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Legged robots are very popular topics in the robotic field owing to walking 

on hard terrain. In the current study, the walking of a bipedal robot that was a 

legged robot was aimed. For this purpose, the system was examined and an 

artificial neural network was designed. After, the neural network was trained 

by using the Deep Deterministic Policy Gradient (DDPG) and the Proximal 

Policy Optimization (PPO) algorithms. After the training process, the PPO 

algorithm was formed better training performance than the DDPG algorithm. 

Also, the optimal noise standard deviation of the PPO algorithm was 

investigated. The results were shown that the best results were obtained by 

using 0.50. The system was tested by utilizing the artificial neural networks 

that trained the PPO algorithm which has got 0.50 noise standard deviation. 

The total reward in the test was calculated as 274.334 and the walking task 

was achieved by purposed structure. As a result, the current study has formed 

the basis for controlling a bipedal robot and the PPO noise standard deviation 

selection. 
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 Bacaklı robotlar, zorlu arazilerde hareket edebilmeleri nedeniyle robotik 

alanında çalışılan popüler konulardan biridir. Bu çalışmada, ayaklı bir robot 

olan iki ayaklı bir robotun yürümesi amaçlanmıştır. Bu amaçla sistem 

incelenmiş ve bir yapay sinir ağı tasarlanmıştır. Daha sonra Derin 

Deterministik Politika Gradyanı (Deep Deterministic Policy Gradient - DDPG) 

ve Yakınsal Politika Optimizasyonu (Proximal Policy Optimization - PPO) 

algoritmaları kullanılarak sinir ağı eğitilmiştir. Eğitim sürecinden sonra PPO 

algoritması, DDPG algoritmasına göre daha iyi eğitim performansı 

oluşturulmuştur. Ayrıca, PPO algoritmasının en iyi gürültü standart sapması 

araştırılmıştır. Sonuçlar, en iyi sonuçların 0,50 kullanılarak elde edildiğini 

göstermiştir. Sistem, 0,50 gürültü standart sapmasına sahip PPO algoritmasını 

eğiten yapay sinir ağları kullanılarak test edilmiştir. Test sonucuna göre toplam 

ödül 274.334 olarak hesaplanmış ve amaçlanan yapı ile yürüme görevi 

gerçekleştirilmiştir. Sonuç olarak, mevcut çalışma, iki ayaklı bir robotun 

kontrol edilmesi ve PPO gürültü standart sapma seçiminin temelini 

oluşturmuştur.  

Anahtar Kelimeler: 
İki Ayaklı Robot 

Derin deterministik politika gradyanı 

Yakınsal politika öğrenme 

Pekiştirmeli öğrenme 

 

To Cite: Bingol MC. Evaluation of DDPG and PPO Algorithms for Bipedal Robot Control. Osmaniye Korkut Ata 

Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2022; 5(2): 783-791. 

  

1. Introduction 

Robots are machines widely used in daily life to facilitate human works from home to industry. Many 

researchers work in sub-robotic fields such as vision, control, etc. to improve the work missions. 
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Reinforcement Learning (RL) is one of a lot of developed algorithms to control robots. The main 

difference of RL to other control algorithms is generated robust control outputs according to dynamic 

environment effects. RL can be examined two sub-title as value and policy learning. Value learning is 

a process that chooses the best options from among limited output according to inputs. For example, 

the artificial structure that can play the Atari game could be made by using value learning. Policy 

learning is a method that calculates the best continuous output according to inputs. For instance, the 

controller that controls the positions of the DC motor could be designed by using policy learning. 

There are a lot of kinds of policy learning such as Deep Deterministic Policy Gradient (DDPG) or 

Proximal Policy Optimization (PPO). 

The DDPG algorithm has been formed by improving the actor-critic method. Some problems have 

been solved by using the algorithm. For example, 3-DoF planar robot was controlled by an artificial 

neural network that trained the DDPG algorithm in spite of the damaged actuator (Bingol, 2021a). In 

another study, inverse kinematic of the 2-DoF planar robot was solved by using the DDPG algorithm 

and the noise parameter of the DDPG was investigated (Bingol, 2021b). An unmanned surface vehicle 

has been tracked course by using DDPG (Wang et al., 2018). In other work, solving traffic jam 

problem via Deep Q Network and DDPG algorithms has been studied (Pang and Gao, 2019). Altitude 

of quad-copter has been controlled by artificial neural network based on DDPG algorithm (Ghouri et 

al., 2019). 

For instance, mapless navigation problem for mobile robots has been solved by using convolutional 

PPO (Toan and Woo, 2021). The adaptive metro service schedules problem was solved by utilizing 

PPO (Ying et al., 2021). In other study, a drone has been controlled by using PPO (Lopes et al., 2018). 

