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ABSTRACT
Phase I and Phase II metabolic reactions are involved in the pharmacokinetic properties of drugs after administration. These 
reactions mainly aim to make drugs more polar and eliminate them safely. However, some of these metabolites have the 
potential to exhibit a toxicological effect. Industry and/or academia have to consider these metabolites in terms of their phar-
macodynamic and pharmacokinetic properties. These metabolites are not only residual intermediates from the synthetic 
process of the main drug but also unique structures produced by metabolic enzymes in the human organism. Thus, metabo-
lite synthesis by synthetic or semi-synthetic methods is a key feature in the pharmaceutical industry. In this review, synthetic 
methods of the metabolites from all known metabolic pathways are reviewed from the literature. It was observed that both 
synthetic and semi-synthetic methods require more attention as they are as important and complex as drug synthesis. More-
over, it showed that there was much more research available for Phase I than Phase II in the literature.
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INTRODUCTION

Biotransformation reactions are divided into two main classes 
known as Phase I and Phase II. Phase I reactions are the func-
tionalization of a parent compound by introducing polar 
chemical moieties, then making them more soluble in wa-
ter media. Insertion of new polar functional groups into the 
parent compound is performed by oxidation, reduction, and 
hydrolytic reactions. Phase I reactions can be carried out by 
either enzymatic cytochrome P450 (CYP), Flavin-containing 
monooxygenases (FMO), esterase, and amidases or hydrolytic 
at the physiological pH. In the Phase II reactions, Phase I me-
tabolites or endogenous polar molecules are conjugated with 
the large hydrophilic groups (Foti & Dalvie, 2016; Low & Castag-
noli, 1991). These conjugative reactions are mediated by spe-
cific enzymes (glucuronosyltransferase, sulfotransferase, and 
N-acetyltransferase) that each lead to their specific conjugate 
such as sulfate, glucuronate, glycine, etc. (Mulder & Burchell, 
1990). Drug metabolism is one of the most important steps in 
ADMET studies. Thus, the synthesis of metabolites is an impor-
tant process in drug metabolite profiling, metabolite stability, 
as well as pharmacological activity testing, metabolite quanti-
fication, toxicity testing and metabolism-based drug interac-
tion (Rollas, 2007). The US Food and Drug Administration (FDA) 
guidelines for metabolites in safety testing declare the accept-
able metabolite/drug ratios in drug development (Food Drug 
Administration (FDA), 2008). Metabolites above the 10% par-
ent drug should be subjected to safety testing in terms of tol-
erability according to the metabolites in safety testing (MIST) 
approach by a group of scientists (Baillie et al., 2002). The ap-
proach that finds the abundance is more important than the 
percentage causes a debate. In this discussion, scientists from 
the pharmaceutical industry proposed that the abundance 
approach should be considered as it is more reliable in terms 
of dose, chemical structure, and various parameters (Smith & 
Obach, 2005). The development of synthesis methods is need-
ed to obtain authentic metabolites. Particularly, the synthesis 
of metabolites has a crucial role in pharmaceutical industry 
operations for producing a large number of pure metabolites 

to perform pharmacokinetic and pharmacodynamics stud-
ies. Biotransformation reactions, from the leading pharmaco-
logical activation of drugs, have been involved in aliphatic or 
aromatic carbon hydroxylation, epoxidation, heteroaromatic 
oxidation, reduction, glucuronidation, sulfation, acetylation, 
and other metabolic pathways. The synthesis of metabolites 
that are not easily carried out by chemical methods can be 
produced by microbial biotransformation (Asha & Vidyavathi, 
2009; de Paula et al., 2015; Di Nardo & Gilardi, 2012), using the 
plant cultured cells as a biocatalyst (Ishihara, Hamada, Hirata, 
& Nakajima, 2003). Liver microsomes of various species have 
been used for in vitro metabolism studies and they are com-
mercially available (Krebsfaenger, 2007). The biosynthesis of 
drug glucuronides may be performed using human liver mi-
crosomes in combination with uridine 5’-diphosphoglucuron-
ic acid (Uldam, Juhl, Pedersen, & Dalgaard, 2011).

In this respect, this review reported several examples of the 
chemical and biotechnological (Schroer et al., 2010) synthetic 
methods of drug metabolites in favor of metabolism and phar-
macologic activity studies of the pharmaceutical industry (Fox 
& Gibas, 1953; Fura et al., 2004; Genovino, Sames, Hamann, & 
Toure, 2016; Kuo et al., 2004; Lombardino, 1981; Obach, 2013) 
and the analysis method of drugs and their metabolites (Kos-
tiainen, Kotiaho, Kuuranne, & Auriola, 2003; Protti et al., 2020).

The synthesis of Phase I metabolites
The purpose of Phase I reactions is to introduce a polar func-
tional group –OH, -COOH, -NH2, -SH into the drugs and other 
xenobiotic molecules. These functional groups can also be 
released by the hydrolysis of esters or amides and the dealkyl-
ation of ethers, thioethers, and secondary amines. 

Oxidation
One of the most important reactions of Phase I metabolites 
is oxidation. Most of the drugs, xenobiotics, and dietary com-
pounds are metabolized by CYP enzymes which are also 
known as the microsomal mixed-function oxidase system. CYP 
enzymes are located primarily in the endoplasmic reticulum. 

