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ABSTRACT 
 

In presence of panel data, technical efficiency is used to compare the performances of 

Decision-Making Units (DMUs). The novelty of this paper is the consideration of the 

dependence between the two error terms in the case of panel data and the introduction of 
time effect models in the Stochastic Frontier Analysis (SFA). Hence, our SFA model 

considers the balanced panel case, several models describing the evolution of the 

inefficiency over time and the dependence between the two error terms. The inefficiency 
and noise terms being dependent, a copula function which reflects the dependence between 

them is included in their joint density. The model is estimated by maximum likelihood and 

the Akaike Information Criterion (AIC) is used for model selection. Moreover, a likelihood 

ratio test is performed for the nested models. A bootstrap algorithm is proposed for 
statistical inference on the Technical Efficiency (TE) measures. Results for Moroccan 

policy of the production and sales of drinking water from 2001 to 2007 identify the most 

and least efficient provinces, and a generally positive trend of estimated TE measures. 
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1. INTRODUCTION 

 

When panel data are available, it is recommended to use the structure of the data to estimate 

technical efficiencies in a Stochastic Frontier Analysis (SFA) because a panel contains more 

information than a single cross section. Furthermore, as noted in Schmidt and Sickles (1984) 

and Kumbhakar and Lovell (2000) some strong distributional assumptions used in the cross-

sectional data case can be relaxed with the panel data and the technical efficiency can be 

estimated consistently when 𝑇, the number of time observations for each Decision-Making Unit 

(𝐷𝑀𝑈), is large. Hence, repeated observations can be considered as a substitute for some strong 

distributional assumptions. They can also constitute a weakening of the independence 

assumption between the technical inefficiency term and the regressors. 

 

An overview of the research on panel SFA models reveals that Jondrow et al. (1982) 

generalized the cross-sectional model to the panel data model and used the conditional 
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expectation of the inefficiency term 𝑢 given the realized value of the error 𝜖 to estimate 

efficiency. Schmidt and Sickles (1984) and Kumbhakar and Lovell (2000) have proposed for 

the balanced panel case, models where they supposed that technical efficiency varies across 

producers but is either constant or varies through time for each producer. Battese et.al. (2000) 

adopted an unbalanced panel to investigate efficiency of labour in the Swedish banking 

industry. Kim and Lee (2006) assumed a time varying pattern of technical efficiency 

movements to analyze the productivity growth of several East Asian countries over a period of 

twenty years. However, all studies handled the panel SFA model with independence between 

noise and inefficiency terms. Recently, Smith (2008) handled the panel data model with 

dependent error components using a simulated example but without making inference on the 

estimated efficiency. Allowing for dependence is generally a desirable feature, because the 

efficiency of a given 𝐷𝑀𝑈 at a given period of time might depend on whether or not the 𝐷𝑀𝑈 

was ‘lucky’, expressed by the random noise term.  For example, if the 𝐷𝑀𝑈 was unlucky in a 

particular period, it might attempt to compensate this by an increased efficiency, generating a 

dependence between noise and efficiency. 

 

Furthermore, several studies have assessed the performance of water services such as Faria et 

al. (2005) and Tupper and Resende (2004), which compare the technical efficiency of Brazilian 

public and private companies in water supply; Sampaio et.al. (2005) which deals with the cost 

efficiency of the public water service in Portugal, and Vishwakarma and Kulshrestha (2010) 

which analyses the water supply utility of urban cities in India using the stochastic production 

frontier analysis. However, most of these studies use cross-sectional data. In the absence of 

such study in the water domain based on Moroccan data, the performance of the entities 

responsible of the water management in all regions will be measured by estimating the 

efficiencies in case of panel data and a nonparametric confidence interval will be proposed. 

