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Abstract

This paper particularly addresses and discusses some analytical studies on the existence and uniqueness of
global or blow-up solutions under the traveling pro�le forms for a free boundary problem of two-dimensional
di�usion equations of moving fractional order. It does so by applying the properties of Schauder's and
Banach's �xed point theorems. For application purposes, some examples of explicit solutions are provided
to demonstrate the usefulness of our main results.
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1. Introduction

Partial and ordinary di�erential equations appear as a description of many observed evolution phenomena
in di�erent scienti�c areas. The adequacy of these equations motivates the researchers in the modeling of
several real-world problems to investigate their qualitative and quantitative aspects.
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The non-local property for the derivative operators of fractional order is important in application because
it allows to model the dynamics of many problems in physics, engineering, medicine, economics, control
theory, etc. For further reading on the subject, readers can refer to the following books (Samko et al. 1993
[1], Podlubny 1999 [2], Kilbas et al. 2006 [3], Diethelm 2010 [4]).

Exact solutions (or closed-forms) of fractional PDEs have an important role in the appropriate un-
derstanding of many qualitative features of various phenomena and processes in di�erent areas of natural
sciences. Exact solutions of fractional equations demonstrate and allow for the unraveling of the mechanisms
of various complex phenomena, such as the spatial localization of natural transfer processes, the existence
of several peaking regimes among others (see [5]). Furthermore, simple solutions are often used in teaching
many courses as speci�c examples illustrating basic tenets of a theory that admits mathematical formulation.

In this work, we shall give an example of a class of fractional-order's PDEs, which allow to describe the
di�usion phenomena; it is a two-dimensional di�usion equation of moving fractional order, and is written as
follows:

∂u

∂t
= κ

(
∂su

∂xs
+
∂su

∂ys

)
, κ ∈ R∗, (1)

for m− 1 < s ≤ m ∈ N− {0, 1}, with

∂su

∂xs
= Im−sf(y,t)

∂mu

∂xm
and

∂su

∂ys
= Im−sf(x,t)

∂mu

∂ym
,

where u = u (x, y, t) is a scalar function of free space variables

(x, y) ∈ Ω = [f (y, t) , g (y, t)]× [f (x, t) , g (x, t)]

and time t ∈ [0, T ) , T may be a �nite constant or in�nite, f and g are two continuous functions to be
identi�ed. The symbol Is∗ presents the Riemann-Liouville's fractional integral of order s.

The fractional-order's PDE (1) generalizes and uni�es several equations in a single form. For the one-
dimensional case, the equation (1) becomes the transport equation for s = 1 and the linear dispersive
equations of Airy type for s = 3.

The fractional operator given by (1) generalizes the traditional Laplace operator for s = 2. Therefore,
for m = 2, the space-fractional di�usion equation (1) becomes a two-dimensional space-fractional heat
equation, in which the existence problems of its self-similar solutions and its scale-invariant solutions have
been discussed for the one-dimensional case in [6, 7, 8, 9, 10, 11].

The existence and uniqueness of solutions for fractional di�erential equations or fractional-order's PDEs
have been investigated in recent years. For more on the subject, we refer the reader to the following works
[6, 7, 8, 9, 10, 12, 13, 14, 15, 16].

Our main goal in this work is to determine the existence, uniqueness and main properties of the global
or blow-up solution in time of the fractional-order's PDE (1), under the traveling pro�le form (see [17, 18]),
which is:

u (x, y, t) = c (t)ϕ

(
x+ y − b (t)

a (t)

)
, with a, c ∈ R∗+, b ∈ R, (2)

the functions a (t), b (t) and c (t) depend on time t and the basic pro�le ϕ are not known in advance and are
to be identi�ed.

We represent the role of Free Boundary Problems in the real world as a signi�cant source of new ideas in
modern analysis. With the help of a model problem, we illustrate the use of analytical techniques to obtain
the existence and uniqueness of weak solutions via the use of the traveling pro�le method. This method
permits us to reduce the fractional-order's PDE (1) to a fractional di�erential equation; the idea is well
illustrated with examples in our paper. This approach (2) is very promising and can also bring new results
for other applications in fractional-order's PDEs.
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2. Preliminary and necessary de�nitions

In this section, we present the necessary de�nitions from the fractional calculus theory. By C (J,R), we
denote the Banach space of continuous functions from J = [0, 1] into R with the norm:

‖ϕ‖∞ = sup
η∈J
|ϕ (η)| .