Figure 1. Structure of diclofenac (1a), tolbutamide (1b), primidone (1c), albendazole (1d), and chlorpromazine (1e) and their synthesized metabo-
lites. (i: 10 F/mol, 4eq NaHSO3, ACN 1:1 H2O; ii: 6 F/mol, NaHCO3, ACN 1:1 H2O; iii: 1.5 F/mol, NaHCO3, ACN 3:1 H2O; iv: 4 F/mol, NaHCO3, ACN).
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The largest amount of CYP enzymes is found in the liver and 
they can also be found in intestinal, adrenal, and other tissues 
(Schroer et al., 2010).

Flavin monooxygenases (FMOs) are involved in the Phase I 
drug metabolism of a nucleophilic hetero atom containing 
drugs, xenobiotics, and dietary compounds to their sulfoxide 
or N-oxide metabolites (Gao & Zheng, 2019; Geier et al., 2015). 
Phase I metabolites of some drugs such as diclofenac, tolbuta-
mide, primidone, albendazole, and chlorpromazine (Figure 1) 
were synthesized via preparative scale continuous-flow elec-
trosynthesis method (Stalder & Roth, 2013). 

The oxidation of aromatic and aliphatic compounds
Aromatic hydroxylation is a major route of metabolism for 
many drugs. Generally, hydroxylation occurs at the 4- position 
of the aromatic ring. Most of the phenolic metabolites undergo 
further conversion to polar glucuronide or sulfate conjugates. 

Patric et al. synthesized hydroxylated metabolites of methyl-
phenidate (Patrick, Kilts, & Breese, 1981). As shown in Figure 2, 
the nitrile group of α-(2-pyridyl)-α-(4-methoxyphenyl)acetoni-
trile (2a) is partially hydrolyzed to the corresponding amide 
(2b) at room temperature. The direct hydrolysis reaction is not 
preferred because of the possibility of decarboxylation. Then 
2b is reduced by Adam’s catalyst to obtain a 20:80 erythro /
threo mixture of 2c. At this stage, column chromatography or 
fractional crystallization manages only to isolate erythro config-
uration of 2c. However, it is possible to separate erythro /threo 
mixture by fractional crystallization after hydrolysis using HBr, 
although the quantification for threo (2d) is quite low. Thus, 
first epimerization is made by using KOH to obtain threo com-
pound (2d). 2d and 2e were subjected to Fischer esterification 
in methanol.

Acetaminophen is widely used drug as analgesic and anti-
pyretic. Valero et al. (Valero, Lozano, Varon, & Garcia-Carmona, 
2003) reported the enzymatic synthesis of catechol metabolite 
of acetaminophen that is not commercially available (Figure 3).

Toxic metabolites such as N-acetyl-p-benzoquinone imine 
(NAPQI) of acetaminophen synthesised by Dahlin and Nelson 
(Dahlin & Nelson, 1982) from acetaminophen and silver oxide 
(Figure 4). 

Recombinant human CYPs expressed in Escherichia coli are suit-
able biocatalyst for the synthesis of drug metabolites. Vail et al. 
(Vail, Homann, Hanna, & Zaks, 2005) stated that the synthesis of 
anabolic testosterone metabolite 6β-hydroxytestosterone hu-
man cytochrome P450 3A4 with NADPH-P450 reductase (NPR) 
was expressed in E. coli.

The expected human drug metabolites have been used in sev-
eral model systems. One of these is microbial transformation 
(Asha & Vidyavathi, 2009).

Moody et al. (Moody, Freeman, Fu, & Cerniglia, 2002) produced 
the metabolites of antidepressant mirtazapine using the fun-
gus Cunninghamella elegans as a model of mammalian metab-
olism. As shown in Figure 5, 8-hydroxymirtazapine obtained as 
a major metabolite after 96 h.

Figure 4. Synthesis of N-acetyl-p-benzoquinone imine (NAPQI) from 
acetaminophen.

Figure 2. Synthesis pathway for hydroxylated metabolites of methylphenidate.

Figure 3. Representation of enzymatic synthesis of 3’-hydroxyacet-
aminophen from acetaminophen.
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As shown in Figure 6, Otey et al. (Otey, Bandara, Lalonde, 
Takahashi, & Arnold, 2006) reported the hydroxylation of pro-
pranolol by variant P450 BM3 heme domain (BM3-H) 9C1. The 
variants of P450 BM3 have been evaluated from Bacillus mega-
terium. 

Sawayama et al. (Sawayama et al., 2009) demonstrated a group 
of variants for cytochrome P450 BM3 from Bacillus megaterium. 
Verapamil and asterimizole metabolites have been produced 
by P450 BM3 variants. 

Weis and coworkers achieved a hydroxylation reaction by us-
ing bifunctional cytochrome P450 P450 enzymes (Weis et al., 
2009). This biotechnological application included the prepara-
tion of metabolites of diclofenac and clorzoxazone which are 
4’-hydoxydiclofenac and 6-hydroxychlorzoxazone by biohy-
droxylation. The mentioned reaction of diclofenac and chlor-
zoxazone is shown in Figure 7.

