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Abstract

In this manuscript, authors interested on the generalized Shehu transform of ¥-Riemann-Liouville, ¥-Caputo,
W-Hilfer fractional derivatives. Moreover, W-Prabhakar, W-Hilfer-Prabhakar fractional derivatives and its
regularized version presented in terms of the W-Mittag-Leffler type function. They are also utilised to solve
several Cauchy type problems involving W-Hilfer-Prabhakar fractional derivatives and their regularised form,
such as the space-time fractional advection-dispersion equation and the generalized fractional free-electron
laser (FEL) equation.
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1. Introduction

Several authors have recently concentrated on fractional calculus and the generalization of integral trans-
formations in the context of W-fractional operators [15, 20l 27]. Due to its unique properties, the Hilfer-
Prabhakar fractional derivative operator is used by numerous academics to model physical phenomena,
especially when combined with several integral transforms presented in the literature of fractional differen-
tiations and integrations such as Fourier, Elzaki, Laplace and others. Integral transforms techniques are
important because they give an efficient approach for solving a variety of mathematical models, initial value

Email addresses: sachinmagar7770Q@gmail.com (Sachin K. Magar), drahmedselwi985@hotmail.com (Ahmed A. Hamoud),
akhandagale.maths@bamu.ac.in (Amol D. Khandagale), drkp.ghadle@gmail.com (Kirtiwant P. Ghadle)

Received December 8, 2021, Accepted May 10, 2022, Online May 13, 2022



Sachin K. Magar, et al., Adv. Theory Nonlinear Anal. Appl. 6 (2022), 364-379 365

problems, and boundary value problems that exist in differential equations [6]. Ghadle et al. [§] proposed
a novel Sumudu-type integral transform, applied it to conformable derivative, and solved some applications
involving conformable derivative. Sausa and Oliviera introduced the W-Hilfer fractional derivative as a novel
fractional derivative in the situation of the W-fractional operator in [27]. Magar et al. recently published a
work in [20] in which they gave numerous innovative concepts of fractional derivatives in the context of the
W-fractional operator, like a W-Prabhakar integral, U-Prabhakar derivative, W-Hilfer-Prabhakar fractional
derivatives and its regularized version in terms of W-Mittag-Leffler function and applied generalised integral
transforms such as W-Laplace and ¥-Sumudu to it.

The Shehu transform introduced by Maitama and Zhao [2]] is an extension of of the Laplace and Sumudu
integral transforms with some useful properties. Recently, the authors of [2] and [3] applied the Shehu
transform to obtain solutions of differential equations involving Caputo and Atangana-Baleanu fractional
derivative.

The major goal of this study is to introduce the generalized Shehu transform called the W-Shehu transform
and provide its useful properties based on W-function such as ¥-Riemann-Liouville, W-Caputo, W-Hilfer, W-
Prabhakar integral, W-Prabhakar derivative, WU-Hilfer-Prabhakar fractional derivatives and its regularized
version in terms of W-Mittag-Leffler function. The W-Shehu transform applied to solved some Cauchy type
problems, such as the space-time fractional advection-dispersion equation and the generalised fractional free
electron laser (FEL) equation, where the W-Hilfer-Prabhakar fractional derivative and its regularised version
are involved.

2. Preliminaries

Definition 2.1. [1, [11, 12, 13, 1]}, (17, [18, [25] Let u € RT such that —co < a <b< oo, m = pu+1, f be an
integrable function on [a,b] and ¥ € C'([a,b]) be increasing function such that W' (t) # 0 for all t € [a,b].
Then, the U-Riemann-Liouville fractional integral is defined as

Y () = r(lm /Ooo(‘lf(t) — () () f(r)dr (1)

The V-Riemann-Liouville fractional derivative is defined as

D5 = (i) 1A 2)

The ¥-Caputo fractional derivative [27] is defined as

DY =15 f (1) <\P1( ) i) (3)

The V-Hilfer fractional derivative of a function f of order p and type 0 < v <1 is given by

- 1 d\" a- -
D/’L7V7III — Iy(m ,LL,\I’) _ I(l I/)(TIL /,L)AII t . 4:

The V-Prabhakar fractional integral and derivative of a function f of order p and type 0 < v <1 is given by

’

U _ * —1 o
(P;/,p,wf> (z) —/O (W(x) — W ()" EY L w(W(z) — W(1)]W (2)f(t)dt,
= (€, pw *w (7). (5)
where xy denotes the convolution operation; a, p,w,y € C; Re(a) >0, Re(u) > 0 and

£ tlt) = { §VON T ER O L )
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For~=0, <Pa07u7wf> (z) = <I“"I’f> (z) and forv=pu=0, <P3707wf> (x) = f(x).