We start with the de�nitions introduced in [3] with a slight modi�cation in the notation.

De�nition 2.1 ([3]). The left-sided (arbitrary) fractional integral of order s > 0 of a continuous function

ϕ : J → R is given by:

Is0+ϕ (η) =
1

Γ (s)

∫ η

0
(η − ξ)s−1 ϕ (ξ) dξ, η ∈ J.

Γ (s) =
∫∞

0 ξs−1 exp (−ξ) dξ is the Euler gamma function.

De�nition 2.2 (Caputo fractional derivative [3]). The left-sided Caputo fractional derivative of order s > 0
of a function ϕ : J → R is given by:

CDs0+ϕ (η) =

{
dmϕ(η)
dηm , for s = m ∈ N,∫ η
0

(η−ξ)m−s−1

Γ(m−s)
dmϕ(ξ)
dξm dξ, for m− 1 < s < m ∈ N∗.

(3)

Lemma 2.3 ([3]). Assume that CDs0+ϕ ∈ C (J,R), for all s > 0, then:

Is0+
CDs0+ϕ (η) = ϕ (η)−

m−1∑
k=0

ϕ(k) (0)

k!
ηk, m− 1 < s ≤ m ∈ N∗.

Remark 2.4. Let m ≥ 2 be a natural number and let m− 1 < s ≤ m, λ ≥ 1, CDs0+ϕ ∈ C (J,R) and v ∈ R,
be such that ϕ′ (0) = v and

Γ (s) |v| ≤ (λ− 1)
∥∥CDs0+ϕ∥∥∞ . (4)

Then

Is−1
0+

CDs0+ϕ (η) =
d

dη
Is0+

CDs0+ϕ (η)

= ϕ′ (η)− v − ϕ′′ (0) η − · · · − 1

(m− 2)!
ϕ(m−1) (0) ηm−2.

Moreover; if m ≥ 3 and ϕ(k) (0) = 0 for each k = 2, 3, . . . ,m− 1, we get∣∣ϕ′ (η)
∣∣ =

∣∣Is−1
0+

CDs0+ϕ (η) + v
∣∣ ≤ λ

Γ (s)

∥∥CDs0+ϕ∥∥∞ , ∀η ∈ J. (5)

Theorem 2.5 (Schauder's �xed point [19]). Let E be a Banach space, and P be a closed, convex and

nonempty subset of E. Let M : P → P be a continuous mapping such that M (P ) is a relatively compact

subset of E. ThenM has at least one �xed point in P.

Theorem 2.6 (Banach's �xed point [19]). Let P be a non-empty closed subset of a Banach space E, then
any contraction mappingM of P into itself has a unique �xed point.

3. Main results

Throughout the rest of this paper, we have m − 1 < s ≤ m, with m ≥ 2 is a natural number, κ ∈ R∗,
λ ≥ 1 and α, β, γ, ω, v ∈ R, where v satis�es the inequality (4) from Remark 2.4.
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3.1. Statement of the free boundary problem and main theorems

In this part, we �rst attempt to �nd the equivalent approximate to the following free boundary problem
of the two-dimensional di�usion equation of moving fractional order:

∂u
∂t = κ

(
∂su
∂xs + ∂su

∂ys

)
, (x, y, t) ∈ Ω× [0, T ) , κ ∈ R∗,

u (f (y, t) , y, t) = c (t)ω, ∂u(x,f(x,t),t)
∂y = v c(t)a(t) , a, c ∈ R∗+,

∂ku
∂yk

(x, f (x, t) , t) = 0, k = 2, 3, . . . ,m− 1, for m ≥ 3,

u (x, y, 0) = ϕ (x+ y) , ϕ ∈ C (J,R) ,

(6)

under the traveling pro�le form

u (x, y, t) = c (t)ϕ (η) , with η =
x+ y − b (t)

a (t)
and a, c ∈ R∗+, b ∈ R, (7)

where
a (0) = c (0) = 1, b (0) = 0.

