properties similar to
those in Figures 2-4.

5. Comparison with cost consideration
In Section 4, the CDF estimator in MSPRSS was compared with its analogs in SRS and

MSRSS, given a fixed sample size. This is not a fair method because the cost involved
in the judgment ranking are not incorporated appropriately. To resolve this problem, we
employ a cost model in RSS due to [4]. It allows to compare different estimators based on
fixed cost.

Assume that the stratification cost for each quantified unit in MSPRSS is eqaul to cs.
Also, let cq be the cost of drawing and quantifying a unit, regardless of the ranking. Then
the relative efficiency (RE) of MSPRSS to SRS in estimating the population CDF is

RE1(t) = NP

NS
RP1(t)

= cq

cq + cs
RP1(t),

where NP and NS are the total number of measured units in MSPRSS and SRS, respec-
tively. The number of sample units required in MSRSS is τ times of that in MSPRSS,
where τ was given in Section 2. This yields a similar relationship between the stratification
cost for each quantified unit in the two designs. Thus, the RE of MSPRSS to MSRSS in
estimating the population CDF is

RE2(t) = NP

NR
RP2(t)

= cq + τ cs

cq + cs
RP2(t),

where NR indicates the total number of quantified units in MSRSS.
To get insight into effect of cs on the above REs, a numerical study was performed in

the perfect ranking setup. It was assumed that m = 3 and r ∈ {1, 3, 5}. Next, values
of RP1(t) and RP2(t) were determined using 100,000 samples at t = F −1(0.5), i.e. the
population median. Using these estimates, the REs were plotted in Figure 7 as a function
of cs when cq = $50.

It transpires that the CDF estimator in MSPRSS may be less efficient than its SRS
version if the stratification cost is too high (see the upper panel in Figure 7). This is
consistent with a point emphasized in the literature about necessary condition for imple-
menting rank-based designs like MSPRSS. It states that a small set of sample units can be
ranked fairly accurately and inexpensively. Finally, the trend observed in the lower panel
of Figure 7 is very interesting. It signifies that the CDF estimator in MSPRSS surpasses
its competitor in MSRSS as the stratification cost goes higher. This is more pronounced
with larger stage numbers.
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6. Conclusion
RSS utilizes a judgment ranking mechanism to put additional structure in data. This

structure resembles stratifying the population prior to drawing a simple random sample.
While stratified SRS incorporates auxiliary information from the entire population, RSS
uses that from only the units in an initial sample. For comparable sample sizes, RSS-based
methods are generally more efficient than their SRS counterparts.

MSRSS is a modification of RSS aimed at reducing effect of the judgment ranking errors.
The required number of units in MSRSS becomes excessive by increasing r, especially for
large m. This feature may hinder the use of MSRSS in practice. MSPRSS is a newly
suggested design that needs less sampling process than MSRSS.

In this article, a CDF estimator under MSPRSS is developed. The suggested estimator
is theoretically compared with its contenders in MSRSS and SRS. Numerical studies are
also conducted to get insight of the finite sample behavior of the suggested estimator.
The advantage of our estimator over its MSRSS analog is demonstrated using a cost anal-
ysis. In a subsequent work, we plan to study the proportion estimation in MSPRSS design.
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Figure 1. Values of τ for some choices of m and r.
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Figure 2. Estimated RPs for m = 3, where black/solid, blue/dashed and
red/dotted curves relate to r = 1, r = 3 and r = 5, respectively.

Figure 3. Estimated RPs for m = 4, where black/solid, blue/dashed and
red/dotted curves relate to r = 1, r = 3 and r = 5, respectively.
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Figure 4. Estimated RPs for m = 5, where black/solid, blue/dashed and
red/dotted curves relate to r = 1, r = 3 and r = 5, respectively.

Figure 5. Estimated RPs from the body fat data for m = 3, where black/solid,
blue/dashed and red/dotted curves relate to r = 1, r = 2 and r = 3, respectively.
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Figure 6. Estimated RPs from the body fat data for m = 5, where black/solid,
blue/dashed and red/dotted curves relate to r = 1, r = 2 and r = 3, respectively.
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Figure 7. Estimated REs for m = 3 at the population median, where black/solid,
blue/dashed and red/dotted curves relate to r = 1, r = 3 and r = 5, respectively.