 

This research is an extension of El Mehdi and Hafner (2014b) to the panel data case. Our 

objective is to deal with the dependence of the error terms in the panel SFA approach using 

models for the time variation of efficiencies. We evaluate the efficiency and compare the 𝐷𝑀𝑈 

performances through an empirical data set on the water management in Morocco. Thus, in this 

work the production frontiers and panel data are considered to estimate technical efficiency 

when the two components of the error term are dependent. Efficiency being estimated, 

statistical inference is needed to draw reliable conclusions. Hence, this work presents also an 

associated procedure to build confidence intervals on the efficiencies in this considered case.  

 

The remainder of the paper is organized as follows: Section 2 describes the model with the 

copula function, Section 3 presents the procedure of statistical inferences on the Technical 

Efficiency (TE) measure in the case of panel data with dependent error terms, and the last 

section presents results of an empirical analysis of the water area in all Moroccan regions with 

the numerical procedure estimation of technical efficiency in order to compare the 𝐷𝑀𝑈𝑠. 

Finally we conclude by a summary of the results with some remarks and open issues. 
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2. EFFICIENCY MEASURES FOR PANEL DATA 

 

The principle of the efficiency measure estimation for panel data is the same as that for cross-

sectional data. We need however to make additional assumptions about the temporal pattern of 

inefficiency. There are also differences between the two procedures in terms of the simulated 

likelihood function definition. 

 

When information about all is 𝐷𝑀𝑈𝑠 available at 𝑇 different time periods, it is preferable to 

use a stochastic frontier model which is adequate for panel data. In frontier analysis this model 

is more appropriate because even if it is not fundamentally different from the cross-sectional 

model, it has several advantages as it increases the degree of freedom to estimate parameters, 

provides consistent efficiency estimates when 𝑇 is increasing and does not require that the 

inefficiencies are independent of the regressors. 

 

2.1. The panel data production frontier model 

 

The panel stochastic frontier model, when the inefficiencies are assumed to vary systematically 

with time, is specified as follows: 

     𝑦𝑖𝑡 = 𝑓(𝑥𝑖𝑡 , 𝛽) + 𝜖𝑖𝑡 = 𝑓(𝑥𝑖𝑡 , 𝛽) + 𝑣𝑖𝑡 − 𝑢𝑖𝑡  , 𝑖 = 1, 2, … , 𝑛 ;  𝑡 = 1, 2, … , 𝑇       (2.1) 

 

where 𝑦𝑖𝑡 = 𝑙𝑜𝑔(𝑌𝑖𝑡); 𝑌𝑖𝑡 : the observed output for 𝐷𝑀𝑈𝑖 at the tth time period (one output), so 

𝑌𝑖𝑡 ∈ ℝ+; 𝑥𝑖𝑡 = 𝑙𝑜𝑔(𝑋𝑖𝑡); 𝑋𝑖𝑡  : a vector of length 𝑝  that describes the observed inputs for 

observation 𝑖 at time 𝑡, so 𝑋𝑖𝑡 ∈ ℝ+
𝑝

 where 𝑝 is the number of the inputs; 𝛽 :  a vector of 

unknown parameters to be estimated, 𝛽 ∈  ℝ𝑙+(1×𝑇)  where 𝑙 is the number of parameters 

excluding the time-varying intercepts. If intercepts are constant over time, then 𝛽 ∈  ℝ𝑙+1.  

Moreover, 𝜖𝑖𝑡 is the error term for observation 𝑖 at time 𝑡, 𝑓(𝑥𝑖𝑡 , 𝛽) the production frontier, 

𝑛 is the number of DMUs under study and 𝑇 is the number of periods or the number of 

observations for each DMU. 

 

The two components of the error term are motivated by the idea that deviations from the frontier 

might not be entirely under the control of the DMU and that the performance of a DMU is 

affected by these two components. Hence, the term 𝜖𝑖𝑡  is divided into two parts, the inefficiency 

term 𝑢𝑖𝑡 which is constrained to be non-negative (𝑢𝑖𝑡 ≥ 0) and the statistical noise term 𝑣𝑖𝑡 

which is usually a normal with zero as mean and 𝜎𝑉 as standard deviation (𝑣𝑖𝑡 ∼ N(0 , 𝜎𝑉
2) ). 