Rinnofner et al. (Rinnofner, Kerschbaumer, Weber, Glieder, & 
Winkler, 2019) reported the hydroxymetabolites of ibuprofen 
using Pichia pastoris  as a catalyst. In this study, the synthesis 
made in the presence of catalyst and then products were ly-
ophilized. Subsequently preparative LC-MS analysis was per-
formed. The spectral data of the products obtained in this way 
were compared with the previous studies and the metabo-
lites were given as a percentage. Accordingly, 83% of 502 mg 
ibuprofen was converted into its metabolites. Of these, 30% 
is 2-OH ibuprofen, 37% is 1-OH ibuprofen and 16% is an un-
known metabolite (Figure 8).

Figure 5. Schematic suggestion for biotransformation of a racemic mixture of mirtazapine to give it all metabolites after incubation with Cun-
ninghamella elegans after 168 h. 

Figure 6. Three metabolites of propranolol formed by cytochrome 
P450.

Figure 7. Biohydroxylation of A) diclofenac and B) chlorzoxazone by 
bifunctional P450s (biCYPs).
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Kuo et al. (Kuo et al., 2004) synthesized various putative Phase 
I and Phase II duloxetine metabolites. The major metabolite of 
duloxetine is hydroxylated metabolite in the naphthalene ring. 
4/5/6-hydroxyduloxetine (Figure 9) has been synthesized with 
the same method. The synthesis of other metabolites of dulox-
etine was given as a reference.

Lombardino reported the synthesis of piroxicam monohydrox-
ylated metabolites using 2-amino-hydroxypyridines (Lom-
bardino, 1981). The multistep pathway is summarized in Figure 
10.

Steinbrecht et al. (Steinbrecht et al., 2020) reported the UPOs 
for the metabolites synthesis of cytostatic drug cyclophos-
phamide. 4-Hydroxycyclophosphamide metabolite was per-
formed by a peroxygenase from Marasimius rotula (Figure 11).

The oxidation of amines
As a result of metabolic N-dealkylation of secondary aliphatic 
and alicyclic amines, they produce primary amine and unsub-

stituted alicyclic amine metabolites. The tertiary amines and 
heterocyclic nitrogen compounds are biotransformed by oxi-
dative dealklation and N-oxidation. Schematic represantation 
of N-oxydation of amines is given in Figure 12.

Sun L. et al. (L. Sun, Huang, Liu, & Zhong, 2004) reported the 
major metabolites (N-demethylation, O-demethylation, and 
sulfate conjugation) of verapamil produced by Cunningha-
mella blakesleeana. Metabolites that are shown in Figure 13 
were isolated via the semipreparative liquid chromatography-
ion trap mass spectrometry method and identified by 1H-NMR 
and ESI-MS analyses.

Fodi et al. (Fodi et al., 2018) reported the biomimetic synthe-
sis of amiodarone metabolites. Metabolite of antiarrhythmic 
amiodarone and N-desmethylamiodarone were obtained by 
biomimetic oxidation as a major metabolite (Figure 14).

Another method was given for dealkylation by Çoruh. (Çoruh, 
2012). As shown in Figure 15, the dealkylation of alkyl substi-
tuted 1,2,4-triazolethiones may be carried out with the cycliza-
tion of benzoyl substituted acylthiosemicarbazides in alkaline 
media. 

The tertiary amine and heterocyclic nitrogen compound 
N-oxides are synthesized using molecular oxygen or other 
oxidants such as hydrogen peroxide, m-chloroperoxybenzoic 
acid, magnesium monoperphtalate, 2-sulphonyloxziridines, di-
oxiran, dimethyl dioxiran, and oxaziridines (Figure 16). Youssif 
(Youssif, 2001) and Cai et al. (Cai, Sha, Guo, & Pan, 2012) pub-
lished excellent reviews about tertiary amine N‐oxides. 

Jaworski et al. (Jaworski et al., 1993) synthesized chlorproma-
zine-N-oxide and fluphenazine-N-oxide from chlorpromazine 

Figure 9. Synthesis and structure of 4-hydroxyduloxetine.

Figure 11. 4-Hydroxycylophosphamide metabolite of cyclophospha-
mide obtained by MroUPO

Figure 8. The summarized biooxidation reaction of ibuprofen.

Figure 10. 4-The multistep synthesis pathway for monohydroxylated piroxicam metabolite.

Figure 12. N-oxidation of amines.
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and fluphenazine in the presence of  m-chloroperoxybenzoic 
acid in tetrahydrofuran that yielded 67 % and 45 %, respec-
tively (Figure 17).

Reddy et al. (Reddy, Mukkanti, Kumar, Babu, & Reddy, 2008) report-
ed the synthesis of lansoprazole-N-oxide. As a starting material 
2-chloromethyl-3-methyl-4-(2,2,2-trifluoroethoxy)pyridine hydro-
chloride was used to synthesize lansoprazole N-oxide in the pres-
ence of m-chloroperoxybenzoic acid in chloroform (Figure 18).

Lansoprazole-sulfone-N-oxide was prepared from lansopra-
zole sulfide in the presence of m-chloroperoxybenzoic acid in 
chloroform (Figure 19).

