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Abstract

In this manuscript, authors interested on the generalized Shehu transform ofΨ-Riemann-Liouville, Ψ-Caputo,
Ψ-Hilfer fractional derivatives. Moreover, Ψ-Prabhakar, Ψ-Hilfer-Prabhakar fractional derivatives and its
regularized version presented in terms of the Ψ-Mittag-Le�er type function. They are also utilised to solve
several Cauchy type problems involving Ψ-Hilfer-Prabhakar fractional derivatives and their regularised form,
such as the space-time fractional advection-dispersion equation and the generalized fractional free-electron
laser (FEL) equation.
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1. Introduction

Several authors have recently concentrated on fractional calculus and the generalization of integral trans-
formations in the context of Ψ-fractional operators [15, 20, 27]. Due to its unique properties, the Hilfer-
Prabhakar fractional derivative operator is used by numerous academics to model physical phenomena,
especially when combined with several integral transforms presented in the literature of fractional di�eren-
tiations and integrations such as Fourier, Elzaki, Laplace and others. Integral transforms techniques are
important because they give an e�cient approach for solving a variety of mathematical models, initial value
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problems, and boundary value problems that exist in di�erential equations [6]. Ghadle et al. [8] proposed
a novel Sumudu-type integral transform, applied it to conformable derivative, and solved some applications
involving conformable derivative. Sausa and Oliviera introduced the Ψ-Hilfer fractional derivative as a novel
fractional derivative in the situation of the Ψ-fractional operator in [27]. Magar et al. recently published a
work in [20] in which they gave numerous innovative concepts of fractional derivatives in the context of the
Ψ-fractional operator, like a Ψ-Prabhakar integral, Ψ-Prabhakar derivative, Ψ-Hilfer-Prabhakar fractional
derivatives and its regularized version in terms of Ψ-Mittag-Le�er function and applied generalised integral
transforms such as Ψ-Laplace and Ψ-Sumudu to it.

The Shehu transform introduced by Maitama and Zhao [21] is an extension of of the Laplace and Sumudu
integral transforms with some useful properties. Recently, the authors of [2] and [3] applied the Shehu
transform to obtain solutions of di�erential equations involving Caputo and Atangana-Baleanu fractional
derivative.

The major goal of this study is to introduce the generalized Shehu transform called the Ψ-Shehu transform
and provide its useful properties based on Ψ-function such as Ψ-Riemann-Liouville, Ψ-Caputo, Ψ-Hilfer, Ψ-
Prabhakar integral, Ψ-Prabhakar derivative, Ψ-Hilfer-Prabhakar fractional derivatives and its regularized
version in terms of Ψ-Mittag-Le�er function. The Ψ-Shehu transform applied to solved some Cauchy type
problems, such as the space-time fractional advection-dispersion equation and the generalised fractional free
electron laser (FEL) equation, where the Ψ-Hilfer-Prabhakar fractional derivative and its regularised version
are involved.

2. Preliminaries

De�nition 2.1. [1, 11, 12, 13, 14, 17, 18, 25] Let µ ∈ R+ such that −∞ ≤ a < b ≤ ∞, m = µ+1, f be an
integrable function on [a, b] and Ψ ∈ C1([a, b]) be increasing function such that Ψ

′
(t) ̸= 0 for all t ∈ [a, b].

Then, the Ψ-Riemann-Liouville fractional integral is de�ned as

Iµ,Ψ0 f(t) =
1

Γ(µ)

∫ ∞

0
(Ψ(t)−Ψ(r))µ−1Ψ

′
(r)f(r)dr (1)

The Ψ-Riemann-Liouville fractional derivative is de�ned as

Dµ,Ψ
0 =

(
1

Ψ′(t)

d

dt

)m
Im−µ,Ψ
0 f(t) (2)

The Ψ-Caputo fractional derivative [27] is de�ned as

CDµ,Ψ
0 = Im−µ,Ψ

0 f(t)

(
1

Ψ′(t)

d

dt

)m
(3)

The Ψ-Hilfer fractional derivative of a function f of order µ and type 0 ≤ ν ≤ 1 is given by

Dµ,ν,Ψ
0 = I

ν(m−µ,Ψ)
0

(
1

Ψ′(t)

d

dt

)m
I
(1−ν)(m−µ),Ψ
0 f(t). (4)

The Ψ-Prabhakar fractional integral and derivative of a function f of order µ and type 0 ≤ ν ≤ 1 is given by(
P γ,Ψ
α,µ,ωf

)
(x) =

∫ x

0
(Ψ(x)−Ψ(t))µ−1Eγ

α,µ[ω(Ψ(x)−Ψ(t))α]Ψ
′
(t)f(t)dt,

= (εγα,µ,ω ∗Ψ f)(x). (5)

where ∗Ψ denotes the convolution operation; α, µ, ω, γ ∈ C; Re(α) > 0, Re(µ) > 0 and

εγα,µ,ωΨ(t) =

{
(Ψ(t))µ−1Eγ

α,µ(ω(Ψ(t))α) t > 0,
0 t ≤ 0.

(6)
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For γ = 0,

(
P 0
α,µ,ωf

)
(x) =

(
Iµ,Ψf

)
(x) and for γ = µ = 0,

(
P 0
α,0,ωf

)
(x) = f(x).