Now, we give the principal theorems of this work.

Theorem 3.1. Let a (t), b (t) and c (t) be three real functions of time t, given by the traveling pro�le form

(7). If

|ċ (t)|+ λsa−1 (t) c (t)
(
|ȧ (t)|+

∣∣∣ḃ (t)
∣∣∣)

Γ (s+ 1)
< 2 |κ| c (t)

as (t)
, (8)

then the problem (6) has at least one solution in the traveling pro�le form (7), which is global in time when

ȧ (t) > 0, and it blows up in a �nite time:

0 < t < T = −a
1−s (t)

sȧ (t)
when ȧ (t) < 0 and ċ (t) > 0.

Theorem 3.2. Let a (t), b (t) and c (t) be three real functions of time t, given by the traveling pro�le form

(7) and satisfy the following inequality:

λas−1 (t)
(
|ȧ (t)|+

∣∣∣ḃ (t)
∣∣∣) < Γ (s+ 1) .

If
|ċ (t)|

Γ (s+ 1)− λas−1 (t)
(
|ȧ (t)|+

∣∣∣ḃ (t)
∣∣∣) < 2 |κ| c (t)

as (t)
, (9)

then the problem (6) admits a unique solution in the traveling pro�le form (7), which is global in time when

ȧ (t) > 0, and it blows up in a �nite time:

0 < t < T = −a
1−s (t)

sȧ (t)
when ȧ (t) < 0 and ċ (t) > 0.

3.2. Existence and uniqueness results of the basic pro�le

We should �rst deduce the equation satis�ed by the function ϕ in (7) and used for the de�nition of
traveling pro�le solutions.
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Theorem 3.3. Let κ ∈ R∗, (x, y, t) ∈ [f (y, t) , g (y, t)]× [f (x, t) , g (x, t)]× [0, T ), also let a (t), b (t) and c (t)
be three functions that satisfy the relation (7). By choosing:

f (z, t) = b (t)− z, g (z, t) = f (z, t) + a (t) , where z takes x or y,

then the transformation (7) reduces the partial di�erential equation problem of space-fractional order (6) to

the ordinary di�erential equation of fractional order of the form:

CDs0+ϕ (η) = αϕ (η) + βηϕ′ (η) + γϕ′ (η) , η ∈ J, (10)

with the conditions: {
ϕ (0) = ω, ϕ′ (0) = v, for any m ≥ 2,

ϕ(k) (0) = 0, k = 2, 3, . . . ,m− 1, for m ≥ 3,
(11)

where

(α, β, γ) =
as (t)

2κ

(
ċ (t)

c(t)
,− ȧ (t)

a (t)
,− ḃ (t)

a (t)

)
, for some α, β, γ ∈ R. (12)

Proof. The fractional equation resulting from the substitution of expression (7) in the original fractional-
order's PDE (1), should be reduced to the standard bilinear functional equation (see [17]). First, for η =
x+y−b(t)
a(t) , we get η ∈ J and

∂u

∂t
= ċ (t)ϕ (η)− c (t)

ȧ (t)

a (t)
ηϕ′ (η)− c (t)

ḃ (t)

a (t)
ϕ′ (η) . (13)

In another way, we get for a (t) ξ1 = τ + y − b (t) and a (t) ξ2 = x+ τ − b (t) that:

κ

(
∂su

∂xs
+
∂su

∂ys

)
= κ

(
Im−sf(y,t)

∂mu (x, y, t)

∂xm
+ Im−sf(x,t)

∂mu (x, y, t)

∂ym

)

=
κc (t)

Γ (m− s)

∫ x

f(y,t)
(x− τ)m−1−s

dmϕ
(
τ+y−b(t)
a(t)

)
dτm

dτ

+

∫ y

f(x,t)
(y − τ)m−1−s dm

dτm
ϕ

(
x+ τ − b (t)

a (t)

)
dτ

)

=
κc (t) a−s (t)

Γ (m− s)