As shown in Figure 20, Doddaya and Peddakonda reported a 
synthesis method for chloroquine N-oxide which is a major 
degradation product of chloroquine and also metabolite of 
chloroquine (Doddaga & Peddakonda, 2013).

Hanlon et al. (Hanlon et al., 2012) prepared moclobemide N-
oxide metabolite (65 mg) by using the FMO enzyme (Figure 21).

The oxidation of thioether 
S-dealkylation, desulfuration, and S-oxidation (sulfoxide and 
sulfone) reactions are known as the metabolic pathways of 
thioether. A sulfur atom present in the cyclic ring is suscep-
tible to S-oxidation. The sulfoxide functional group containing 
drugs and metabolites may be further oxidized to a sulfone 
group. Reddy et al. (Reddy, Mukkanti, Bhaskar, & Reddy, 2008) 
prepared rabeprazole sulfone from rabeprazole sulfide using 
m-chloroperbenzoic acid in a chloroform and methanol mix-
ture (2:1, v/v) at -20 to -25 °C (Figure 22). 

Zhang et al. (Zhang et al., 1996) investigated the in vitro metabo-
lism of chlorpromazine using Cunninghamella elegans (C. elegans 
ATCC 9245). C. elegans biotransformed chlorpromazine to its po-
tential metabolites. Chlorpromazine sulfoxide (Figure 23) and oth-
er metabolites were characterized by MS, UV, and NMR analyses.

Oxidative O-dealkylation
Oxygen functionality is found in many drugs and other xeno-
biotics. Drugs containing the ether functional groups are me-
tabolized by oxidative dealkylation.

Antihypertensive prazosin demethylated metabolites have 
been synthesized by Althuis and Hess (Althuis & Hess, 1977), 
and the schematic representation of these synthetic pathways 
are given in Figure 24. 

In the concept of drug metabolite synthesis, mammalian cy-
tochrome P450 enzymes have been given great attention in 
terms of their usage as biocatalysts. Various systems for the 
heterologous expression of mammalian cyp genes have been 
developed. Escherichia coli strains are also used as a host for 

Figure 13. Five major metabolites obtained via transformation of verapamil by C. blakesleeana.

Figure 15. Nonsubstituted 1,2,4-triazole thiones synthesis.

Figure 14. In vitro major biotransformation product of amiodarone by 
using human liver microsomes.

Figure 16. Synthetic N-oxidation of tertiary amines and heterocyclic 
nitrogen containing compounds.



257

Sahin, Omurtag Ozgen and Rollas. Importance and review of drug metabolite synthesis

drug metabolite synthesis. Particularly, the CYP1A family is an 
important enzyme for drug metabolite synthesis (Cornelissen, 
Julsing, Schmid, & Buhler, 2012; Lu et al., 2020). Verapamil (Cas-
well, O’Neill, Taylor, & Moody, 2013), testosterone (Fessner et 
al., 2020), lorcaserin (Cusack et al., 2013), NVP-AAG561 (Schroer 
et al., 2010), diclofenac, diazepam, ibuprofen, phenacetin and 
cortisol (Winkler, Geier, Hanlon, Nidetzky, & Glieder, 2018), are 
examples of drugs where metabolites have been synthesized 
by engineered cytochrome enzymes.

Extremely selective oxyfunctionalization reactions on 
drugs including O-dealkylation and hydroxylation can be 
performed by mimicking the role of the human liver cyto-
chrome P450 monooxygenases and unspecific peroxygen-
ases (UPOs). Gomez de Santoz et al. reported that several 
UPO variants for their capacity to synthesize human drug 
metabolites from three pharmaceutical agents: dextro-

Figure 17. Chemical synthesis of N-oxide metabolites of chlorpromazine and fluphenazine.

Figure 18. Synthesis protocol for lansoprazole N-oxide.

Figure 20. Two proposed synthesis pathways for chloroquine N-oxide.

Figure 19. Synthesis protocol for lansoprazole sulfone N-oxide.
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methorphan (Figure 25), naproxen, and tolbutamide (Go-
mez de Santos et al., 2019).

Antiinflammatory indomethacin major metabolites are N1-
deacyl, O-desmethyl, and ester glucuronide analogs. The 
O-demethylated metabolite (1-p-chlorobenzoyl-5-hydroxy-
2-methyl-3-indolylacetic acid) of indomethacin was synthe-
sized by Strachan et al and the pathway is given in Figure 26 
(Strachan, Meisinger, Ruyle, Hirschmann, & Shen, 1964).

Oxidative aromatization
In the literature, metabolic dehydrogenation reaction of some 
compounds have been reported. Indapamide and nifedipine 
can be given as examples that can undergo metabolic dehydro-
genation. As given in Figure 27, a diuretic drug indapamide de-
hydrogenation metabolite was synthesized by Sun et al. (H. Sun 
et al., 2009). Briefly, indapamide has been oxidized with MnO2 in 
acetone and then the indolin ring was aromatized to indol.

The cyclic metabolites of drugs
Some drugs can be converted to their cyclic metabolites such 
as hydralazine and methadone.

The main metabolic route of antihypertensive hydralazine is 
acetylation. The initially formed N-acetyl hydralazine is un-
stable and cyclizes intramolecularly to form 3-methyl-1,2,4-
triazole[3,4-a]phtalazine as the major metabolite that was 
synthesized by Dutkiewicz et al (Figure 28) (Dutkiewicz, Chi-
dan Kumar, Yathirajan, Mayekar, & Kubicki, 2009).