Dγ,Ψ
ρ,µ,ωf(t) =

(
1

Ψ′(t)

d

dt

)m
P−γ,Ψ
ρ,m−µ,ωf(t). (7)

The regularized version of Ψ-Prabhakar fractional derivative of a function f of order µ is de�ned as

CDγ,Ψ
ρ,µ,ωf(t) = P−γ,Ψ

ρ,m−µ,ω

(
1

Ψ′(t)

d

dt

)m
f(t). (8)

The Ψ-Hilfer-Prabhakar fractional derivative of a function f of order µ de�ned as

Dγ,µ,ν,Ψ
α,ω,0+

f(t) =

(
P−γν,Ψ
α,ν(m−µ),ω,0+

(
1

Ψ′(t)

d

dt

)m(
P

−γ(1−ν),Ψ
α,(1−ν)(m−µ,ω,0+f

))
(t). (9)

The regularized version of Ψ-Hilfer-Prabhakar fractional derivative of a function f of order µ is de�ned as,

CDγ,µ,ν,Ψ
α,ω,0+

f(t) =

(
P−γν,Ψ
α,ν(m−µ),ω,0+P

−γ(1−ν),Ψ
α,(1−ν)(m−µ,ω,0+

(
1

Ψ′(t)

d

dt

)m
f

)
(t). (10)

De�nition 2.2. [7, 19, 22, 23, 26] The Prabhakar function is de�ned by

Eγ
µ,ν(z) =

1

Γ(γ)

∞∑
i=0

Γ(γ + i)zi

i!Γ(µi+ ν)
, µ, ν, γ ∈ C, Re(µ) > 0. (11)

It is an entire function of order 1
Re(µ) , which is also known as three parameter Mittag-Le�er function.

De�nition 2.3. [21, 24, 28] The Shehu transform of the function v(t) of exponential order is de�ned over
the set of functions,

A = {v(t) : ∃Q, τ1, τ2 ≥ 0, |v(t)| ≤ Qe|t|/τj , if t ∈ (−1)j × [0,∞)},

by the following integral

S[v(t)] = V (r, Z) =

∫ ∞

0
exp

(
− st

Z

)
v(t)dt; r > 0, Z > 0.

Theorem 2.4. [4] Let f and g in A be piecewise continuous functions of Psi order over [0, T ]. The Ψ-
convolution of f and g is therefore de�ned by

(f ∗Ψ g) =

∫ t=Ψ−1(Ψ(t))

0
f(Ψ−1(Ψ(t)−Ψ(τ)))g(τ)Ψ

′
(τ)dτ. (12)

De�nition 2.5. [16] A function f : [0,∞) → R is of Ψ−exponential order c > 0 if there exist positive
constant Q such that for all t > T

|f(t)| ≤ QecΨ(t) (13)

Symbolically, we write

f(t) = ϑ(ecΨ(t)) as t → ∞.

Lemma 2.6. [2] In the complex plane C, for any Re(α), Re(β) > 0, Re(γ) > 0 and ω ∈ C, Shehu transform
of Eγ

α,β(ωt
α) is given by

S
(
tβ−1Eγ

α,β(ωt
α)

)
=

(
Z

r

)β(
1− ω

(
Z

r

)α)γ
. (14)



Sachin K. Magar, et al., Adv. Theory Nonlinear Anal. Appl. 6 (2022), 364�379. 367

3. Main Results

De�nition 3.1. [4] Let v(t) : [0,∞) → R be a real valued function and Ψ be a non-negative increasing
function such that Ψ(0) = 0. Then the Ψ-Shehu transform of the function v(t) of exponential order is
denoted by SΨ{v(t)} and is de�ned by

SΨ[v(t)] = V (r, Z) =

∫ ∞

0
exp

(
− rΨ(t)

Z

)
v(t)Ψ

′
(t)dt; r > 0, Z > 0. (15)

Theorem 3.2. If v(t) is a piecewise continuous in every �nite interval 0 ≤ t ≤ µ and of Ψ-exponential
order, then the Ψ−Shehu transform of v(t) exists for t > c > 0.

Proof. For any positive number c, by de�nition of Ψ-Shehu transform and using equation (13) we have,

|SΨf(t)| = |
∫ ∞

0
exp

(
− rΨ(t)

Z

)
v(t)Ψ

′
(t)dt|

≤
∫ ∞

0
|exp

(
− rΨ(t)

Z

)
v(t)Ψ

′
(t)|dt

=

∫ ∞

0
exp

(
− rΨ(t)

Z

)
|v(t)|Ψ′

(t)dt

≤ Q

∫ ∞

0
exp

(
− rΨ(t)

Z

)
Ψ

′
(t)ecΨ(t)dt

=
ZQ

r − cZ
.

The proof is complete.

Property 1. Let the functions ηv(t) and ξw(t) be in set A, then (ηv(t) + ξw(t)) ∈ A, where η and ξ
are nonzero arbitrary constants, and

SΨ[(ηv(t) + ξw(t))] = ηSΨ[v(t)] + ξSΨ[w(t)].