1 d\" _ _ v
DY ft) =) P t). 7
1t = () Pt )
The regularized version of V-Prabhakar fractional derivative of o function f of order p is defined as
1 d\™
C vy, ¥ -,
D7 t) =P, —— t).
it =Pt (g ) 10 ®
The V-Hilfer-Prabhakar fractional derivative of a function f of order p defined as
NTRIA —yu, ¥ 1 d\"™ —v(1—v),¥
DZ,/:),OJF (t) = (Poz,z’j(m,u),w,oJr (\I//(t) % (Pa,(lfu)(mﬁu,w,(]*f) (t) (9)
The reqularized version of V-Hilfer-Prabhakar fractional derivative of a function f of order p is defined as,
C oy b,V _ —yu, U —y(1-v), 0 1 d\™
DZ,Z,(H' f(t) - (Pa,Z(m—u),w,O""Pa,(l—l/)(m—u,w,m‘ <\I’,(t) dt) f> (t) (10)

Definition 2.2. [7, 19, (22, (23, [26/ The Prabhakar function is defined by

o

1 D(y + 1)z
E) (2) = , v,y €C, Re(p) > 0. 11

It is an entire function of order R%M’ which is also known as three parameter Mittag-Leffler function.

Definition 2.3. [21, (2], [28] The Shehu transform of the function v(t) of exponential order is defined over
the set of functions,

A={vt):3Q, 11,7 >0, |v(t)] < Qe ift e (=1)7 x[0,00)},
by the following integral

S(t)] = V(r, Z) = /OOO exp( - SZt)v(t)dt; r>0,2>0.

Theorem 2.4. [J] Let f and g in A be piecewise continuous functions of Psi order over [0,T]. The V-
convolution of f and g is therefore defined by

’

t=U"1(U(t))
(f *wg) = /0 FOUTH(E) = U (7)g(r) ¥ (r)dr. (12)

Definition 2.5. [16] A function f : [0,00) — R is of V—ezponential order ¢ > 0 if there exist positive
constant Q such that for all t > T

1f(t)] < Qe¥® (13)

Symbolically, we write
f)=09ev®)  as  t— oco.

Lemma 2.6. [2] In the complex plane C, for any Re.(«), Re(8) > 0, Re(y) > 0 and w € C, Shehu transform

of Egﬁ(wto‘) is given by
-1 e _ Z ﬂ< <Z )C!)W
S(t ngg(wt )) = (r) 1—w o . (14)
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3. Main Results

Definition 3.1. [/ Let v(t) : [0,00) — R be a real valued function and VU be a non-negative increasing
function such that ¥(0) = 0. Then the W-Shehu transform of the function v(t) of exponential order is
denoted by Sy{v(t)} and is defined by

Se[v(t)] =V (r,Z) = /OOO exp( - T\IIZ(t>>U(t)\I/(t)dt; r>0,Z>0. (15)

Theorem 3.2. If v(t) is a piecewise continuous in every finite interval 0 < t < p and of V-exponential
order, then the W—Shehu transform of v(t) exists for t > ¢ > 0.

Proof. For any positive number ¢, by definition of W-Shehu transform and using equation (13)) we have,
> rW(t ’
sus@l=1 [ eon( - 5 ot @
0
& W(t /
< [Tlen( - 52 Yutow 0l
0 Z
*° G /
- / 635p< _ YO o (1)t
0 Z

< Q/OOO exp( - T\I’Z(t)>‘;[/l(t)ecq/(t)dt
ZQ

T r—cZ

The proof is complete. O

Property 1. Let the functions nu(t) and w(t) be in set A, then (nu(t) + w(t)) € A, where n and ¢
are nonzero arbitrary constants, and

Sul(nu(t) + &w(t))] = nSw[v(t)] + &Sw[w(t)].