 

Furthermore, distributional assumptions will be imposed on both terms 𝑢𝑖𝑡 and 𝑣𝑖𝑡. In 

particular, it is assumed that the components of the first are independently and identically 

positively distributed and the components of the second are independently and identically 

normally distributed. In addition, both terms are assumed continuous and independent of 𝑥𝑖𝑡.  
At first, it is supposed that the two terms are mutually independent and the model is estimated 

by the Maximum Likelihood (ML) method. At a second stage, they will be allowed to be 

dependent and the ML estimates of the first stage will be considered as initial values in the 

numerical optimization. 
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As proposed in the literature on panel SFA, the frontier model considers either the time-constant 

or the time-varying efficiency (see Schmidt and Sickles (1984) and Kumbhakar and Lovell 

(2000)). In our study we consider the frontier model with time-varying efficiency which is, in 

our opinion, more realistic and reflects the inefficiency variability over time. Nevertheless, we 

shall limit our analysis to the fixed intercept over time and to a comparison between some time-

varying models in order to select one of them. 

 

2.2. Time-varying efficiency 

 

When 𝑇 is large, the assumption of a time-constant inefficiency is typically not appealing, as 

one would expect that inefficient DMUs are forced to improve over time. So, a time varying 

inefficiency is needed and a random-effects model should be used. To define a random-effects 

model, one has developed an extension of the fixed-effects model to a more general model to get 

consistent estimators of  𝑢𝑖 when 𝑇 is large. Among these we refer to Jondrow et al. (1982), which 

derived panel generalizations of the conditional inefficiency predictors, Battese and Coelli 

(1988) where the term 𝑢𝑖  has a more general truncated-normal distribution, and Battese et.al. 

(1989) which extend the model to allow unbalanced data. 

 

The frontier model is called a random-effects model when it is described by 

           𝑦𝑖𝑡 = 𝛽0𝑡 +  ∑ 𝛽𝑗
𝑙
𝑗=1 𝑥𝑖𝑗𝑡 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡  =  𝛽𝑖𝑡 +  ∑ 𝛽𝑗

𝑙
𝑗=1 𝑥𝑖𝑗𝑡 + 𝑣𝑖𝑡                   (2.2) 

 

where 𝛽𝑖𝑡 =  𝛽0𝑡 − 𝑢𝑖𝑡  is the intercept for DMU𝑖 in the time period 𝑡 and where 𝛽0𝑡 is the 

intercept common to all DMUs in the time period 𝑡, see e.g. Kumbhakar (1990) and Kumbhakar 

and Lovel (2000). Of course, 𝑛 × 𝑇 parameters 𝛽𝑖𝑡 should be estimated but Cornwell et.al. 

(1990) reduce this number to 3 × 𝑛. In the same way, Kumbhakar (1990) suggested a model in 

which the 𝑢𝑖𝑡 are specified by the expression (2.5). He suggested estimating the model with the 

maximum likelihood method but does not provide an empirical application. Battese and Coelli 

(1992) suggested a time-varying model for unbalanced panel data with the exponential function 

of time for 𝑢𝑖𝑡 in (2.3) bellow. They also proposed in their later work, Battese and Coelli (1995), 

a model where 𝑢𝑖𝑡 follows a normal distribution truncated at zero. The ML estimation and the 

efficiency calculations of these cases have been included in the FRONTIER programs 

implemented by Coelli (1996). 

 

Schmidt and Sickles (1984) suggested not to specify an implicit distribution for the inefficiency 

when the panel data are available and to estimate the fixed- effects model with the traditional 

panel data methods. In extension of this approach, Cornwell et.al. (1990) and Lee and Schmidt 

(1993) have developed an approach in which they introduce the variation of the effect of 

inefficiencies over time. Both of the latter approaches propose a variation of inefficiencies more 

flexible than proposed in (2.3) and (2.5). 