Proof. By de�nition of Ψ-Shehu transform, we get

SΨ[(ηv(t) + ξw(t))] =

∫ ∞

0
exp

(
− rΨ(t)

Z

)
(ηv(t) + ξw(t))Ψ

′
(t)dt

=

∫ ∞

0
exp

(
− rΨ(t)

Z

)
(ηv(t))Ψ

′
(t)dt

+

∫ ∞

0
exp

(
− rΨ(t)

Z

)
(ξw(t))Ψ

′
(t)dt

= η

∫ ∞

0
exp

(
− rΨ(t)

Z

)
v(t)Ψ

′
(t)dt

+ ξ

∫ ∞

0
exp

(
− rΨ(t)

Z

)
w(t)Ψ

′
(t)dt

= ηSΨ[v(t)] + ξSΨ[w(t)]

Property 2. Let the function v(t) = Ψ(t)µ−1

Γ(µ−1) . Then its Ψ-Shehu transform is given by

SΨ

[
Ψ(t)µ−1

Γ(µ− 1)!

]
=

(
Z

r

)µ
Γ(µ), µ = 0, 1, 2, ... (16)
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Proof. By de�nition of Ψ-Shehu transform and integration by parts, we get

SΨ[Ψ(t)µ−1] =

∫ ∞

0
Ψ(t)µ−1exp

(
−rΨ(t)

Z

)
Ψ

′
(t)dt

=
Z

r
(µ− 1)

∫ ∞

0
Ψ(t)µ−2exp

(
−rΨ(t)

Z

)
Ψ

′
(t)dt

=

(
Z

r

)2

(µ− 1)(µ− 2)

∫ ∞

0
Ψ(t)µ−3exp

(
−rΨ(t)

Z

)
Ψ

′
(t)dt

=

(
Z

r

)3

(µ− 1)(µ− 2)(µ− 3)

∫ ∞

0
Ψ(t)µ−4exp

(
−rΨ(t)

Z

)
Ψ

′
(t)dt

= ... = (µ− 1)!

(
Z

r

)µ
=

(
Z

r

)µ
Γ(µ)

Property 3. Let the function v(t) = exp(µΨ(t)). Then its Ψ-Shehu transform is given by

SΨ[exp(µΨ(t))] =
Z

r − µZ

Proof. By de�nition of Ψ-Shehu transform, we get

SΨ[exp(µΨ(t))] =

∫ ∞

0
exp

(
− rΨ(t)

Z

)
exp(µΨ(t))Ψ

′
(t)dt

=

∫ ∞

0
exp

(
−
(
r − µZ

)
Ψ(t)

Z

)
Ψ

′
(t)dt

=
Z

r − µZ

Property 4. Let the function v(t) = Ψ(t)exp(µΨ(t)). Then its Ψ-Shehu transform is given by

SΨ[Ψ(t)exp(µΨ(t))] =
u2

(r − µZ)2

Proof. By de�nition of Ψ-Shehu transform and integration by parts, we get

SΨ[Ψ(t)exp(µΨ(t))] =

∫ ∞

0
exp

(
− rΨ(t)

Z

)
Ψ(t)exp(µΨ(t))Ψ

′
(t)dt

=

∫ ∞

0
Ψ(t)exp

(
− (r − µZ)Ψ(t)

Z

)
Ψ

′
(t)dt

= − Z

(r − µZ)
lim
γ→∞

[
Ψ(t)exp

(
− (r − µZ)Ψ(t)

Z

)]γ
0

+
Z

(r − µZ)

∫ ∞

0
exp

(
(r − µZ)Ψ(t)

Z

)
Ψ

′
(t)dt

= − Z2

(r − µZ)2
lim
γ→∞

[
exp

(
− (r − µZ)Ψ(t)

Z

)]γ
0

=
Z2

(r − µZ)2
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The proof is complete.

Property 5. Let the function v(t) = sin(µΨ(t)). Then its Ψ-Shehu transform is given by

SΨ[sin(µΨ(t))] =
µZ2

r2 + µ2Z2
.

Proof. By de�nition of Ψ-Shehu transform, we get

SΨ[sin(µΨ(t))] =

∫ ∞

0
exp

(
− rΨ(t)

Z

)
sin(µΨ(t))Ψ

′
(t)dt

= lim
γ→∞

[
e−

−rΨ(t)
Z

r2

Z2 + µ2

{
− r

Z
sinµΨ(t)− µcosµΨ(t)

}]γ
0

=
µZ2

r2 + µ2Z2

Property 6. Let the function v(t) = cos(µΨ(t)). Then its Ψ-Shehu transform is given by

SΨ[cos(µΨ(t))] =
Zr

r2 + µ2Z2

Proof. By de�nition of Ψ-Shehu transform, we get

SΨ[cos(µΨ(t))] =

∫ ∞

0
exp

(
− rΨ(t)

Z

)
cos(µΨ(t))Ψ

′
(t)dt

= lim
γ→∞

[
e−

−rΨ(t)
Z

r2

Z2 + µ2

{
− r

Z
cosµΨ(t) + µsinµΨ(t)

}]γ
0

=
rZ

r2 + µ2Z2

Lemma 3.3. Let f(t) and g(t) be a functions in A, and SΨ[f(t)](Z) = V (r, Z), SΨ[g(t)](Z) = W (r, Z)
where, Ψ-Shehu transforms V (r, Z) and W (r, Z) respectively. The Ψ-Shehu transform of convolution (f ∗Ψ g)
is given by