(∫ η

0
(η − ξ1)m−1−s d

m

dξm1
ϕ (ξ1) dξ1

+

∫ η

0
(η − ξ2)m−1−s d

m

dξm2
ϕ (ξ2) dξ2

)
= 2κc (t) a−s (t) CDs0+ϕ (η) . (14)

If we replace (13) and (14) in (6), we get

CDs0+ϕ (η) =
as (t)

2κ

(
ċ (t)

c (t)
ϕ (η)− ȧ (t)

a (t)
ηϕ′ (η)− ḃ (t)

a (t)
ϕ′ (η)

)
, κ ∈ R∗. (15)

Now, let α, β, γ ∈ R be such that the three functions a (t), b (t) and c (t) of time variable t ∈ [0, T ), are
solutions of the following system 

ȧ (t) = −2κβa1−s (t) ,

ḃ (t) = −2κγa1−s (t) ,
ċ (t) = 2καc (t) a−s (t) ,

which is equivalent to (12), and is resolved in the last part of this section (see the part 3.3).
If we replace (12) in (15), we obtain (10)�(11). The proof is complete.
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In what follows, we present some signi�cant lemmas to show the principal theorems. We have:

Lemma 3.4. Let ϕ,ϕ′,CDs0+ϕ ∈ C (J,R), then the problem (10)�(11) is equivalent to the integral equation:

ϕ (η) = ω + vη +
1

Γ (s)

∫ η

0
(η − ξ)s−1 (αϕ (ξ) + βξϕ′ (ξ) + γϕ′ (ξ)

)
dξ. (16)

Proof. Let ϕ,ϕ′,CDs0+ϕ ∈ C (J,R), then by using Lemma 2.3, we reduce the fractional equation (10) to an
equivalent fractional integral equation. By applying Is0+ to the equation (10) we obtain:

Is0+
CDs0+ϕ (η) = Is0+

(
αϕ (η) + βηϕ′ (η) + γϕ′ (η)

)
. (17)

From Lemma 2.3, we simply �nd:

Is0+
CDs0+ϕ (η) = ϕ (η)− ϕ (0)− ηϕ′ (0)− · · · − 1

(m− 1)!
ηm−1ϕ(m−1) (0) .

By using (11), the fractional integral equation (17) gives us:

ϕ (η) = Is0+
(
αϕ (η) + βηϕ′ (η) + γϕ′ (η)

)
+ ω + vη. (18)

The proof is complete.

Theorem 3.5. If we put
|α|+ λs (|β|+ |γ|)

Γ (s+ 1)
< 1, (19)

then the problem (10)�(11) has at least one solution on J.

Proof. To begin the proof, we will transform the problem (10)�(11) into a �xed point problem Mϕ (η) =
ϕ (η) , with

Mϕ (η) = ω + vη +

∫ η

0

(η − ξ)s−1

Γ (s)

(
αϕ (ξ) + βξϕ′ (ξ) + γϕ′ (ξ)

)
dξ. (20)

We �rst notice that if ϕ ∈ C (J,R), thenMϕ is actually continuous since it is an operator of a polynomial,
a primitive of continuous functions and their derivatives. Hence, we can consider it an element of C (J,R)
and is equipped with the standard norm:

‖Mϕ‖∞ = sup
η∈J
|Mϕ (η)| .

Because the problem (10)�(11) is equivalent to the fractional integral equation (20), the �xed points ofM
are solutions of the problem (10)�(11).
We demonstrate that M satis�es the assumption of Schauder's �xed point theorem 2.5. This could be

proved through three steps:

Step 1 M is a continuous operator.
Let (ϕn)n∈N be a real sequence such that lim

n→∞
ϕn = ϕ in C (J,R). Then for all η ∈ J,

|Mϕn (η)−Mϕ (η)| ≤
∫ η

0

(η − ξ)s−1

Γ (s)
|α (ϕn (ξ)− ϕ (ξ))

+ βξ
(
ϕ′n (ξ)− ϕ′ (ξ)

)
+γ
(
ϕ′n (ξ)− ϕ′ (ξ)

)∣∣ dξ, (21)
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where ϕn and ϕ satisfy the problem (10)�(11). Then we have:∣∣CDs0+ϕn (η)− CDs0+ϕ (η)
∣∣ = |α (ϕn (η)− ϕ (η))

+ (βη + γ)
(
ϕ′n (η)− ϕ′ (η)

)∣∣
≤ |α| |ϕn (η)− ϕ (η)|
+ (|β|+ |γ|)

∣∣ϕ′n (η)− ϕ′ (η)
∣∣ .