 

In this research, the Kumbhakar (1990) and the Cornwell et.al. (1990) random-effects models 

will not be considered given the large number of parameters to be estimated, and so just one 

fixed intercept will be estimated. The Kumbhakar (1990) time effect expressed here by the 
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formula (2.5), Battese and Coelli (1992) and a variety of time effects models are considered 

with a function 𝜂(𝑡) ≥ 0 that describes the evolution of inefficiency over time such that 𝑢𝑖𝑡 =
 𝜂(𝑡)𝑢𝑖 . These models are denoted as 

 

𝑀1  :  𝑢𝑖𝑡 =  [𝑒𝑥𝑝{−𝜂1(𝑡 − 𝑇)}] 𝑢𝑖      ,   𝑢𝑖 ~ 𝑁+(0 , 𝜎𝑈
2) ;                (2.3) 

𝑀2  :  𝑢𝑖𝑡 =  [𝑒𝑥𝑝{−𝜂1(𝑡 − 𝑇)}] 𝑢𝑖  ;                                  (2.4) 

𝑀3  :  𝑢𝑖𝑡 =  [1 + 𝑒𝑥𝑝{𝜂1𝑡 +  𝜂2𝑡2}]−1 𝑢𝑖   ;                              (2.5) 

𝑀4:  𝑢𝑖𝑡 =  [1 + 𝜂1(𝑡 − 𝑇)𝑠𝑖𝑛(𝑡 − 𝑇)] 𝑢𝑖  ;                              (2.6) 

𝑀5:  𝑢𝑖𝑡 =  [1 + 𝜂1𝑠𝑖𝑛(𝜂2𝑡)] 𝑢𝑖  ;                                      (2.7) 

𝑀6:  𝑢𝑖𝑡 =  [1 + 𝜂1𝑠𝑖𝑛(𝜂2(𝑡 − 𝑇))] 𝑢𝑖  ;                                  (2.8) 

𝑀7:  𝑢𝑖𝑡 =  [1 + 𝜂1(𝑡 − 𝑇)𝑠𝑖𝑛(𝜂2(𝑡 − 𝑇))] 𝑢𝑖  ;                            (2.9) 

𝑀8:  𝑢𝑖𝑡 =  [𝜂0 + 𝜂1𝑡 +
1

2
𝜂2𝑡2 + 2 ∑ (𝑎ℎ𝑠𝑖𝑛(ℎ𝑡) − 𝑏ℎ𝑐𝑜𝑠(ℎ𝑡))𝐻

ℎ=1 ] 𝑢𝑖;   (2.10) 

where, for all models and except for M1, 𝑢𝑖  ~ N+(μ , σU
2 ) and 𝜇 is the mean of the original 

normal distribution. That indicates that the inefficiency term 𝑢𝑖 is a normal truncated at zero 

with mean 𝜇. Furthermore, M1 and M2 are the Battese and Coelli (1992, 1995) models and M3 

is the Kumbhakar (1990) model. The proposed M4 − M7 models include sinusoidal functions 

to allow for possible periodicity effects in the inefficiency.  For example, M7 models a time-

varying amplitude of the sine function depending on the parameter 𝜂1. The last considered 

model M8 is the Fourier Flexible Form of Gallant (1984) which can closely approximate any 

smooth function 𝜂(𝑡) for sufficiently large H. In our study the Akaike Information Criterion 

(AIC) is used to select a model among M1 to M8. Moreover, a likelihood ratio test is performed 

for the nested models. 