Proof. By definition of W-Shehu transform, we get

Sy (ul(t) + Ew(r))] = /0 T eap( - ’“‘p“)) (o(t) + Ew(®))¥ (£)dt

Property 2. Let the function v(t) = ?8}:; Then its W-Shehu transform is given by

‘I’(t)“_l] . <Z>Mr(u), p=0,1,2, .. (16)

YIT(w—1)! r
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Proof. By definition of W-Shehu transform and integration by parts, we get
& —rW(t /
Se[¥(t)* 1 :/ \Il(t)"lexp< T ()>\I’ (t)dt
0
& —rU(t /
= g(,u, — 1)/ \I/(t)“_Qexp(r())\I/ (t)dt
T 0 A
2
e —rU(t /
—(2) = vte-2 [ w50 ) v 0ar
r 0 A
Z\* o _ —r () ./
—(2) = 0= [ worten( 50 )0 0
r 0 A
VA H
=..=(pu-D~—=
w-(%)
VA H
(%) rw
r
O
Property 3. Let the function v(t) = exp(u¥(t)). Then its ¥-Shehu transform is given by
Z
\I/ =
Sylexp(u¥(t))] iz
Proof. By definition of W-Shehu transform, we get
&0 rW(t ’
Selean(ur@)] = [ enp( = "5 Jeapluw )y )i
o0 —uZ)U(t ,
= / 61‘p< — (7“#)())\1} (t)dt
0 Z
_ Z
 r—uZ
O

Property 4. Let the function v(t) = U(t)exp(u¥(t)). Then its ¥-Shehu transform is given by
2

u
v v =——
o (t)emp(ue (1)) = " o
Proof. By definition of W-Shehu transform and integration by parts, we get

Sulw(enplun ()] = [~ e:cp( - "”‘PZ(“)\If@)expwa))w’(t)dt

_ /OO \I/(t)eacp( _ )Y “ZZ)‘I’(”> W (1)dt
0

Z \p(t)emp< (- uzwm)

~
11m 7

QRVIRES
Z o (r—pZ)¥(t)\ .-
ez “p( 7 )‘I’ (o

o [p<_wm<w>

(r— pZ)? =

0

P
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The proof is complete. O

Property 5. Let the function v(t) = sin(u¥(t)). Then its U-Shehu transform is given by

pZ?

Se[sin(p¥(t))] = 27

Proof. By definition of W-Shehu transform, we get

Sy[sin(u¥(t))] = /000 exp( — TII’Z(t)>sin(u\I/(t))\Ill(t)dt

.70 . v
= lim 1“22{ — —sinuV(t) — ,ucosu\ll(t)}
Y—00 72 —+ u A 0
_ uz
72§ 1272
O
Property 6. Let the function v(t) = cos(u¥(t)). Then its W-Shehu transform is given by
A4S
Swlcos(n¥(t))] = Y
Proof. By definition of W-Shehu transform, we get
& W(t /
So[cos(u¥ ()] = / exp< . Z( )>cos(,ulll(t))\11 (t)dt
0
o —Tg(t) - B
= lim |— { — —cospV(t) + ,usz'n,ullf(t)}
y—00 % + MZ 7 0
_ rZ
T 2222
OJ

Lemma 3.3. Let f(t) and g(t) be a functions in A, and Sg[f(t)|(Z) = V(r,Z), Selg(®)|(Z) = W(r,Z)
where, V-Shehu transforms V (r, Z) and W (r, Z) respectively. The V-Shehu transform of convolution (f*gy g)
1S given by

Sel(f *w g)(®)](Z2) =V (r, Z)W(r, Z). (17)

Proof. By definition of W-Shehu transform and ¥-convolution equation , we get,
Su[(f *w 9)(t)

© _rew t B , ,

= [T { [ st - wegne <¢>dr}\v<t>dt

_ / I e i / F(w — W (r)g(r) W (r)drdt
0
X rw)—w(r) rqz(f) '

_ /0 . o 1t / (o U (r)))g(r) ¥ (r)dr

by changing order of integration and substituting above we get,
RS 100! , e
= / )W (T)dT/ ez VU (v)f(v)dv
0 0

e 7 g(
= Su[(f)ISw((9)]
=V(r,Z)W(r,Z)
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4. ¥-Shehu transform of generalized fractional derivatives and its regularized versions

In this section, we obtain the generalized Shehu transform for W—Riemann-Liouville, ¥ —Caputo -
Hilfer, U-Prabhakar, U-Hilfer-Prabhakar fractional derivatives and its regularized versiouns.