By using (5) from Remark 2.4, we have:

∥∥CDs0+ϕn − CDs0+ϕ
∥∥
∞ ≤ |α| ‖ϕn − ϕ‖∞ +

λ (|β|+ |γ|)
Γ (s)

×
∥∥CDs0+ϕn − CDs0+ϕ

∥∥
∞ .

According to (19), we have Γ (s)− λ (|β|+ |γ|) > 1
s |α| ≥ 0, thus:

∥∥CDs0+ϕn − CDs0+ϕ
∥∥
∞ ≤

|α|Γ (s)

Γ (s)− λ (|β|+ |γ|)
‖ϕn − ϕ‖∞ .

Since ϕn → ϕ, then we get CDs0+ϕn →
CDs0+ϕ as n→∞ for each η ∈ J.

Now let µ > 0, be such that for each η ∈ J, we have:∣∣CDs0+ϕn (η)
∣∣ ≤ µ, ∣∣CDs0+ϕ (η)

∣∣ ≤ µ.
Then, we have:

|Mϕn (η)−Mϕ (η)| ≤ 1

Γ (s)

∫ η

0
(η − ξ)s−1 |α (ϕn (ξ)− ϕ (ξ))

+ (βξ + γ)
(
ϕ′n (ξ)− ϕ′ (ξ)

)∣∣ dξ,
≤ 1

Γ (s)

∫ η

0
(η − ξ)s−1×∣∣CDs0+ϕn (ξ)− CDs0+ϕ (ξ)

∣∣ dξ
≤ 2µ

Γ (s)

∫ η

0
(η − ξ)s−1 dξ.

For each η ∈ J, the function ξ → 2µ
Γ(s) (η − ξ)s−1 is integrable on [0, η], then the Lebesgue dominated

convergence theorem and (21) imply that:

|Mϕn (η)−Mϕ (η)| → 0 as n→∞,

and hence:
lim
n→∞

‖Mϕn −Mϕ‖∞ = 0.

Consequently,M is continuous.

Step 2 According to (19), we put the positive real

r ≥
(

1 +
|α|

Γ (s+ 1)− (λs (|β|+ |γ|) + |α|)

)
(|ω|+ |v|)

and de�ne the subset P as follows:

P = {ϕ ∈ C (J,R) : ‖ϕ‖∞ ≤ r} .
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It is clear that P is a bounded, closed and convex subset of C (J,R).
Let ϕ ∈ P be a function which satis�es the problem (10)�(11) andM : P → C (J,R) be the integral

operator de�ned by (20), thenM (P ) ⊂ P.
In fact, by using (5) from Remark 2.4, we have for each η ∈ J :∣∣CDs0+ϕ (η)

∣∣ =
∣∣αϕ (η) + βηϕ′ (η) + γϕ′ (η)

∣∣
≤ |α| |ϕ (η)|+ (|β|+ |γ|)

∣∣ϕ′ (η)
∣∣ .

According to (19), we get Γ (s) > λ (|β|+ |γ|) and

∥∥CDs0+ϕ∥∥∞ ≤ |α|Γ (s)

Γ (s)− λ (|β|+ |γ|)
r. (22)

Then

|Mϕ (η)| ≤ |ω|+ |v|+ 1

Γ (s)

∫ η

0
(η − ξ)s−1×∣∣αϕ (ξ) + βξϕ′ (ξ) + γϕ′ (ξ)

∣∣ dξ
≤

(|ω|+ |v|)
(

1 + |α|
Γ(s+1)−(λs(|β|+|γ|)+|α|)

)
1 + |α|

Γ(s+1)−(λs(|β|+|γ|)+|α|)

+
|α| r

Γ (s+ 1)− λs (|β|+ |γ|)
≤ r.