SΨ[(f ∗Ψ g)(t)](Z) = V (r, Z)W (r, Z). (17)

Proof. By de�nition of Ψ-Shehu transform and Ψ-convolution equation (12), we get,

SΨ[(f ∗Ψ g)](t)

=

∫ ∞

0
e−

rΨ(t)
Z

{∫ t

0
f(Ψ−1(Ψ(t)−Ψ(τ)))g(τ)Ψ

′
(τ)dτ

}
Ψ

′
(t)dt

=

∫ ∞

0
e−
[
r(Ψ(t)−Ψ(τ)+Ψ(τ))

Z

]
Ψ

′
(t)

∫ ∞

0
f(Ψ−1(Ψ(t)−Ψ(τ)))g(τ)Ψ

′
(τ)dτdt

=

∫ ∞

0
e−

rΨ(t)−Ψ(τ)
Z e−

rΨ(τ)
Z Ψ

′
(t)dt

∫ ∞

0
f(Ψ−1(Ψ(t)−Ψ(τ)))g(τ)Ψ

′
(τ)dτ

by changing order of integration and substituting above we get,

=

∫ ∞

0
e−

rΨ(t)
Z g(τ)Ψ′(τ)dτ

∫ ∞

0
e−

rΨ(ν)
Z Ψ

′
(ν)f(ν)dν

= SΨ[(f)]SΨ[(g)]
= V (r, Z)W (r, Z)
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4. Ψ-Shehu transform of generalized fractional derivatives and its regularized versions

In this section, we obtain the generalized Shehu transform for Ψ−Riemann-Liouville, Ψ−Caputo Ψ-
Hilfer, Ψ-Prabhakar, Ψ-Hilfer-Prabhakar fractional derivatives and its regularized versions.

Lemma 4.1. The Ψ-Shehu transform of Ψ-Riemann-Liouville fractional integral equation (1) is

SΨ
{
(Iµ,Ψ0 f)(v(t))

}
=

(
Z

r

)µ
SΨ{f(v(t))}.

Proof. By de�nition of Ψ-Shehu transform of Ψ-Riemann-Liouville fractional integral (1) and using (16) and
(17), we get

SΨ{Iµ,Ψ(t)}(Z) =
1

Γ(µ)
SΨ{Ψ(t)µ−1 ∗Ψ f(v(t))}(Z, r)

=
1

Γ(µ)

(
Z

r

)µ
Γ(µ)SΨ{f(v(t))}

=

(
Z

r

)µ
SΨf(v(t))

Lemma 4.2. The Ψ-Shehu transform of Ψ-Riemann-Liouville fractional derivative (2) is

SΨ
{
Dµ,Ψ

0 f(V (t))

}
=

(
Z

r

)−µ
SΨ{f(v(t))} −

m−1∑
k=0

(
Z

r

)−m+k+1(
Im−k−µ,Ψf

)
(0).

Proof. By de�nition of Ψ-Shehu transform of Ψ-Riemann-Liouville fractional derivative (2), we get

SΨ{Dµ,Ψf(v(t))}(r, Z) = SΨ
{(

1

Ψ′(t)

d

dt

)m(
Im−µ,Ψf

)
(v(t))

}
=

(
Z

r

)−m
SΨ[Im−µ,Ψf(v(t))]

−
m−1∑
k=0

(
Z

r

)−m+k+1( 1

Ψ′(t)

d

dt

)k(
Im−µ,Ψf

)
(0)

=

(
Z

r

)−µ
SΨ{f(v(t))} −

m−1∑
k=0

(
Z

r

)−m+k+1(
Im−k−µ,Ψf

)
(0).

Lemma 4.3. The Ψ-Shehu transform of Ψ-Caputo fractional derivative (3) is

SΨ
{
CDµ,Ψ

0 f(v(t))

}
=

(
Z

r

)−µ
SΨ{f(v(t))} −

m−1∑
k=0

(
Z

r

)−µ+k+1

(Dk,Ψ)f(v)(k)(0).
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Proof. By de�nition of Ψ-Shehu transform of Ψ-Caputo fractional derivative (3), and using (16), we get

SΨ
{
CDµ,Ψ

0 f(v(t))

}
= SΨ

{
Im−µ,Ψ

(
1

Ψ′(t)

d

dt

)m
f(v(t))

}
=

(
Z

r

)m−µ{
SΨ
(

1

Ψ′(t)

d

dt

)m
f(t)

}
=

(
Z

r

)m−µ{(Z

r

)−m
V (r, Z)−

m−1∑
k=0

(
Z

r

)−m+k+1

f
(k)
Ψ (0)

}
where,

f(v(t))
(k)
Ψ =

(
1

Ψ′(t)

d

dt

)k
f(v(t))

=

(
Z

r

)−µ
V (r, Z)−

m−1∑
k=0

(
Z

r

)−µ+k+1( 1

Ψ′(t)

d

dt

)k
fkΨ(0)

=

(
Z

r

)−µ
SΨ{f(t)} −

m−1∑
k=0

(
Z

r

)−µ+k+1

(Dk,Ψ)fkΨ(0).