 

2.3. Model estimation 

 

Considering the models described by (2.2) and (2.3)-(2.10), the methods used to estimate all 

models depend on the distributional assumptions. When 𝑣𝑖𝑡 is i.i.d. normal, 𝑢𝑖𝑡  is i.i.d. with 

positive support, 𝑣𝑖𝑡 and 𝑢𝑖𝑡 are mutually independent and independent from the regressors, the 

Maximum Likelihood Estimation (MLE) is feasible. Schmidt and Sickles (1984) conjectures 

that given suitable regularity conditions the ML estimates of (2.2) are consistent and 

asymptotically efficient as 𝑛 →  ∞ regardless of 𝑇. In the particular, when 𝑣𝑖𝑡∼𝑖𝑖𝑑 𝑁(0 , 𝜎𝑉
2) 

and 𝑢𝑖𝑡 ~  𝑖𝑖𝑑𝑁+(0 , 𝜎𝑈
2), the MLE leads for 𝜖𝑖 =  (𝜖𝑖1, … , 𝜖𝑖𝑡 , … , 𝜖𝑖𝑇)′, to the log-likelihood 

function, ignoring an additive constant, 

𝑙 = ln(𝐿) =  −
𝑛

2
𝑙𝑛 𝜎∗

2 −
1

2
∑ 𝑎∗𝑖

𝑛

𝑖=1

−
𝑛. 𝑇

2
ln 𝜎𝑉

2 −
𝑛

2
𝑙𝑛 𝜎𝑈

2 

                                             + ∑ 𝑙𝑛 [1 − Φ (−
𝜇∗𝑖

𝜎∗
)]𝑛

𝑖=1 ,                                                   (2.11) 

which leads to the technical efficiency (TE) estimate for all 𝑖 = 1, … , 𝑛 

              𝑇𝐸𝑖𝑡 = 𝐸(𝑒𝑥𝑝{−𝑢𝑖𝑡}|𝜖𝑖) ,      

                            =  
1−Φ(𝜂(𝑡)𝜎∗− 

𝜇∗𝑖
𝜎∗

)

1−Φ(− 
𝜇∗𝑖
𝜎∗

)
𝑒𝑥𝑝 {−𝜂(𝑡)𝜇∗𝑖 +

1

2
𝜂2(𝑡)𝜎∗

2},               (2.12) 
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where 𝐿 is the likelihood function, 𝜂(𝑡) is the time function, 𝜎∗
2 =  

𝜎𝑉
2𝜎𝑈

2

𝜎𝑉
2+𝜎𝑈

2 ∑ 𝜂2(𝑡)𝑡
,  𝜇∗𝑖 =

 
(∑ 𝜂(𝑡)𝜖𝑖𝑡𝑡 )𝜎𝑉

2

𝜎𝑉
2+𝜎𝑈

2 ∑ 𝜂2(𝑡)𝑡
,  𝑎∗𝑖 =

1

𝜎𝑉
2 [∑ 𝜖𝑖𝑡

2
𝑡 −

𝜎𝑈
2 (∑ 𝜂(𝑡)𝜖𝑖𝑡𝑡 )2

𝜎𝑉
2+𝜎𝑈

2 ∑ 𝜂2(𝑡)𝑡
] and Φ is the standard normal cdf. 

 

In comparison with the cross-section data, calculation of the log-likelihood function for panel 

data is similar to El Mehdi and Hafner (2014b), but it changes at the level of computing the 𝜖𝑖 

density which is 𝑔(𝜖𝑖) where 𝜖𝑖 =  (𝜖𝑖1, … , 𝜖𝑖𝑡 , … , 𝜖𝑖𝑇)′ .  In the expression of 𝑔(𝜖𝑖),  the  joint 

density 𝑓(𝑢𝑖 , 𝑣𝑖  ) of 𝑢𝑖 and 𝑣𝑖 is replaced by 𝑓1(𝑢𝑖) 𝑓2(𝑣𝑖) = 𝑓1(𝑢𝑖) ∏ 𝑓2(𝜖𝑖𝑡 +  𝜂(𝑡)𝑢𝑖)𝑡  . Of 

course, this last expression is integrated by 𝑢𝑖 to get 𝑔(𝜖𝑖). 