ThenM (P ) ⊂ P.

Step 3 M (P ) is relatively compact.
Let η1, η2 ∈ J, η1 < η2, and ϕ ∈ P. Then

|Mϕ (η2)−Mϕ (η1)| ≤ |v| (η2 − η1)

+
1

Γ (s)

∫ η1

0

∣∣∣((η2 − ξ)s−1 − (η1 − ξ)s−1
)

×
(
αϕ (ξ) + βξϕ′ (ξ) + γϕ′ (ξ)

)∣∣ dξ
+

1

Γ (s)

∫ η2

η1

(η2 − ξ)s−1
∣∣(αϕ (ξ) + βξϕ′ (ξ) + γϕ′ (ξ)

)∣∣ dξ
≤ |v| (η2 − η1) +

|α| r
Γ (s)− λ (|β|+ |γ|)

[∫ η1

0

∣∣∣(η2 − ξ)s−1−

(η1 − ξ)s−1
∣∣∣ dξ +

∫ η2

η1

(η2 − ξ)s−1 dξ

]
. (23)

We have:

(η2 − ξ)s−1 − (η1 − ξ)s−1 = −1

s

d

dξ
[(η2 − ξ)s − (η1 − ξ)s] ,

then ∫ η1

0

∣∣∣(η2 − ξ)s−1 − (η1 − ξ)s−1
∣∣∣ dξ ≤ 1

s
[(η2 − η1)s + (ηs2 − ηs1)] ,

we have also: ∫ η2

η1

(η2 − ξ)s−1 dξ = −1

s
[(η2 − ξ)s]η2η1 ≤

1

s
(η2 − η1)s .
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Then (23) gives us:

|Mϕ (η2)−Mϕ (η1)| ≤ |v| (η2 − η1) +
|α| r (2 (η2 − η1)s + (ηs2 − ηs1))

Γ (s+ 1)− λs (|β|+ |γ|)
.

As η1 → η2, the right-hand side of the above inequality tends to zero.

As a consequence of steps 1 to 3, and by means of the Ascoli-Arzelà theorem, we deduce thatM : P → P
is continuous, compact and satis�es the assumption of Schauder's �xed point theorem 2.5. Then M has a
�xed point which is a solution of the problem (10)�(11) on J. The proof is complete.

Theorem 3.6. If we put λ (|β|+ |γ|) < Γ (s) and:

|α|
Γ (s+ 1)− λs (|β|+ |γ|)

< 1, (24)

then the problem (10)�(11) admits a unique solution on J.

Proof. In the previous Theorem 3.5, we already transform the problem (10)�(11) into a �xed point problem
(20).

Let ϕ,ψ ∈ C (J,R) be two functions that satisfy the problem (10)�(11), then

Mϕ (η)−Mψ (η) =
1

Γ (s)

∫ η

0
(η − ξ)s−1 [α (ϕ (ξ)− ψ (ξ))

+ (βξ + γ)
(
ϕ′ (ξ)− ψ′ (ξ)

)]
dξ.

Also

|Mϕ (η)−Mψ (η)| ≤
∫ η

0

(η − ξ)s−1

Γ (s)

∣∣CDs0+ϕ (ξ)− CDs0+ψ (ξ)
∣∣ dξ. (25)

For all η ∈ J, we have:∣∣CDs0+ϕ (η)− CDs0+ψ (η)
∣∣ =

∣∣α (ϕ (η)− ψ (η)) + (βη + γ)
(
ϕ′ (η)− ψ′ (η)

)∣∣
≤ |α| |ϕ (η)− ψ (η)|+ (|β|+ |γ|)

∣∣ϕ′ (η)− ψ′ (η)
∣∣ .

By using (5) from Remark 2.4, we have:

∥∥CDs0+ϕ− CDs0+ψ
∥∥
∞ ≤ |α| ‖ϕ− ψ‖∞ +

λ (|β|+ |γ|)
Γ (s)

∥∥CDs0+ϕ− CDs0+ψ
∥∥
∞ .