Lemma 4.4. The Ψ-Shehu transform of Ψ-Hilfer fractional derivative equation (4).

SΨ
{
Dµ,ν,Ψ

0 f(v(t))

}
=

(
Z

r

)−µ
SΨ{f(v(t))}

−
m−1∑
k=0

(
Z

r

)m(ν−1)−νµ−µ+k+1

(I
(1−ν)(m−µ)−k,Ψ
0 f(v))(0).

Proof. By de�nition of Ψ-Shehu transform of Ψ-Hilfer fractional derivative (4), and using (16) and (17), we
get

SΨ
{
Dµ,ν,Ψ

0 f(v(t))

}
=SΨ

{
I
ν(m−µ,Ψ)
0

(
1

Ψ′(t)

d

dt

)m
I
(1−ν)(m−µ),Ψ
0 f(v(t))

}
.

SΨ
{
Dµ,ν,Ψ

0 f(t)

}
=

(
Z

r

)ν(m−µ)
SΨ
{(

1

Ψ′(t)

d

dt

)m
I
(1−ν)(m−µ),Ψ
0 f(v(t))

}
=

(
Z

r

)ν(m−µ)[(Z

r

)−m
SΨ
{
I
(1−ν)(m−µ),Ψ
0 f(t)

}
−
m−1∑
k=0

(
Z

r

)−m+k+1

(Dk,ΨI
(1−ν)(m−µ),Ψ
0 f)(0)

]

=

(
Z

r

)ν(m−µ)[(Z

r

)−m(Z

r

)(1−ν)(m−µ)
SΨ
{
I
(1−ν)(m−µ),Ψ
0 f(v(t))

}
−
m−1∑
k=0

(
Z

r

)−m+k+1

(Dk,ΨI
(1−ν)(m−µ),Ψ
0 f)(0)

]

=

(
Z

r

)−µ
SΨ
{
f(v(t))

}
−
m−1∑
k=0

(
Z

r

)m(ν−1)−νµ+k+1

(I
(1−ν)(m−µ)−k,Ψ
0 f)(0)
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Lemma 4.5. The Ψ-Shehu transform of Ψ-Prabhakar fractional integral (5)

SΨ

{(
P γ,Ψ
α,µ,ω ∗Ψ f

)
v(t)

}
=

(
Z

r

)µ(
1− ω

(
Z

r

)α)−γ

V (r, Z). (18)

Proof. By de�nition of Ψ-Shehu transform of Ψ-Prabhakar fractional integral (5), and using (6), (16) and
(17), we get

SΨ

{(
P γ,Ψ
α,µ,ω ∗Ψ f

)
v(t)

}
= SΨ

{(
ϵγ,Ψα,µ,ω ∗Ψ f

)
v(t)

}

SΨ

{
ϵγ,Ψα,µ,ωΨ(t) ∗Ψ f

}
= SΨ

{
Ψ(t)µ−1Eγ,Ψ

α,µ,ω(Ψ(t)α)

}

=
∞∑
k=0

(γ)k
Γ(αk + µ)

ωk

n!
SΨ

{
Ψ(t)αk+µ−1

}

=
∞∑
k=0

(γ)k
Γ(αk + µ)

ωk

n!
Γ(αk + µ)

(
Z

r

)αk+µ

=

(
Z

r

)µ(
1− ω

(
Z

r

)α)−γ

V (r, Z).

Lemma 4.6. The Ψ-Shehu transform of Ψ-Prabhakar fractional derivative (7) is given by

SΨ
{
Dγ,Ψ
ρ,µ,ωf(t)

}
(r, Z) =

(
Z

r

)−µ
(
1− ω

(
Z

r

)α)γ
V (r, Z)

−
m−1∑
k=0

(
Z

r

)−m+k+1(
P γ,Ψ
α,(m−µ)−k,ωf

)
(0). (19)

For the case [µ] + 1 = m = 1,

SΨ
(
Dγ,Ψ
α,µ,ωf(t)

)
(r) =

(
Z

r

)−µ(
1− ω

(
Z

r

)α)γ
V (r, Z)−

[
P−γ,Ψ
α,(1−µ),ωf(t)

]
t=0+

. (20)

with |ω(r)−α| < 1.

Proof. By de�nition of Ψ-Shehu transforms of Ψ-Prabhakar fractional derivative in (7) and using (17) and
(18), we get,
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SΨ
(
Dγ,Ψ
α,µ,ωf(t)

)
(r, Z) = SΨ

((
1

Ψ′(t)

d

dt

)m
P−γ,Ψ
α,(m−µ),ωf(t)

)
(r, Z),

=

(
r

Z

)m
SΨ
((

ε−γ,Ψα,(m−µ),ω ∗ f
)
(t)

)
(r, Z)

−
m−1∑
k=0

(
r

Z

)m−k−1[( 1

Ψ′(t)

d

dt

)k
P−γ,Ψ
α,(m−µ),ωf(t)

]
t=o+

,

=

(
r

Z

)m
SΨ
(
(Ψ(t))(m−µ)−1E−γ,Ψ

α,(m−µ)
(
ω(Ψ(t))α

))
V (r, Z)

)
−
m−1∑
k=0

(
r

Z

)m−k−1[( 1

Ψ′(t)

d

dt

)k
P−γ,Ψ
α,(m−µ),ωf(0

+)

]
,

=

(
Z

r

)−µ(
1− ω

(
Z

r

)α)γ
V (r, Z)

−
m−1∑
k=0

(
Z

r

)−m+k+1(
P−γ,Ψ
α,(m−µ)−k,ωf(0

+)

)
.