An unmanned aerial vehicle has been controlled similarly to the previous study (Zhen et al., 2020). A 

manipulator has tracked planned trajectory via artificial neural network that has been trained by using 

PPO (Zhang et al., 2019). Inverse kinematic of 5-DoF endoscopic instrument has been solved by using 

PPO (Schmitz and Berthet-Rayne, 2020). 

In the study, it was aimed that a bipedal robot learns to walk. In line with this goal, the bipedal robot 

environment was analyzed. According to this environment, it was decided that DDPG and PPO 

algorithms would be suitable learning methods. Actor and critic neural network architectures in DDPG 

and PPO algorithms were designed. These designed networks were trained and the results were 

compared. 

 

2. Problem Description  

Walking for legged robots is a complex process owing to requiring the robot balance and the 

unpredictability of the terrain. In this study, the learning of the walking process by a bipedal 4-DoF 

robot was planned. In accordance with this purpose, firstly a bipedal robot was examined. After, 

artificial neural networks were formed. Lastly, the neural networks were trained by using DDPG and 

PPO algorithms.  
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2.1. Robot Design 

 

A bipedal robot consists of five parts as a hull, two knees, and two hips. These parts could be 

examined in Figure 1. 
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Figure 1. Schematics of mechanical chain a bipedal robot 

 

In Figure 1,          and    were symbolized as angle of hull, angular velocity of hull, linear 

velocity of system, motor torque of joint, and ground contact sensors of knee, respectively. The 

kinematic movements can be modeled by using Euler-Lagrange’s motion equation 

 

  
(
  

  ̇
)  

  

  
   (1) 

where   represents the Lagrangian, that consist of kinetic       ̇)) and potential energy     )) of the 

system, and could be calculated by using 

       ̇)     )  (2) 

The kinetic energy of system is 

     ̇)  
 

 
  ̇   ) ̇ (3) 

where    ) is called as inertia matrix. These equations could be solved as 

   ) ̈       ̇) ̇     )       ̇)     (4) 

In Equation (4),      ̇)    )  and      ̇) were represented as Coriolis, gravity, and friction matrix of 

system.   and  ̇ are system parameters such as angle and angular velocity of knees and hips. After the 

robot locomotion was explained, state vector 

  [               ̇      ̇      ̇       ̇                 ] (5) 

was formed. In Equation (5),   was typified as LIDAR sensor output. The sensor was located on the 

hull in order to perceive the terrain. In the current study, the BipedalWalker-v3 environment (Bipedal-

Walker) was used as to simulate the system.  
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2.2. DDPG Algorithm 

 

DDPG algorithm was formed improving actor-critic method and pseudo code of DDPG algorithm was 

shown in Algorithm (1).  

 

Algorithm 1. DDPG Algorithm 

Initialize CriticNet      |  ) and ActorNet    |  ) with    and    weight 

Adjust TargetNets weights (   and    ) according to    and    

Initialize replay buffer (  ) memory 

for episode: 1 to 5000 

 Initialize noise   ) 

 Reset environment and get     

 for step: 1 to 500 

         | 
 )     

                             ) 

                )     

  if mod(step, update_coefficent)=0 

   Get data up to batch size from    

                   
      | 

  
)|   

) 

   Update CriticNet using   
 

 
∑            | 

 )) 
 

 

   Update ActorNet using      
 

 
∑            ))       | 

 )
 

 

      
         )   

 

      
         )   

 

 

In Algorithm 1,   and   were symbolized as discount factor and network update coefficient, 

respectively.                  ,  , and   were chosen as 1, 0.99, and 0.005, respectively. Detailed 

information about DDPG algorithm was found in (Lillicrap et al., 2016). Also, ActorNet was given in 

Algorithm (2).  

 

Algorithm 2. Designed artificial neural network structure 

                                         )  ) 

                                         )  ) 

                                         )  ) 

                                         )  ) 

                                        )  ) 

 

In Algorithm (2), dense layer (He et al., 2015) is where the mathematical operations are done. Also, 

activation functions were preferred rectified linear unit (ReLU) and hyperbolic tangent (tanh) function. 

Algorithm 2 is a multilayer perceptron model. The multilayer perceptron model is a feedforward 

neural network. Each neuron in this network is connected to all neurons in the previous layer. 
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According to the neurons in the previous layer, it produces the output after the necessary mathematical 

operations.   

 

2.3. PPO Algorithm 

 

The PPO algorithm has been a popular algorithm among RL algorithms owing to both simple 

implementation and more effective solutions. The PPO algorithm was given in Algorithm (3). 