As Γ (s)− λ (|β|+ |γ|) > 0, we have:

∥∥CDs0+ϕ− CDs0+ψ
∥∥
∞ ≤

|α|Γ (s)

Γ (s)− λ (|β|+ |γ|)
‖ϕ− ψ‖∞ .

From (25) we �nd:

‖Mϕ−Mψ‖∞ ≤
|α|

Γ (s+ 1)− λs (|β|+ |γ|)
‖ϕ− ψ‖∞ .

This implies that by (24),M is a contraction operator.
As a consequence of Theorem 2.6, using Banach's contraction principle [19], we deduce that M has a

unique �xed point which is the unique solution of the problem (10)�(11) on J. The proof is complete.
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3.3. Proof of main theorems

In this part, we prove the existence and uniqueness of solutions of the following free boundary problem of
the two-dimensional di�usion equation of moving fractional order:

∂u
∂t = κ

(
∂su
∂xs + ∂su

∂ys

)
, (x, y, t) ∈ Ω× [0, T ) , κ ∈ R∗,

u (f (y, t) , y, t) = c (t)ω, ∂u(x,f(x,t),t)
∂y = v c(t)a(t) , a, c ∈ R∗+,

∂ku
∂yk

(x, f (x, t) , t) = 0, k = 2, 3, . . . ,m− 1, for m ≥ 3,

u (x, y, 0) = ϕ (x+ y) , ϕ ∈ C (J,R) ,

(26)

under the traveling pro�le form:

u (x, y, t) = c (t)ϕ (η) , with η =
x+ y − b (t)

a (t)
and a, c ∈ R∗+, b ∈ R, (27)

with Ω = [f (y, t) , g (y, t)]× [f (x, t) , g (x, t)], for

f (z, t) = b (t)− z, g (z, t) = f (z, t) + a (t) , where z takes x or y.

Proof of Theorem 3.1
The transformation (27) reduces the two-dimensional space-fractional di�usion equation in (26) to the

ordinary di�erential equation of fractional order of the form:

CDs0+ϕ (η) = αϕ (η) + βηϕ′ (η) + γϕ′ (η) , α, β, γ ∈ R, (28)

where

η =
x+ y − b (t)

a (t)
, for a ∈ R∗+, b ∈ R and (x, y) ∈ Ω,

and 
ȧ (t) = −2κβa1−s (t) ,

ḃ (t) = −2κγa1−s (t) ,
ċ (t) = 2καc (t) a−s (t) ,

(29)

with the conditions: {
ϕ (0) = ω, ϕ′ (0) = v, for any m ≥ 2,

ϕ(k) (0) = 0, k = 2, 3, . . . ,m− 1, for m ≥ 3.
(30)

Now, to determine the functions a (t), b (t) and c (t), we just solve the system (29).
We denote by (z)+ the positive part of z, which is z if z > 0 and what remains is zero.
If β = 0, we have a (t) = 1 and {

b (t) = −2κγt,
c (t) = exp (2καt) .

t > 0.

If β 6= 0, after an integration from 0 to t we get:
a (t) = (1− 2sκβt)

1
s
+ ,

b (t) = γ
2sκβ

(
(1− 2sκβt)

1
s
+ − 1

)
,

c (t) = (1− 2sκβt)
− α
sβ

+ ,

0 < t < T, (31)

where T > 0 is the maximal existence time for the solution u, which may be �nite or in�nite. Thereupon,
we separate the following cases:
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1. If κβ ≤ 0 (i.e., ȧ (t) ≥ 0), the problem (26) admits a global solution in time under the traveling pro�le
form (27); this solution is de�ned for all t > 0, (i.e., T =∞).
In addition, for αβ > 0 (i.e., ċ (t) < 0), we have:

lim
t→+∞

u (x, y, t) = 0, for all (x, y) ∈ Ω.

2. If κβ > 0 (i.e., ȧ (t) < 0), the functions a (t), b (t) and c (t) are de�ned locally and are well-de�ned if
and only if

0 < t < T =
1

2sκβ
= −a

1−s (t)

sȧ (t)
.

The moment T = 1
2sκβ represents the maximal existence value of the functions a (t), b (t) and c (t).