Pohland et al. (Pohland, Boaz, & Sullivan, 1971) synthesized 
2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine and 2-eth-

Figure 21. Flavin monooxygenase catalyzed N-oxidation of mo-
clobemide.

Figure 24. Synthesis of demethyl metabolites of prazosin (i: abs. ethanol, K2CO3,benzyl chloride, reflux; ii: 0 ˚C, HNO3, 30 ˚C 15 min; iii: acetone, 
10%KMnO4, iv:SOCl2 reflux, evap., dioxane, NH3; v: glacial acetic acid, Fe powder, 90 ˚C, vi: urea, pyridine in 10%HCl, reflux; vii: POCl3, N,N-dimeth-
ylaniline, N2, reflux; viii: THF, dry NH3, R.T.; ix: 1-(2-furoyI)piperazin, isoamyl alcohol, reflux; x: CF3COOH, reflux 2.5h; xi: conc. H2SO4, r.t., 0.5h. 

Figure 23. Obtained chlorpromazine sulfoxide metabolite of chlor-
promazine after incubation with C. elegans.

Figure 25. Chemical structure of dextromethorphan.

Figure 22. Preparetion of rabeprazole sulfone from rabeprazole sul-
fide.
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Figure 29. Synthesis of 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine and 2-ethyl-5-methyl-3,3-diphenylpyrroline.

Figure 27. Dehydrogenated metabolite of indapamide.
Figure 26. Synthesis of 1-p-chlorobenzoyl-5-hydroxy-2-methyl-3-in-
dolylacetic acid.

yl-5-methyl-3,3-diphenylpyrroline, cyclization metabolites of 
DL-methadone (Figure 29).

Reduction
Reduction reactions play an important role in the biotrans-
formation of many drugs and other xenobiotics containing 
carbonyl, nitro, and azo groups. N-oxides and sulfoxides are 
reduced to their corresponding tertiary amines and sulfides. 
Ketones are reduced to secondary alcohols. Azo compounds 
are reduced to corresponding amines.

Nitro groups are reduced to amines by many reagents. Drugs 
containing a nitro group are easily converted to their amine me-
tabolites by the treatment with a suitable reducing agent. Nime-
sulide is a potent antiinflammatory, antipyretic, and analgesic 
drug and its amine metabolites can be found in man. Küçük-
güzel et al. (Kucukguzel, Kucukguzel, Oral, Sezen, & Rollas, 2005) 
reported the synthesis of amino nimesulide in rats (Figure 30).

Feely et al. (Feely, Kavanagh, McNamara, & O’Brien, 1999) re-
ported the synthesis of 7-aminoflunitrazepam. 7-aminofluni-
trazepam has been readily prepared from the mixture of fluni-
trazepam and a reducing agent tin (II) chloride dihydrate in 
ethanol (Figure 31).

Clonazepam is metabolized to 7-aminoclonazepam by nitro 
reduction via hepatic cytochrome P450. De Paula et al. (de 
Paula et al., 2015) demonstrated the production of  7-amino-
clonazepam metabolite of clonazepam by the microbial trans-
formation (Figure 32).

 Azo dyes are used as colorants in the food, drug, and cosmetic 
industry. The azo compounds are reduced by intestinal anaer-
obes to toxic amine metabolites. Chung et al. (Chung, Fulk, & 
Egan, 1978) reported that azo dyes are reduced by intestinal 
anaerobes. The reduction of product metabolites of drugs and 
other xenobiotics are commercially available.

Rollas developed a method for the synthesis of aromatic and 
heteroaromatic amines by reducing azo compounds treat-
ment with hydrazine hydrate without a catalyst (Figure 33). 
These reactions may be employed for the amine metabolite 
synthesis from azo compounds (Rollas, 2010).

Hydrolysis
Hydrolysis is a major biotransformation route for drugs contain-
ing ester and amide functionality. The metabolic products are 
carboxylic acids, alcohols, phenols, and amines. Esters are easily 
converted into their acides and alcohols in the presence of alka-
line or acidic medium. The hydrolysis of amides is slower than 
esters. The hydrolysis product of metabolites of drugs are com-
mercially available.

Figure 28. Synthesis of the major metabolite of hydralazine.
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Figure 32. 7-aminoclonazepam metabolite of clonazepam produced 
by the microbial transformation. Figure 33. The reduction of azo compounds with hydrazine hydrate.

The synthesis of Phase II metabolites
Major Phase II (conjugative) reactions of the phenolic hy-
droxyl group are glucuronidation, sulfation, and methylation. 
Acetylation, methylation, and phosphate conjugation may 
rarely occur. The carboxyl groups containing drugs and xe-
nobiotics give ester type O-glucuronides (acyl glucuronides) 
(Baldwin, Robinson, & Williams, 1960). Glucuronide metabo-
lites of resveratrol, flavonoids, morphine, and such phenolic 
compounds are achieved by silver or borane catalyzed reac-
tions (Stachulski & Meng, 2013). Another conjugative reac-
tions of carboxyl groups are amino acid conjugation. Acyl 
glucuronides are chemically unstable in an aqueous solution 
and undergo an intramolecular acyl migration. Therefore, un-
stable acyl glucuronides are capable of cellular injury such as 
hepatotoxicity and carcinogenesis (Bailey & Dickinson, 2003). 
An excellent review about reactivity of acyl glucuronide was 
published by Bradshaw et al (Bradshaw, Athersuch, Stachul-
ski, & Wilson, 2020). Glutathione conjugation is a formation 
of a thioether bond by the nucleophilic sulfhydryl group of 
glutathione. 

