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Abstract
In 1971 R. L. Carpenter proved that every derivation on a semisimple commutative Frechet algebra with identity
is continuous. The concept of almost derivations on Frechet algebras is introduced in this article. Also, R. L.
Carpenter result motivates us to ask an open question: Is every almost derivation on semisimple commutative
Frechet algebras continuous? Moreover, a partial answer to this open question is derived in the sense that
every almost derivation T on semisimple commutative Frechet Q-algebras Λ, with an additional condition on Λ, is
continuous. Furthermore, an example is provided to illustrate our main result.
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1. Introduction
We provide a brief outline of definitions and known outcomes in this section. For more details, one may refer to [2, 7]. All
vector spaces are considered over the complex field, and we assume that all algebras are unital.

Definition 1.1. A normed algebra Λ is an algebra with a norm ||.||, which also satisfies ||p.q|| ≤ ||p||.||q||, ∀ p,q ∈ Λ. A
complete normed algebra is called a Banach algebra.

Definition 1.2. An algebra with a Hausdorff topology is called a topological algebra if all algebraic operations are jointly
continuous.

Definition 1.3. [2] The Jacobson radical rad(Λ) of an algebra Λ is the intersection of all maximal right(or left) ideals. An
algebra is said to be semisimple if rad(Λ) = {0}.

Definition 1.4. [2] The spectrum σΛ(p) of an element p of an algebra Λ is the set of all complex numbers λ such that λ .1− p
is not invertible in Λ. The spectral radius rΛ(p) of an element p ∈ Λ is defined by rΛ(p) = sup{|λ | : λ ∈ σΛ(p)}.

If (Λ, ||.||) is a Banach algebra, then rΛ(p)= limn→∞ ||pn|| 1n . Also, for any algebra Λ, we have rad(Λ)= {p∈Λ : rΛ(pq)= 0,
for every q ∈ Λ}. See [2].

Definition 1.5. [2] If T : Λ→ Γ is a linear map from a Banach algebra Λ to a Banach algebra Γ, then the separating space of
T is defined as the set
S(T ) = {q ∈ Γ : there exists (pn)

∞
n=1 in Λ such that pn→ 0 and T pn→ q}.
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Also, S(T ) is a closed linear subspace of Γ and moreover, by the closed graph theorem, T is continuous if and only if
S(T ) = {0}. For a proof, see [2].

A complete metrizable topological algebra is called an F-algebra. A topological algebra Λ is said to be a LMC algebra if
its topology is induced by a separating family of submultiplicative seminorms. A Frechet algebra is a LMC algebra which
is also an F-algebra. A Q-algebra is a topological algebra in which the set of all invertible elements is open. A metrizable
LMC algebra is written in the form (Λ,(pn)

∞
n=1), where (pn)

∞
n=1 is a separating sequence and each pn is a submultiplicative

seminorm (i.e. pn(x.y)≤ pn(x).pn(y), ∀x,y∈Λ) satisfying pn(x)≤ pn+1(x),∀n, ∀ x∈Λ, in which the topology on Λ is induced
by the seminorms pn,n = 1,2, .... Also, a sequence (xk) in the Frechet algebra (Λ,(pn)) converges to x ∈ Λ if and only if
pn(xk− x)→ 0 for each n ∈ N, as k→ ∞. In a Frechet Q-algebra, spectral radius of every element is a finite number. Every
Banach algebra is a Frechet Q-algebra.

Definition 1.6. [6] Let Λ be an algebra. A linear map T : Λ→ Λ is called derivation if T (p.q) = p.T (q)+T (p).q,∀p,q ∈ Λ.

Next, we introduce almost derivations on Frechet algebras.

Definition 1.7. Let (Λ,(pn)) be a Frechet algebra. A linear map T : Λ→ Λ is called an almost derivation if there are εn ≥ 0
such that pn(T (p.q)− p.T (q)−T (p).q)≤ εn pn(p) pn(q); ∀n ∈ N,∀p,q ∈ Λ.

Remark 1.8. If εn = 0, for every n, then almost derivations on Λ turn out to be derivation on Λ, because (pn) is a separating
sequence of seminorms on Λ. Also, every derivation is an almost derivation, for every εn ≥ 0.

A conjecture of Kaplansky [6] can be stated in the following question form. Is every derivation on semisimple Banach
algebra continuous? Kaplansky conjecture was proved by Johnson and Sinclair [5] in 1968. In 1971, R. L. Carpenter [1] proved
that every derivation on a semisimple commutative Frechet algebra with identity is continuous. There are some recent articles
[8, 9, 10, 11, 12] for automatic continuity of derivations in the theory of topological algebras.

Now, we write an open question for almost derivations on Frechet algebras.

Problem 1.9. Let T : (Λ,(pn))→ (Λ,(pn)) be an almost derivation on a semisimple commutative Frechet algebra (Λ,(pn)).
Is T continuous?