Moreover; if αβ > 0 (i.e., ċ (t) > 0), the problem (26) admits a solution under the traveling pro�le
form (27), which blows up in a �nite time. The solution is de�ned for all t ∈ [0, T ), the moment T
represents the blow-up time of the solution such that:

lim
t→T−

u (x, y, t) = lim
t→T−

c (t)ϕ

(
x+ y − b (t)

a (t)

)
= +∞,

for all x, y ∈ R. We recall that the solution blows up in �nite time if there exists a time T < +∞,
which we call the blow-up time, such that the solution is well de�ned for all 0 < t < T, while:

sup
x,y∈R

|u (x, y, t)| → +∞, when t→ T− =
1

2sκβ
.

Now, let ϕ ∈ C (J,R) be a continuous function. By using (27), the condition (8) is equivalent to (19),
which is:

|α|+ λs (|β|+ |γ|)
Γ (s+ 1)

< 1.

We already proved the existence of a solution to the problem (28)�(30) in Theorem 3.5, provided that (19)
holds true. Consequently, if (8) holds for any (x, y, t) ∈ Ω × [0, T ), then there exists at least one solution
of the problem of the two-dimensional di�usion equation of moving fractional order (26) under the traveling
pro�le form (27). The proof is complete.

Proof of Theorem 3.2
Based on Theorem 3.6, we use the same steps through which we proved Theorem 3.1 to prove the

existence and uniqueness of global or blow-up traveling pro�le solution to the problem (26), provided that
the condition (9) holds true. The proof is complete.

4. Explicit solutions

Example 1: According to the proof of the Theorem 3.1, for β = γ = 0 and α, κ ∈ R∗, we get

a (t) = 1, b (t) = 0 and c (t) = exp (2καt) .

In this case, for m = 2, (i.e., Space-fractional heat equation), we give new explicit solutions on the traveling
pro�le form of the problem (26) as follows:

u (x, y, t) = exp (2καt)
(
ωEs (α (x+ y)s) + v (x+ y)Es,2

(
α (x+ y)2

))
,

for ω, v ∈ R, where Es,m (η) is the function of Mittag-Le�er type. The solution is de�ned for all t > 0.
Example 2: We present new explicit solutions on the traveling pro�le form of the problem (26):
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For m ≥ 2, if we put β, κ, ω, v ∈ R∗, α = (1−m)β and γ = (m−1)βω
v , we get that

ϕ (η) = ω +

m−1∑
k=1

(m− 1)!vk

k! (m− k − 1)! (m− 1)k ωk−1
ηk,

is a solution of the problem (28)�(30). Then the traveling pro�le solution of the problem (26) is presented
as follows:

u (x, y, t) = c (t)

ω +

m−1∑
k=1

(m−1)!
(m−k−1)!v

k

k!ωk−1 (m− 1)k

(
x+ y − b (t)

a (t)

)k , (32)

where 
a (t) = (1− 2sκβt)

1
s
+ ,

b (t) = γ
2sκβ

(
(1− 2sκβt)

1
s
+ − 1

)
,

c (t) = (1− 2sκβt)
m−1
s

+ .

0 < t < T,

According to the proof of the Theorem 3.1, we separate the following cases:

1. If κβ < 0, the problem (26) admits a global solution in time under the form (32), this solution is
de�ned for all t > 0.

2. If κβ > 0, the functions a (t), b (t) and c (t) are de�ned if and only if 0 < t < T = 1
2sκβ and the solution

does not blow up in the moment T, because αβ = (1−m)β2 < 0. Moreover;

sup
x,y∈R

|u (x, y, t)| → 0, when t→ T =
1

2sκβ
.

5. Conclusion

In this paper, we have discussed the existence and uniqueness of solutions for a class of fractional-order's
PDEs, which are known as two-dimensional di�usion equations of moving fractional order, with mixed free
boundary conditions under the traveling pro�le form. The behavior of these solutions depends on some
parameters that satisfy some conditions which make their existing global or local in a time T. For that,
we used the Banach contraction principle and Schauder's �xed point theorem, while Caputo's fractional
derivative is used as the di�erential operator.
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