 

When 𝑢𝑖 and 𝑣𝑖 are dependent, their joint density when panel data is available becomes 

 𝑓1(𝑢𝑖)𝑓2( 𝑣𝑖) 𝑐𝜃(𝐹1(𝑢𝑖), 𝐹2(𝑣𝑖)) =  

              𝑓1(𝑢𝑖) ∏ 𝑓2(𝜖𝑖𝑡 +  𝜂(𝑡)𝑢𝑖)𝑡 ∏  𝑐𝜃(𝐹1(𝑢𝑖), 𝐹2(𝜖𝑖𝑡 +  𝜂(𝑡)𝑢𝑖))𝑡                      (2.13) 

where 𝑐 is a bivariate copula density which expresses the dependence between the two variables 

𝑢𝑖 and 𝑣𝑖, and 𝐹1(𝑢𝑖) and 𝐹2(𝑣𝑖) are two uniform variables which are the cdf of  𝑓1(𝑢𝑖) and 

 𝑓2(𝑣𝑖) respectively and called the margins. The independence case is a special case of this 

model when the copula is the product copula, for which 𝑐(. , . ) = 1. But for general copula 

functions, the ML estimation will become more complicated. 

 

Given that the 𝑣𝑖𝑡  are supposed independent and identically distributed, the density of 𝜖𝑖 

becomes 

 

       𝑔(𝜖𝑖) = ∫ 𝑓(𝜖𝑖, 𝑢𝑖) 𝑑𝑢𝑖 
+∞

0
= ∫ 𝑓1(𝑢𝑖) ∏ 𝐴𝑖𝑡  𝑡  𝑑𝑢𝑖

+∞

0
= 𝐸(∏ 𝐴𝑖𝑡 𝑡 ) ,                 (2.14)       

where Ait =  f2(𝜖it + η(t)ui)  cθ(F1(ui), F2(ϵit +  η(t)ui)) . See the Appendix A for more 

details. Therefore, assuming the independence across DMUs, the log-likelihood function can 

be written as 

                   𝑙(𝜗) = log 𝐿(𝜗) = log 𝐿 (𝜎𝑈, 𝜎𝑉 , 𝜃, 𝛽0, 𝛽, 𝜂𝑘)  

     =  ∑ 𝑙𝑜𝑔𝑛
𝑖=1 𝑔𝜗(𝜖𝑖) = ∑ 𝑙𝑜𝑔𝑛

𝑖=1 𝑔𝜗 (𝑦𝑖 − (𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗
𝑙
𝑗=1 )),           (2.15) 

where 𝛽0 =  (𝛽01, … , 𝛽0𝑡 , … , 𝛽0𝑇)′,  𝛽 =  (𝛽1, … , 𝛽𝑗 , … , 𝛽𝑙)
′
 are vectors with a length equal 

respectively to the time periods 𝑇 and the number of inputs 𝑙, 𝜂𝑘 is a vector of 𝑘 parameters in 

the time-varying function and where 𝑥𝑖𝑗 =  (𝑥𝑖𝑗1, … , 𝑥𝑖𝑗𝑡, … , 𝑥𝑖𝑗𝑇)
′
 and  𝑦𝑖 =

 (𝑦𝑖1, … , 𝑦𝑖𝑡 , … , 𝑦𝑖𝑇)′.  For simplicity, all intercepts 𝛽0𝑡, 𝑡 = 1, … , 𝑇 are considered the same and 

denoted by 𝛽0 in the empirical analysis. 