Lemma 4.1. The V-Shehu transform of V-Riemann-Liouville fractional integral equation 15

S\p{(lg’q’f)(v(t))} = (f)uSw{f(v(t))}-

Proof. By definition of ¥-Shehu transform of ¥-Riemann-Liouville fractional integral and using and

, we get

v 1 Ly r
Se{I""()}(2) = F(M)S\I/{\II( ) f(o(t)H(Z,r)
1

T T(w)
Z
-(7) s

() P(0)Se (£ (0(1))}

O
Lemma 4.2. The V-Shehu transform of V-Riemann-Liouville fractional derivative 18
. 7 —m+k+1 .
se{ D57 1) | = (2) setsto) - Z ( ) (o
Proof. By definition of W-Shehu transform of ¥-Riemann-Liouville fractional derivative , we get
e (D" 1000} 2) = 8o () (1770 )i}
Z - m—
. () oI F (D)
m—1 —m-+k+1 k
- g /1 i Im_lh\ljf (0)
r W' (t) dt
k=0
7\ H m—1 7\ ~mkL .
(%) sutreon - (2) (o
k=0
O

Lemma 4.3. The V-Shehu transform of V-Caputo fractional derivative 25

se{ D5 00) | = (£) "satsn) - m ()" wmsemo

r
k=
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Proof. By definition of ¥-Shehu transform of W-Caputo fractional derivative (3)), and using (16)), we get
d
C Hu,¥ m—u, W
D t m—
5{ 04" f(u(e) ) = S@{ (\D = >dt) f<v<t>>}
_ 1
B Y\ (1) dt
m—u AL m—1 7 —m+k+1 .
] {<) (7)o
k=0

=N

v -5 () (g ) o)

—u m— —pt+k+1
stsor -3 (2) " o st

Lemma 4.4. The U-Shehu transform of W-Hilfer fractional deriwative equation ().

sfpe o} = (£) “sutrom

m—1 m(v—1)—vu—p+k+1
Z 1—v)(m—p)—k,¥
-> (%) (1R ) 0),
k=0
Proof. By definition of W-Shehu transform of W-Hilfer fractional derivative , and using and , we

get
su{ D5 e} =sa {1 (G ) B o

su{ o575} =(2) " s (g ) ot}
() e

m—1 —m+k+1
S <Z> (DY 1= u),@f)(o)}
k=

) ( f>y<mu) { ( f) —m < f) (H)(W“)S\p {Iél_u)(m_u),w f(v(t))}

-1 —m+k+1
_ Z <Z> (Dk,\I/I(()l—V)(m—#)a‘I’f)(O)}
k=

m(v—1)—vpu+k+1
) (F1m 7y 0
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Lemma 4.5. The V-Shehu transform of V-Prabhakar fractional integral

S\p{ (ng’w o f>v(t)} = (f)# <1 —w (f)a> _’YV(T, Z). (18)

Proof. By definition of W-Shehu transform of W-Prabhakar fractional integral , and using @, and

(L7, we get
Sm{ (PJ’,W g f>v(t)} - sw{ <e;1§: e f)v(t)}

Sxp{el’ﬁﬂ’( ) *w f} = Sw{‘l’(t)“_lEij,w(‘P(t)a)}

me n,S of vt}

k=

i (ak+ ( k+u)<Z>ak+M

o

r
=0
p a\ 77
:<Z> (1—w( >> Vi(r, 2).
,
O
Lemma 4.6. The V-Shehu transform of V-Prabhakar fractional derivative s given by
ARG AN
7 =(— 1—w| — Vi(r,Z
se{Dptr0 b0 2) = () ( o(%) > (r.2)
m=1 /5N —mtktl v
- <T> <Pl’(m_m_k,wf>(0). (19)
=0

For the case [u] +1=m =1,

su(Patutf®) 0= (2) " (1-0(2) ) v - [Pt 0] (20)

with |w(r)~¢ < 1.

Proof. By definition of W-Shehu transforms of W-Prabhakar fractional derivative in and using and

, we get,
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u(D2.00) 2 =50 (i) ot ). 2),
:(; "4 <s;,(;n " *f)())( Z)
m—k—1 k
) wa) ool

)
(
) su(wO)m Y ) )V 2)
(
)
(

I
i
LNls o

r m—k—1 1 d k o X
Z> [(‘I’/(t)dt> Pa:(m*u),wf(o )}7

I
TR0
SN ©

3
L

For the case [u] +1 = m = 1, we have,
Z\ Z\"\" _
S\IJ <D7:/‘1:w (t)) (7’, Z) = <7"> <1 — W <r> > V(T, Z) — |:Pa”(77;;liu)’wf(t):| t:O+.