For the case [µ] + 1 = m = 1, we have,

SΨ
(
Dγ,Ψ
α,µ,ωf(t)

)
(r, Z) =

(
Z

r

)−µ(
1− ω

(
Z

r

)α)γ
V (r, Z)−

[
P−γ,Ψ
α,(m−µ),ωf(t)

]
t=o+

.

Lemma 4.7. The Ψ-Shehu transform of regularized version of Ψ-Prabhakar fractional derivative equation
(8) is,

SΨ
(
CD

γ,Ψ
α,µ,ωf(t)

)
(r, Z) =

(
Z

r

)−µ(
1− ω

(
Z

r

)α)γ
V (r, Z)

−
m−1∑
k=0

(
Z

r

)−µ+k+1(
1− ω

(
Z

r

)α)γ
f (k)(0+), (21)

with |ω
(
Z
r

)α
| < 1.

Proof. Taking Ψ-Shehu transform of regularized version of Ψ-Prabhakar fractional derivative in (8) and using
(17) and (18), we get

SΨ
(
CD

γ,Ψ
α,µ,ωf(t)

)
(r, Z), = SΨ

(
ε−γ,Ψα,(m−µ),ω

((
1

Ψ′(t)

d

dt

)m
f(t)

))
(r, Z)

= SΨ
(
ε−γ,Ψα,(m−µ),ω ∗Ψ

(
1

Ψ′(t)

d

dt
f

)m
(t)

)
(r, Z),

=

(
Z

r

)−µ(
1− ω

(
Z

r

)α)γ
V (r, Z)

−
m−1∑
k=0

(
Z

r

)−µ+k+1(
1− ω

(
Z

r

)α)γ
fk(0+).
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Lemma 4.8. The Ψ-Shehu transform of Ψ-Hilfer-Prabhakar fractional derivative equation (9) is,

SΨ
(
Dγ,µ,ν,Ψ
α,ω,0+

f(t)

)
(r, Z) =

(
Z

r

)−µ(
1− ω

(
Z

r

)α)γ
V (r, Z)

−
m−1∑
k=0

(
Z

r

)m(ν−1)−νµ+k+1

[1− ω

(
Z

r

)α
]γν

×
(
P

−γ(1−ν),Ψ
α,(1−ν)(m−µ)−k,ωf(0

+)
)
. (22)

Proof. By de�nition of Ψ-Shehu transform of Ψ-Hilfer-Prabhakar fractional derivative in (9) and using (17),
(18) we have,

SΨ
(
Dγ,µ,ν,Ψ
α,ω,0+

f(t)

)
(r, Z)

= SΨ
[(

ε−γνα,ν(m−µ),ω ∗Ψ
(

1

Ψ′(t)

d

dt

)m(
P

−γ(1−ν),Ψ
α,(1−ν)(m−µ),ω,0+f

))
(t)

]
(r, Z),

=

(
r

Z

)m( r

Z

)−ν(m−µ)(
1− ω

(
r

Z

)−α)γν
SΨ
((

ε
−γ(1−ν)
α,(1−ν)(m−µ),ω ∗ f

)
(t)

)
(r, Z)

−
m−1∑
k=0

(
r

Z

)m( r

Z

)−ν(m−µ)(
1− ω

(
r

Z

)−α)γν[
P

−γ(1−ν),Ψ
α,(1−ν),(m−µ)−k,ωf(0

+)

]
,

=

(
Z

r

)−µ(
1− ω

(
Z

r

)α)γ
V (r, Z)

−
m−1∑
k=0

(
Z

r

)m(ν−1)−νµ+k+1
[
1− ω

(
Z

r

)α]γν(
P

−γ(1−ν)(m−µ),ψ
α,(1−ν)(m−µ)−k,ωf(0

+)

)
.

Lemma 4.9. The Ψ-Shehu transforms of the regularized version of Ψ-Hilfer-
Prabhakar fractional derivative equation (10) of order µ is,

SΨ
(
CDγ,µ,ν,Ψ

α,ω,0+ f(t)

)
(r, Z) =

(
Z

r

)−µ(
1− ω

(
Z

r

)α)γ
V (r, Z)

−
m−1∑
k=0

(
Z

r

)−µ+k+1(
1− ω

(
Z

r

)α)γ
fk(0+).