 

Generally, the expression of the function 𝑙(𝜗) is complex in the dependence case and to obtain 

analytical derivatives becomes a tedious or even impossible task in several cases. So, the log-

likelihood is optimized numerically using the mle function in the R software and using the 

simplex numerical method called the Nelder-Mead method. 
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Once the parameters (𝜎𝑈, 𝜎𝑉 , 𝜃, 𝛽0, 𝛽, 𝜂𝑘) are estimated, the technical efficiency can be 

estimated using the expected value of (𝑒𝑥𝑝{−𝑢𝑖𝑡}|𝜖𝑖) as 

 

               𝑇𝐸𝑖𝑡 = 𝐸[𝑒𝑥𝑝{−𝑢𝑖𝑡}|𝜖𝑖]   =  𝐸(𝑒𝑥𝑝{−𝜂(𝑡)𝑢𝑖} ∏ 𝐴𝑖𝑡  𝑡 )  / 𝐸(∏ 𝐴𝑖𝑡 𝑡 ) .         (2.16) 

 

See the Appendix A for more details. Given again the complexity of the 𝑇𝐸𝑖𝑡 expression, the 

expectation will be estimated for a large number 𝑚 of Monte Carlo draws by 

       𝑇𝐸̂𝑖𝑡 ≅  [
1

𝑚
∑ (𝑒𝑥𝑝{−𝜂(𝑡)𝑢𝑗} ∏ 𝐴𝑖𝑗𝑡  𝑡  )𝑚

𝑗=1 ] / [
1

𝑚
∑ (∏ 𝐴𝑖𝑗𝑡  𝑡 )𝑚

𝑗=1 ].              (2.17) 

 

The following section develops an algorithm based on the bootstrap to construct confidence 

intervals for the estimated technical efficiencies. 

 

3. INFERENCE FOR THE TECHNICAL EFFICIENCY MEASURE 

 

Since the technical efficiencies of each DMU at each time 𝑡 are unknown and estimated by 𝑇𝐸̂𝑖𝑡, 

an inference about them is required. To build the confidence interval at a level 𝛼, given that the 

true sampling distribution is not available, we see that a modified algorithm of the parametric 

bootstrap Algorithm#3 of Simar and Wilson (2010) adapted to the dependence case and to the 

panel framework is more appropriate. Hence, we developed a procedure to estimate the 

associated confidence bounds when 𝑣 is normal and 𝑢 is half-normal which can be generalized 

for any positive distribution of 𝑢 such as the truncated-normal. The method is easy to apply but 

it is quite computationally intensive. The steps are the following: 

 

1. Estimate 𝜗 = (𝜎𝑈, 𝜎𝑉 , 𝜃, 𝛽0, 𝛽, 𝜂𝑘) according to (2.15), using the observed (𝑥𝑖𝑡  , 𝑦𝑖𝑡), 𝑖 =

1, 2, … , 𝑛 and 𝑡 = 1, 2, … , 𝑇 and using a numerical optimization procedure to get 𝜗̂ =

(𝜎̂𝑈, 𝜎̂𝑉 , 𝜃, 𝛽̂0, 𝛽̂, 𝜂̂𝑘) and to compute the point estimates 𝑇𝐸̂ as described before 

 

2. For 𝑖 = 1, 2, … , 𝑛, draw 𝑢𝑖
∗ ~ 𝑁+(0 , 𝜎̂𝑈

2) and 𝑣𝑖𝑡
∗  ~ 𝑁(0 , 𝜎̂𝑉

2), 𝑡 = 1, 2, … , 𝑇 such that 𝑢𝑖
∗ and 

𝑣𝑖𝑡
∗  are dependent with dependence characterized by the Clayton copula. Then compute 𝑦𝑖𝑡

∗ =

 𝛽̂0 +  ∑ 𝛽̂𝑗𝑥𝑖𝑗𝑡
𝑙
𝑗=1 + 𝑣𝑖𝑡

∗ −  𝜂̂(𝑡)𝑢𝑖
∗. 

There are several procedures to generate the pair (𝑢𝑖 
∗ , 𝑣𝑖𝑡

∗ )  according to the Clayton copula, 

we use the one described in Nelsen (1999), page 41. The four steps of this procedure are 

 

a. Draw 𝑇 + 1 independent uniform random variables 𝑤1𝑖 ,  ℎ2𝑖1  , … , ℎ2𝑖𝑡 , … , ℎ2𝑖𝑇, such that  

𝑤1𝑖~ 𝑈(0, 1) and ℎ2𝑖𝑡  ~ 𝑈(0, 1) for  𝑡 = 1, 2, … , 𝑇. 