The synthesis of glucuronide metabolites
The glucuronidation reaction is the most well-known conjuga-
tive route in drug metabolism and is catalyzed by the family 
of uridine diphosphate (UDP) glucuronosyltransferases (UGTs). 
Metabolites are classified as oxygen, nitrogen, sulfur, or carbon 
glucuronide according to the heteroatom or carbon attached 
to the C1 atom of the glucuronyl group. Conjugation of gluc-

uronic acid occurs on nucleophilic functional groups such as 
alcohol, phenol, primary, secondary, and tertiary amines, and 
carboxylic acids, etc. (Argikar, 2012). The most systematic re-
search was initiated in the 1930s by R.T. Williams and collabora-
tors (Pryde & Williams, 1933; Williams, 1938). Phenolic glucuro-
nides have been prepared using glycosyl donors and a chart is 
given for glucuronic acid donors in Figure 34 (Arewang, Lah-
mann, Oscarson, & Tiden, 2007).

Yoshimura et al. (Yoshimura, Oguri, & Tsukamoto, 1968) pre-
pared codeine and morphine glucuronides using glycosyl do-
nors (Figure 35).  

Acyl glucuronidation is one of the major metabolic pathway of 
acidic drugs or acidic metabolites that produce by the hydro-
lysis of ester, amide, and nitrile functional groups or the oxida-
tion of drugs and their metabolites.

The synthesis of naproxen glucuronide conjugate that is 
shown in Figure 36 was obtained with a 70% yield (Arewang 
et al., 2007).

O-Glucuronides are generally synthesized by a Koenigs-
Knorr reaction (Figure 37). The aglycone reacts with methyl 
(2,3,4-tri-O-acethyl-1-bromo-1-deoxy-α-D-glucopyran)uro-
nate in the presence of Ag2CO3) or Hg(CN)2 (Kaspersen & 
Van Boeckel, 1987). Lou et al. (Luo, Hawes, McKay, & Midha, 
1992) developed a synthetic method for the quaternary 

amonium-linked glucuronide metabolites of the aliphatic 
tertiary amine group using the same reagent but with NaH-
CO3, not silver carbonate.

The synthesis of sulfate metabolites
Sulfate metabolites were prepared using the reaction of drugs con-
taining phenol, alcohol, or amine groups activated by sulphuric acid.

Hydroxyl derivatives and sulphamates (N-sulphates) have 
been sulfated with SO3.pyridin complex, SO3.trimethyl com-
plex, or chlorosulphonic acid (Kaspersen & Van Boeckel, 1987).

Figure 30. Proposed pathway for the aminonimesulide formation of in vitro metabolite of nimesulide.

Figure 31. Synthesis of 7-aminoflunitrazepam.
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Figure 36. Synthesis pathway for naproxen glucuronide conjugate.

Figure 35. Synthesis of A) codeine glucuronide, morphine-6-glucuronide and B) morphine-3-glucuronide.

Figure 34. Charts for glucuronic acid donors.

Foster et al. (B. C. Foster et al., 1991) reported sulfate conjuga-
tion of 4’-hydoxyfenazopyridine which is a metabolite of uri-
nary tract analgesic phenazopyridine (Figure 38).

Hoshino et al. (Hoshino et al., 2010) synthesized a sulphate 
conjugate of resveratrol (Figure 39).

The synthesis of amino acid conjugated metabolites
The major metabolic biotransformations of drugs and other 
xenobiotic carboxylic acids, with an amino acid or glucuronic 
acid, are established. Carboxylic acids are mainly converted to 
glycine conjugates and are rarely converted to glutamine and 
other amino acid conjugates (Hutt & Caldwell, 1990). 

The amino acid conjugation of carboxylic acid was produced 
from acid chlorides or esters and amino acids. Sinha et al. 
(Sinha, Praveen, Shrivastava, & Shrivastava, 2012) synthesized 
amino acid conjugation of valproic acid as prodrugs using 
thionyl chloride and amino acid esters (Figure 40). 

Rasheed et al. (Rasheed, Kumar, Shama, & Mishra, 2011) syn-
thesized amino acid conjugations of aceclofenac as prodrugs 
using methyl ester of aceclofenac (Figure 41). 

The synthesis of glutathione conjugated metabolites
Glutathione conjugation is an important route for the bio-
transformation of chemically reactive electrophilic drugs, me-
tabolites, and other xenobiotics. Glutathione conjugation is 
the formation of a thioether bond between an electrophilic 
center and glutathione (Ketterer & Mulder, 1990).
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Figure 39. Synthesis of sulfate conjugates of resveratrol (i: TBDMSCl, DMF, 80%; ii NaNH2, MePPh3Br, Et2O, 72%; iii: Pd(OAc)2, Et3N, PPh3, MeCN, 
40%; iv: NaOMe, MeOH, 92%; v: SO3-NMe3, MeCN, Et3N; and KF, MeOH/H2O).