Lemma 4.7. The V-Shehu transform of reqularized version of V-Prabhakar fractional derivative equation

18,
Se (c DY f(t)) (r,Z) = (f) - (1 - w<f>a>7vo~, )
m—1 —p+k+1 a\ v
O e
with \w( >a| <1.

Proof. Taking W-Shehu transform of regularized version of W-Prabhakar fractional derivative in and using

(17) and (L8)), we get
SW(CDZ“”’{U’“f(t>)(T’Z)’:SW<a(m 1), <<\1,1(t) ) f(t)))(r,z)
B W( - ( fl(t )m >)<r,Z>,
(563 e
()

m

O (1—w<r)a) ot
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Lemma 4.8. The U-Shehu transform of W-Hilfer-Prabhakar fractional derivative equation (9) is,
v, Z\" Z\M\"
Sy (Dvuof’f( ))(r,Z) = (r) <1—w<r> > V(r,Z)

m—1 m(v—1)—vu+k+1 el
EO ey
r T
k=0

—v(1—v),¥
X (P 1) tm )k (07))-

(22)

Proof. By definition of U-Shehu transform of W-Hilfer-Prabhakar fractional derivative in @ and using .,

we have,
S (DW ¥ gy >) (r.2)

1 d
- i
= (e (w3

t
—u(m—p)
2) (o
m< v(m—

o,(1—v) (m—p)—k

)
(
) (-e(7) ) v
(

m(v—1)—vp+k+1 7 o
1—w ()
T

Lemma 4.9. The U-Shehu transforms of the reqularized version of V-Hilfer-
Prabhakar fractional derivative equation of order p 1is,

Sy (cD;’,g’g’f (t)) (r,2) = (f)w <1 - w(f)ayvm 2)
m—1 — k1 an 7y
£

=0

" (P—W(l v)(m—p)p f(0+)>

Proof. By definition of W-Shehu transforms of regularized version of W-Hilfer-Prabhakar fractional derivative
n and using , we have,
v (CDLLEY 1)) ()
—(1-1),® 1 d\™
= Su (< a,v(m—p), *w (})oz,(lfz/)(kﬁu),w,OJr <\I// (t) dt) f)> (t)> (T’ Z)’

(5o
B o)) e

=N

1

=0
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5. Applications

In this section, we using W-Shehu transform to find the solutions of Cauchy problems such as space-time
fractional convection-dispersion equation and the generalized fractional free electron laser (FEL) equation

involving W-Hilfer-Prabhakar fractional derivative with order p € (0,1) 9, [10].

Theorem 5.1. The solution of Cauchy problem

DI (Z(r.1)) = ~BDZ(r.1) + pAR (Z(r,1)),

a,w,0t

Subject to constraints

(P‘”<l-v><m—“>*"w2<r,o+> =g(@), wv,zeR, a>0

lim Z(r,t)=0, t>0

r—r00
18

0 r(I—p)+mpu—1 Jka _ - .
(r)=2 ——5—— / kg (k) ik — pl k)L @t

m=0
Proof. Applying Fourier transform of with respect to space variable x, we get
2N\ o . * *
DULGY(Z (k1) = BikZ* (k,t) — plk[*Z* (k. 1),

: AL
Fourier transform of A2 is given in [5], as

FIA2Z(r, )k} = —|kPF{Z(r,t)}, A€ (0,2),

(24)

(25)

(26)

Taking W-Shehu transform on left hand side of with respect to space variable t and using , we get

—n NG
S@{DQ’Z’B’fZ*w,t)} = <Z> (1—w(f) ) V*(k,s,Z)
A v(1—p) 7\ @ w
)6
T r

Where, V*(k, s, Z) represent ¥-Shehu transform of Z*(k.t).