Also, we derive a partial solution to this open Problem 1.9. More specifically, we prove that every almost derivation T on a
semisimple commutative Frechet Q-algebra (Λ,(pn)), with an additional condition on (Λ,(pn)), is continuous.

2. Main Result
Definition 2.1. [4] If T : Λ→ Γ is a linear map from a Frechet algebra Λ to a Frechet algebra Γ, then the separating space of
T is defined by
S(T ) = {q ∈ Γ : there exists (qn)

∞
n=1 in Λ such that qn→ 0 and T qn→ q}.

Theorem 2.2. Let (Λ,(pn)) be a Frechet algebra. If T : Λ→ Λ is an almost derivation, then the separating space S(T ) is a
closed two sided ideal in (Λ,(pn)).

Proof. Obviously S(T ) is a closed linear subspace of (Λ,(pn)).
Now, we prove that S(T ) is an ideal in Λ. Let b ∈ S(T ) and c ∈ Λ. Then there exists a sequence (an)

∞
n=1 in Λ such that

an→ 0, and T (an)→ b. Let w = T (c). Also we have pk(c.an)≤ pk(c).pk(an)→ 0,∀k, as n→∞. Since T is almost derivation,
we have

pk(T (c.an)− c.b) ≤ pk(T (c.an)− c.T (an)−T (c).an)+ pk(c.T (an)+w.an− c.b)

≤ pk(T (c.an)− c.T (an)−T (c).an)+ pk(c.T (an)− c.b)+ pn(w.an)

≤ εk pk(c) pk(an)+ pk(c) pk(T (an)−b)+ pk(w.an).

Since pk(T (an)−b)→ 0, pk(an)→ 0 and pk(w.an)≤ pk(w).pk(an)→ 0, ∀k, as n→ ∞, we have pk(T (c.an)− c.b)→ 0, and
hence T (c.an)→ c.b, when c.an→ 0. Therefore, we conclude that c.b ∈ S(T ). Similarly b.c ∈ S(T ). Hence S(T ) is a two
sided ideal in Λ.

Theorem 2.3. Let (Λ,(pn)) be a Frechet Q-algebra such that Λ is semisimple, and rΛ is continuous on Λ. If T : Λ→ Λ is an
almost derivation with rΛ(Ta)≤ rΛ(a),∀a ∈ Λ, then T is continuous.

Proof. Let b ∈ S(T ). Then there exists (an)
∞
n=1 in Λ such that an→ 0 and Tan→ b. Since rΛ(Ta)≤ rΛ(a) and rΛ(an)→ 0, we

have rΛ(Tan)→ 0. Also, we have rΛ(Tan)→ rΛ(b). So, we conclude that rΛ(b) = 0. By Theorem 2.2, S(T ) is an ideal in Λ.
For every c ∈ Λ,b.c ∈ S(T ). Therefore rΛ(b.c) = 0. Also, rad(Λ) = {a1 ∈ Λ : rΛ(a1.a2) = 0,∀a2 ∈ Λ}, and hence b ∈ rad(Λ).
So, S(T )⊆ rad(Λ). Since Λ is semisimple, S(T ) = {0}. Therefore T is continuous, by the closed graph theorem.
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Corollary 2.4. Let (Λ,(pn)) be a commutative Frechet Q-algebra such that Λ is semisimple. If T : Λ→ Λ is an almost
derivation with rΛ(Ta)≤ rΛ(a),∀a ∈ Λ, then T is continuous.

Proof. If Λ is a commutative Frechet Q-algebra, then the spectral radius function rΛ is uniformly continuous. See, for example
([3], Theorem 6.18).

This Corollary 2.4 is a partial solution to the Problem 1.9.

Corollary 2.5. Let Λ be a commutative semisimple Banach algebra. If T : Λ→ Λ is an almost derivation with rΛ(Ta) ≤
rΛ(a),∀a ∈ Λ, then T is continuous.

Proof. If Λ is a commutative Banach algebra, then spectral radius function rΛ is continuous on Λ.

Example 2.6. Let (Λ,(pn)) be a semisimple commutative Frechet Q-algebra. A linear map T : Λ→ Λ is defined by T (a) = βa,
∀a ∈ Λ where (εn =)β ∈ (0,∞). Since

pn(T (p.q)− p.T (q)−T (p).q) = pn(β p.q− p.βq−β p.q) = pn(−β p.q)≤ |−β |pn(p).pn(q),

T is an almost derivation but not a derivation on (Λ,(pn)). Since Λ is a Q-algebra, there exists k ∈ N such that rΛ(a) =
limn→∞(pk(an))

1
n , ∀a ∈ Λ. See, for example ([3], Theorem 6.18). So

rΛ(Ta) = rΛ(βa) = lim
n→∞

(pk((βa)n))
1
n = |β | lim

n→∞
(pk(an))

1
n ≤ rΛ(a).

All hypotheses of Corollary 2.4 are satisfied, so T is continuous.
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