Huber et al. (Huber, Bartha, Harpaintner, & Schroder, 2009) re-
ported the metabolism of acetaminophen in plant tissues us-
ing the cell culture of Armoracia rusticana L. as a model system. 
Acetaminophen glutathione conjugate obtained in the root 
cells of A.  rusticana produced a 17% yield.

The synthesis of acetylated metabolites
Acetylation reactions are the metabolic pathways of drugs 
containing primary aromatic amine, hydrazine, hydrazide, pri-
mary aliphatic amine groups, and amine metabolites produced 
from aryl nitro and azo compounds, such as clonazepam, ni-
trazepam, and sulfasalazine. Drugs and amine metabolites are 
generally converted to their acetylated metabolites with acetic 
anhydride as an acetylating agent.

As given in Figure 42, the acetyl-desethyl metabolite of anti-
arrhythmic procainamide was synthesized by Adamczyk and 
Fino (Adamczyk & Fino, 1996).

Nobilis et al. (Nobilis et al., 2006) reported the synthesis of the N-
acyl-5-aminosalicylic acid metabolite of mesalazine (Figure 43).

Major metabolites of anticancer aminoglutethimide are acetlyl-
amino-glutethimide and 5-hydroxiglutetimide. The acetylated 
metabolite of the N-hydroxy metabolite of aminoglutethimide 
was synthesized by Foster et al. (A. B. Foster et al., 1984) using 
pentafluorophenyl acetate as an acetylating agent (Figure 44).

The major metabolite of antitubercular isoniazid is acetyl iso-
niazid. Fox et al. (Fox & Gibas, 1953) synthesized acetyl isonia-

zid from isoniazid, acetic anhydride, and glacial acetic acid 
(Figure 45).

The synthesis of methylated metabolites
Methylation reactions are a minor pathway for conjugating 
drugs, xenobiotics, and dietary compounds. O-methylation 
occurs in the phenolic groups of a variety of endogenous 
and catecholic compounds (Sang, Lambert, Ho, & Yang, 2011). 
The methylated drugs are less polar than the substrate. As a 

Figure 37. Synthesis of glucuronide metabolites from aliphatic tertiary amines and chlorpromazine by Koenigs-Knorr reaction.

Figure 38. Chemical structure of 4’-SO4, O-sulfate monoester of 4’-hy-
droxyphenazopyridine.
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Figure 41. Synthesis of prodrugs of aceclofenac.

Figure 40. Amino acid conjugate synthesis of valproic acid.

Figure 42. Synthesis of N-acetyl desethylprocainamide.

result of the methylation of morphine codeine was produced 
(Boerner, 1975). As shown in Figure 46, biogenic amines hista-
mine and norepinephrine were converted to methylated me-
tabolites from their amine groups (Brown, Axelrod, & Tomchick, 
1959; Frère & Verly, 1971; Rice, 1977).

The analysis methods of metabolites
For reference standards, the metabolites of drugs and other xe-
nobiotics are used in vivo and in vitro studies (Sidelmann et al., 
1997; Turgeon, Pare, Lalande, Grech-Belanger, & Belanger, 1992; 
Williams, 1943). In preclinical drug development, the ADMET 
properties of the potential drug candidates were evaluated in 
terms of their prospectivity. The essential process in the discov-
ery and development of new drugs is the isolation and identi-
fication of their metabolites. The instability in a small number 
of metabobolites in the biological matrix makes isolation and 
identification difficult. Therefore, one of the best methods is 
the synthesis of metabolites as a reference standard. The struc-

ture of metabolites has been elucidated using several spectro-
scopic methods, particularly NMR and MS.

The drug and metabolites analysis is important for pharma-
cokinetic experiments. Drugs and their metabolite levels are 
commonly measured using high performance liquid chroma-
tography (HPLC). Mass spectrometry coupled with chromatog-
raphy and nuclear magnetic resonance spectroscopy (NMR) 
are widely used techniques for metabolite analysis (Schaber et 
al., 2001). The mass spectrometer is an important instrument 
for the identification of metabolites of drugs and other xenobi-
otics (Constanzer, Chavez-Eng, Fu, Woolf, & Matuszewski, 2005; 
Nelson, Garland, Breck, & Trager, 1977). Generally, analytes are 
separated by the suitable Liquid Chromatography (LC) column 
(Gill, Law, & Gibbs, 1986; Mackichan, 1980). The mass spectrom-
eter is used as a detector. The LC/MS or GC-MS techniques are 
employed for the isolation and identification of metabolites in 
biological fluids or tissue extract (Petsalo, Turpeinen, Pelkonen, 
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& Tolonen, 2008; Ren, Zhang, Kong, & Wang, 2018; Wu, Wang, 
Yang, & Sui, 2019).