—y(1-v)% *
Poc,EYl—l/)(l—M),wZ (k;’ t)

t=0
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Again, apply W-Shehu transform on right hand side of and using initial condition , we get

() () s
0" ) oo
(6 6-) >

V*(k, 5, Z) = (
1
T
()
S p\iwfwk

(5) (=)

Vs 2= 5 () o ()T e — skt 25)

r
m=0

so it gives

now taking inverse W-Shehu transform and Fourier transform of equation using , we have

o) tu w)+mpu—1 ik . i N
U — / exp™ " g (k) (Bik — plk) " EL ) (@W()*)dk. (29)
m=0 -0

Example 5.1. If =0, p= % in above theorem 5.1, the solution of the resulting equation called one
dimensional space-time Schridinger equation of fractional order, for a free nature particle of mass m with h

Planck constant, is

%) tu(l—u)+mu—1 Cihe m ’Y m—v) N
Z(kt) =" 27T/ exp *g(k)( — ]k\ N B ) s WO (1)) k. (30)
m=0 -

Where A\, x,t, pu, v and A? are the same as use identified previously.

Here we study the following generalization of the FEL, equation, involving W-Hilfer-Prabhakar fractional
derivative

Theorem 5.2. The solution of Cauchy problem

DI y(t) = APL ., ovy(t) + f(2), (31)

—y(A=v)(m—p),¢
(Pa,(vlfy)()mfugik,wz(rv 0+)f) t=04 K, (32)



Sachin K. Magar, et al., Adv. Theory Nonlinear Anal. Appl. 6 (2022), 364-379 377

where f(x) € L1]0,00); € (0,1),v € [0,1];w, X € C;t,a > 0,K,v,5 > 0, is given by

m m —yv+m(d o
KZ)\ \I/ 1 N+P«(2 +1) 1E7’(17_j)(1(_:;_~)_#(2m+1)(W\I/(t) )

m 6
+ Z B o P (33)

Proof. We denote by Y(s, Z) and V (s, Z) the W-Shehu transform of y(¢) and f(t), respectively. Applying

W-Shehu transform of (| and using . . @ and , , we have
Su (DY “’0; y()(r 2) = Su(APL o y(®) (1))
= ASy( a,wo+y( ) (r,2) +V(r,2),
= ASu ((, w0t *u H)(B)) (r, Z) + V(r, Z),
= NSy (W ()" Ep (W () (r, 2)Y (r, Z) + V(r, Z),

Z\" Z\*\ °
:A() (1_w<> ) Y(r,2) + V(r, 2),
T T
and from , we get

<f> E (1 - “(f)CY)VY(r, 7 - K<f>”“‘“> [1 i ”(f)a] »

VA

_ /\<>M (1 - w(f)a> V7)1V 2),

r

so that

VinZ)+ K(f) v(1—p) [1 B w<§>a] w]
s <f(>2 ):L<1 _ w< >aa> 7(5+ )ym
() (7))
> p(2mA+1) ay —(0+y)m—y
—V(r,2) ;Oxn (f) (1 _ w(f) )

00 7 p(2m41)+v(1—p) AR —(0+y)mtyr—y
+EY A= l-—w( =
m=0 " "

(-
DR

2N

Last step is valid for

%\N

<1

o)
Y
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The required solution is obtained by applying the inverse of W-Shehu transform on both side of last
equation,

. 0 7\ w2m+1) 7\ @\ ~(0+7)m—y
(0= 55" V(5. 2) 3 <7~> <1—w<r) >

) 7 u(2mA41)+v(1—p) 7\ —(0+y)mtyr—y
g () )]

m=0
> m v(l— m+1)— —yv+m(é e
= K Y A (p) G g e ey €T (D))
m=0
L m(54+7)
+ Z E;/,u(2m+ql/),w,0+f(t)'
m=0

6. Conclusion

Finding a new integral transform for solving ordinary and partial fractional differential equations is always

beneficial in the subject of fractional calculus. In this manuscript, we introduced new integral transform called
W-Shehu transform, applied it on some basic properties and elementary functions. Moreover, we obtained
W-Shehu transform of generalized fractional derivatives in sense of W function such as W—Riemann-Liouville,
W-Caputo V- Hilfer fractional derivative also, W-Prabhakar integral, W-Prabhakar fractional derivative, V-
Hilfer-Prabhakar fractional derivative and its regularised version in terms of Mittag-Leffler function. The
space-time fractional convection-dispersion equation and the generalized fractional free electron laser (FEL)
equation including the W-Hilfer-Prabhakar fractional derivative and its regularized form were also solved.
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