 

Algorithm 3. The PPO algorithm for Actor-Critic Method 

for episode: 1 to 5000 

 for actor: 1 to N 

  Run policy      
 in environment for   time steps 

  Compute advantage estimates   ̂     ̂ 

 Optimize surrogate   write  , with   epochs and minibatch size      

        

 

Algorithm 2 was used as actor network in Algorithm 3. Exploration is one of the natural processes of 

the reinforcement learning method. In this study, the exploration process was provided by adding 

noise to the output of the action network. The mean of this noise term was 0 and its standard deviation 

was determined 0.25, 0.50, and 0.75, respectively. Also, detailed information about PPO was 

represented in (Schulman et al., 2017). 

 

3. Results and Discussion 

In the current study, an actor neural network was designed as in Algorithm 2 and designed actor neural 

network was trained by DDPG and PPO algorithms which are frequently used deep reinforcement 

learning methods. Train performances of DDPG and PPO algorithms were shown in Figure 2-a. 
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(a) (b) 

Figure 2. Train performance of proposed algorithms; (a) DDPG and PPO, (b) PPOs 
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Ep. reward and Avg. reward were symbolized epoch reward and average reward in Figure 2. The 

average reward was calculated by the last 100 epoch reward. Average reward of DDPG algorithm and 

PPO algorithm were shown with red and blue dotted dash line in Figure 2-a and last reward values 

were -100 and 150, respectively. Both these values and Figure 2-a showed that the PPO algorithm was 

better than the DDPG algorithm about controlling the bipedal robot. If the DDPG algorithm is used to 

a similar problem by practitioners and researchers, the best actor model should be formed and the 

current actor model is controlled whether it is the best at the end of every epoch. After it was 

investigated that the PPO algorithm could better control the bipedal robot, the standard deviation of 

noise was investigated because of the important this hyper-parameter that could be seen in the 

previous work (Bingol, 2021b). The best result was generated by using 0.50 standard deviation value 

when Figure 2-b was analyzed. This study was carried out with the help of OpenAI Gym using Python 

language on Google Colab. The used PC specifications were Intel Xeon 2.20GHz CPU, Nvidia Tesla 

P100-16GB GPU, 12GB RAM, and 160GB Disk memory. The training span of PPO algorithms that 

was standard deviation 0.25, 0.50, and 0.75 were 238, 222, and 214 minutes by using the PC, 

respectively. The best PPO algorithm that was standard deviation 0.50 was retrained and the training 

span was measured as 287 minutes. After these training process was done, the robot was tested as in 

Figure 3. 

 

Figure 3. Test of the bipedal robot control 

 

In Figure 3, sample moment of test was located at right bottom of each picture. The bipedal robot 

achieved the walking task and total reward was calculated as 274.334.  
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Figure 4. System values during the test; (a) Motors torques, (b)Joints angles 

 

During the task, applied motors torques and measured joints angles were given in Figure 4. 

 

4. Conclusion 

In the current study, controlling of the bipedal robot was aimed. Firstly, the bipedal robot was 

examined and then an artificial neural network was designed. The neural network was trained by using 

DDPG and PPO algorithms. The PPO algorithm was better than the DDPG algorithm about 

controlling locomotion of then bipedal robot according to training results, which can be seen in Figure 

2-a. The environment used in the study is not frequently used in the literature. Therefore, studies are 

limited. BipedalWalker environment was used in a study (Dong et al., 2021). When this study was 

examined, the average reward was calculated as -100 after 50000 steps. In our study, the average 

reward after 5000 steps was measured as roughly 150. Then, standard deviation of noise that is in PPO 

algorithm was investigated. According to the result of this investigation, the standard deviation of the 

noise is a very important hyper-parameter to train the PPO algorithm, the same way as DDPG (Bingol, 

2021b). The best result was obtained using 0.50 standard deviation value, could be seen in Figure 2-b. 

A very important point of Figure 2-b is the transient response of the system. The best result at the first 

500 epochs was measured by using a 0.25 standard deviation value whereas the worst result was 

obtained in a long term. The reason for the situation is that noise is less than dynamic effects. The 

early-stage of the training process could be misled at the PPO algorithm owing to the situation. Lastly, 

high noise standard deviation (0.75) extends training time, as can be seen in Figure 2-b. The best 

method for determining the noise standard deviation in dynamic systems is to know the system. 

Training time changes depending on done situation at RL system. Thus, the best PPO structure was 

trained twice times and training spans were obtained as 222 and 287 minutes. 

In the future works, advanced algorithms that will reduce training time and increase performance will 

be tested on the same system. 
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