Wheals and Jane (Wheals & Jane, 1977) reviewed an analysis 
of drugs and their metabolites using high-performance liquid 
chromatography. In this review, the applications of steroids, 
antibiotics, oxygen-containing compounds, vitamins, alka-
loids, nitrogen-containing compounds, prostaglandins, sulfur-
containing compounds were demonstrated. The LC-MS/MS 
technique provides superior selectivity, sensitivity, and analysis 
for detecting plasma concentration in pharmacokinetics stud-
ies and prognosis of acute poisoning. A novel validation meth-
od to measure the amount of venlafaxine and its five metabo-
lites by using LC-MS/MS was suggested by Gu et al. (Gu et al., 
2018). Michely and Maurer (Michely & Maurer, 2018) reported a 
fast LC-MS/MS quantification approach for 45 drugs and their 
relevant metabolites (Fang et al., 2006). Correia et al. (Correia, 
Rao, Ballet, & Globisch, 2019) demonstrated the combination 
of untargeted metabolomic analysis and metabolic conver-
sion for the selective detection of glucuronide conjugates by 
using the UPLC-MS/MS in human urine samples. Ishigai et al. 
(Ishigai, Langridge, & Bordoli, 2001) studied the dynamics of 
enzyme-catalyzed glutathione conjugation by electrospray 

quadrupole/time-of-flight (Q-TOF) mass spectrometry with a 
nanospray interface. The online combination of LC with the 
inductively coupled plasma (ICP) mass spectrometer offers an 
excellent method for metabolite identification and structure 
characterization (Kostiainen et al., 2003). Currently, a variety of 
techniques are used for the analysis of drug metabolites such 
as orbitrap technology (OT), high-resolution mass spectrom-
etry (HRMS), high-performance liquid chromatography- in-
ductively coupled plasma-mass spectrometry (HPLC-ICP-MS) 
high-performance liquid chromatography- inductively cou-
pled plasma tandem mass spectrometry (HPLC-ICP-MS/MS), 
and hydrophilic interaction liquid chromatography-mass spec-
trometry (HILIC -MS). (Cece-Esensencan et al., 2016; Helfer, Mi-
chely, Weber, Meyer, & Maurer, 2015; King et al., 2019; Klencsar 
et al., 2018; Li et al., 2018) Xing et al. (Xing, Zang, Zhang, & Zhu, 
2015) presented a new application of high-resolution mass 
spectrometry (HRMS)- based data-mining tools in tandem to 
provide a fast and comprehensive metabolite profiling of com-
bination drugs. In his research, a metronidazol-pantoprazole-
clarithromycin combination was used as the model.

Figure 46. Drugs undergo methylation metabolism.

Figure 45. Synthesis of acetylisoniazide.

Figure 44. Synthesis of acetylated metabolites of N-hydroxy amino-
glutethimide (i: acetone, Zn, NH4OAc; ii: (CH3CO)2O; iii: 4M NH3, 30 
min).

Figure 47. Paroxetine, tamoxifen, and their main metabolites.

Figure 43. Synthesis of N-acyl-5-aminosalicylic acid metabolite.
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Sundell et al. (Sundell et al., 2019) developed a LC-MS/MS 
method for the qualification of rifampicin, isoniazid, pyrazin-
amide, ethambutol, and their metabolites 25-desacetylrifamp-
isin, isonicotinic acid, acetyl isoniazid, and 5-hydroxy pyrazin-
amide.

Wang et al. (Wang et al., 2019) designed, developed, and 
validated a rapid, simple, and sensitive method for simul-
taneous quantitation of four CYP450 probe drugs; phen-
acetin, omeprazole, metoprolol, midazolam, and their 
metabolites (acetaminophen, 5’-hydroxyomeprazole, 
α-hydroxymetoprolol, 1’-hydroxymidazolam) using an ultra 
high-performance liquid chromatography- tandem mass 
(UHPLC-MS/MS) spectrometry. 

Therapeutic drug monitoring is an important tool for corre-
lating the drug dose to drug and metabolite concentrations 
in the body and the therapeutic and adverse effects. Protti el 
al. (Protti et al., 2020) reported an analysis method, a capillary 
volumetric blood micro sampling, for the selective serotonin 
reuptake inhibitors fluoxetine and its metabolite, norfluox-
etine; sertraline and its metabolite, desmethyl sertraline. 

In some cases, the structure of the formed metabolites was not 
elucidated by the LC/MS technique. An alternative possibility 
was to isolate the metabolite from the incubation matrix and 
to elucidate the exact structure using a nuclear magnetic reso-
nance (NMR) method (H. Sun et al., 2009; Zhang et al., 1996).

The non-aqueous capillary zone electrophoresis (NACE) 
method was used for the analysis of some drugs and their 
metabolites. Flores et al. (Flores, Nevado, Salcedo, & Diaz, 2004) 
reported the analysis of paroxetine, tamoxifen, and their main 
metabolites in urine by NACE (Figure 47).

CONCLUSION

In recent years, discovery and development of new drugs are 
prerequisite for the evaluation of drug safety and risk assess-
ment. The metabolic profile, metabolite toxicity, metabolite 
stability, active metabolites pharmacological testing, and phar-
macokinetics of a new drug should be defined. Therefore, the 
synthesis of metabolites is an important area of research for 
metabolites. Several analytical methods are used for the isola-
tion and detection of metabolites. The LC-MS/MS and LC-MS-
NMR systems enable a routine analysis of metabolites.   
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