Proof. By de�nition of Ψ-Shehu transforms of regularized version of Ψ-Hilfer-Prabhakar fractional derivative
in (10) and using (17), (18) we have,

SΨ
(
CDγ,µ,ν,Ψ

α,ω,0+ f(t)

)
(r)

= SΨ
((

ε−γνα,ν(m−µ),ω ∗Ψ
(
P

−γ(1−ν),Ψ
α,(1−ν)(k−µ),ω,0+

(
1

Ψ′(t)

d

dt

)m
f
))

(t)

)
(r, Z),

=

(
Z

r

)−µ
(
1− ω

(
Z

r

)α)γ
V (r, Z)

−
m−1∑
k=0

(
Z

r

)−µ+k+1(
1− ω

(
Z

r

)α)γ
fk(0+).
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5. Applications

In this section, we using Ψ-Shehu transform to �nd the solutions of Cauchy problems such as space-time
fractional convection-dispersion equation and the generalized fractional free electron laser (FEL) equation
involving Ψ-Hilfer-Prabhakar fractional derivative with order µ ∈ (0, 1) [9, 10].

Theorem 5.1. The solution of Cauchy problem

Dγ,µ,ν,Ψ
α,ω,0+

(Z(r, t)) = −βDxZ(r, t) + ρ∆
λ
2 (Z(r, t)), (23)

Subject to constraints (
P

−γ(1−ν)(m−µ),ψ
α,(1−ν)(m−µ)−k,ωZ(r, 0+)

)
= g(x), ω, γ, x ∈ R, α ≥ 0 (24)

lim
x→∞

Z(r, t) = 0, t ≥ 0 (25)

is

Z(r, t) =
∞∑
m=0

tν(1−µ)+mµ−1

2π

∫ ∞

−∞
eikxg(k)(iβk − ρ|k|λ)mP γ,(β−ν)

α,ν(1−µ)+mµ(ωt
α)dk (26)

Proof. Applying Fourier transform of (23) with respect to space variable x, we get

Dγ,µ,ν,Ψ
α,ω,0+

(Z∗(k, t)) = βikZ∗(k, t)− ρ|k|λZ∗(k, t), (27)

Fourier transform of ∆
λ
2 is given in [5], as

F{∆
λ
2Z(r, t); k} = −|k|λF{Z(r, t)}, λ ∈ (0, 2),

Taking Ψ-Shehu transform on left hand side of (27) with respect to space variable t and using (22), we get

SΨ

{
Dγ,µ,ν,Ψ
α,ω,0+

Z∗(k, t)

}
=

(
Z

r

)−µ(
1− ω

(
Z

r

)α)γ
V ∗(k, s, Z)

−
(
Z

r

)ν(1−µ)[
1− ω

(
Z

r

)α]γν[
P

−γ(1−ν),ψ
α,(1−ν)(1−µ),ωZ

∗(k, t)

]
t=0

.

Where, V ∗(k, s, Z) represent Ψ-Shehu transform of Z∗(k.t).



Sachin K. Magar, et al., Adv. Theory Nonlinear Anal. Appl. 6 (2022), 364�379. 376

Again, apply Ψ-Shehu transform on right hand side of (27) and using initial condition (25), we get(
Z

r

)−µ(
1− ω

(
Z

r

)α)γ
V ∗(k, s, Z)

−
(
Z

r

)ν(1−µ)[
1− ω

(
Z

r

)α]γν
g(k) = βik − ρ|k|λV ∗(k, s, Z)((

Z

r

)−µ(
1− ω

(
Z

r

)α)γ
− βik + ρ|k|λ

)
V ∗(k, s, Z)

=

(
Z

r

)−ν(1−µ)(
1− ω

(
Z

r

)α)γν
g(k)

V ∗(k, s, Z) =

(
Z

r

)−ν(1−µ)(
1− ω

(
Z

r

)α)γν
g(k)

× 1(
Z
r

)−µ(
1− ω

(
Z
r

)α)γ
− βik + ρ|k|λ

=

(
Z

r

)−ν(1−µ)(
1− ω

(
Z

r

)α)γν
g(k)

× 1

1− ρ|kλ|−iβk(
Z
r

)−µ(
1−ω

(
Z
r

)α)γ

so it gives

V ∗(k, s, Z) =
∞∑
m=0

(
Z

r

)ν(1−µ)+µm[
1− ω

(
Z

r

)α]−γ,(m−ν)
(ρ|k|λ − βik)mg(k). (28)

now taking inverse Ψ-Shehu transform and Fourier transform of equation (28) using (14), we have

z(k, t) =
∞∑
m=0

tν(1−µ)+mµ−1

2π

∫ ∞

−∞
exp−ikxg(k)(βik − ρ|k|λ)mEγ(m−ν)

α,ν(1−µ)+mµ(ωΨ(t)α)dk. (29)

Example 5.1. If β = 0, ρ = ih
2π in above theorem 5.1, the solution of the resulting equation called one

dimensional space-time Schrödinger equation of fractional order, for a free nature particle of mass m with h
Planck constant, is

Z(k, t) =

∞∑
m=0

tν(1−µ)+mµ−1

2π

∫ ∞

−∞
exp−ikxg(k)

(
− ih

2m
|k|λ

)m
E
γ(m−ν)
α,ν(1−µ)+mµ(ωΨ(t)α)dk. (30)

Where λ, x, t, µ, ν and ∆
λ
2 are the same as use identi�ed previously.

Here we study the following generalization of the FEL, equation, involving Ψ-Hilfer-Prabhakar fractional
derivative

Theorem 5.2. The solution of Cauchy problem

Dγ,µ,ν,Ψ
α,ω,0+

y(t) = λP δ
α,µ,ω,0+y(t) + f(t), (31)(

P
−γ(1−ν)(m−µ),ψ
α,(1−ν)(m−µ)−k,ωZ(r, 0+)f

)
t=0+

= K, (32)
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where f(x) ∈ L1[0,∞);µ ∈ (0, 1), ν ∈ [0, 1];ω, λ ∈ C; t, α > 0,K, γ, δ ≥ 0, is given by

y(t) = K

∞∑
m=0

λmΨ(t)ν(1−µ)+µ(2m+1)−1E
γ−γν+m(δ+γ)
α,(1−ν)(1−µ)+µ(2m+1)(ωΨ(t)α)

+
∞∑
m=0

E
γ+m(δ+γ)
α,µ(2m+1),ω,0+

f(t). (33)

Proof. We denote by Y (s, Z) and V (s, Z) the Ψ-Shehu transform of y(t) and f(t), respectively. Applying
Ψ-Shehu transform of (31) and using (5), (12), (6) and (14), (32), we have

SΨ
(
Dγ,µ,ν,Ψ
α,ω,0+

y(t)
)
(r, Z) = SΨ

(
λP δ

α,µ,ω,0+y(t)f(t)
)

= λSΨ
(
P δ
α,µ,ω,0+y(t)

)
(r, Z) + V (r, Z),

= λSΨ
(
(εδα,µ,ω,0+ ∗Ψ y)(t)

)
(r, Z) + V (r, Z),

= λSΨ
(
Ψ(t)µ−1Eδ

α,µ(ωΨ(t))
)
(r, Z)Y (r, Z) + V (r, Z),

= λ

(
Z

r

)µ(
1− ω

(
Z

r

)α)−δ
Y (r, Z) + V (r, Z),

and from (22), we get(
Z

r

)−µ(
1− ω

(
Z

r

)α)γ
Y (r, Z)−K

(
Z

r

)ν(1−µ)[
1− ω

(
Z

r

)α]γν

= λ

(
Z

r

)µ(
1− ω

(Z
r

)α)−δ
Y (r, Z) + V (r, Z),

so that

Y (r, Z) =

V (r, Z) +K

(
Z
r

)ν(1−µ)[
1− ω

(
Z
r

)α]γν
(
Z
r

)−µ(
1− ω

(
Z
r

)α)γ 1

1−
λ
(

Z
r

)µ(
1−ω
(

Z
r

)α)−δ

(
Z
r

)−µ(
1−ω

(
Z
r

)α)γ

,

=

[V (r, Z) +K

(
Z
r

)ν(1−µ)[
1− ω

(
Z
r

)α]γν
(
Z
r

)−µ(
1− ω

(
Z
r

)α)γ
]

×
∞∑
m=0

λm
(
Z

r

)(2µ)m(
1− ω

(
Z

r

)α)−(δ+γ)m

,

= V (r, Z)

∞∑
m=0

λm
(
Z

r

)µ(2m+1)(
1− ω

(
Z

r

)α)−(δ+γ)m−γ

+K
∞∑
m=0

λm
(
Z

r

)µ(2m+1)+ν(1−µ)(
1− ω

(
Z

r

)α)−(δ+γ)m+γν−γ

Last step is valid for ∣∣∣∣∣
λ
(
Z
r

)µ(
1− ω

(
Z
r

)α)−δ

(
Z
r

)1−µ(
1− ω

(
Z
r

)α)γ
∣∣∣∣∣ < 1
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The required solution (33) is obtained by applying the inverse of Ψ-Shehu transform on both side of last
equation,

y(t) = S−1
Ψ

[
V (r, Z)

∞∑
m=0

λm
(
Z

r

)µ(2m+1)(
1− ω

(
Z

r

)α)−(δ+γ)m−γ
]

+ S−1
Ψ

[
K

∞∑
m=0

λm
(
Z

r

)µ(2m+1)+ν(1−µ)(
1− ω

(
Z

r

)α)−(δ+γ)m+γν−γ
]
,

= K

∞∑
m=0

λmΨ(t)ν(1−µ)+µ(2m+1)−1E
γ−γν+m(δ+γ)
α,(1−ν)(1−µ)+µ(2m+1)(ωΨ(t)α)

+
∞∑
m=0

E
γ+m(δ+γ)
α,µ(2m+1),ω,0+

f(t).

6. Conclusion

Finding a new integral transform for solving ordinary and partial fractional di�erential equations is always
bene�cial in the subject of fractional calculus. In this manuscript, we introduced new integral transform called
Ψ-Shehu transform, applied it on some basic properties and elementary functions. Moreover, we obtained
Ψ-Shehu transform of generalized fractional derivatives in sense of Ψ function such as Ψ−Riemann-Liouville,
Ψ-Caputo Ψ- Hilfer fractional derivative also, Ψ-Prabhakar integral, Ψ-Prabhakar fractional derivative, Ψ-
Hilfer-Prabhakar fractional derivative and its regularised version in terms of Mittag-Le�er function. The
space-time fractional convection-dispersion equation and the generalized fractional free electron laser (FEL)
equation including the Ψ-Hilfer-Prabhakar fractional derivative and its regularized form were also solved.
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