 

b. Set  𝑤2𝑖𝑡 =  [𝑤1𝑖
−𝜃̂ (ℎ2𝑖𝑡

−𝜃̂/(1+𝜃̂)
− 1) + 1]

−1/𝜃̂

 for all  𝑡 = 1, 2, … , 𝑇. 

 

c. Set  𝑢𝑖
∗ =  𝐹1

−1(𝑤1𝑖) and 𝑣𝑖𝑡
∗ =  𝐹2

−1(𝑤2𝑖𝑡) for all 𝑡 = 1, 2, … , 𝑇 and where 𝐹1 and 𝐹2 are 

the cdf of the 𝑁+(0 , 𝜎̂𝑈
2) and 𝑁(0 , 𝜎̂𝑉

2) respectively. 
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d. Repeat steps a to c 𝑛 times to generate 𝑛 × 𝑇 pairs (𝑢𝑖 
∗ , 𝑣𝑖𝑡

∗ ). 

 

3. Using the pseudo-data 𝒫𝑏,𝑛
∗ = {(𝑥𝑖𝑡 , 𝑦𝑖𝑡

∗ )}𝑖=1
𝑛 , compute bootstrap estimates 𝜗̂𝑏

∗ =

𝑎𝑟𝑔𝑀𝑎𝑥𝜗∈Θ 𝑙(𝜗|𝒫𝑏,𝑛
∗ ) after  replacing  𝑦𝑖𝑡   by  𝑦𝑖𝑡

∗    in  (2.15) and then compute the bootstrap 

estimates 𝑇𝐸̂𝑏
∗ using (A.4) after replacing  𝜖  by  𝜖𝑏

∗ = 𝑦 − 𝛽̂0
∗ − 𝛽̂∗. 𝑥, where 𝑥𝑖𝑡  and  𝑦𝑖𝑡   

represent  the  observed data. 

 

4. Repeat steps 2 and 3, 𝐵 times to obtain estimates ℬ∗ =  {𝜗̂𝑏
∗}𝑏=1

𝐵 .  Therefore, use ℬ∗ to get 

𝜉∗ =  {𝑇𝐸̂𝑏
∗}𝑏=1

𝐵  .  Each individual 𝑖 is described by a sub-matrix of  𝜉∗ denoted  𝜉𝑖
∗, it has 

𝑇 rows and 𝐵  columns. 

For each individual 𝑖  at time period 𝑡 (row 𝑡 of the 𝜉𝑖
∗ matrix, denoted 𝜉𝑖𝑡

∗ , 𝑖 = 1, 2, … , 𝑛,  

compute  the (𝛼 2⁄ ) and the (1 − 𝛼 2⁄ ) quantiles for 𝜉𝑖𝑡
∗  by considering its 𝐵 components. 

The 100 × (1 − 𝛼)  percentile bootstrap confidence interval of the statistic of interest 𝑇𝐸 

is obtained by the probability 𝑃((𝜉𝑖𝑡
∗ )𝛼 2⁄ <  𝑇𝐸𝑖𝑡 <   (𝜉𝑖𝑡

∗ )1−𝛼 2⁄ ) = 1 − 𝛼. 

Hence using the 100 × (
𝛼

2
) and 100 × (1 −

𝛼

2
) percentiles, we define the lower and the 

upper bounds of the confidence interval as 𝑇𝐸𝑖𝑡 ∈  [(𝜉𝑖𝑡
∗ )𝛼 2⁄  , (𝜉𝑖𝑡

∗ )1−𝛼 2⁄ ].  
 

We note that the estimation procedure presented in Section 2.3 leads sometimes to a positive 

skewness of the composite error term which consequently leads to biased parameter estimates 

and to biased technical efficiencies estimates because all of these latter will be close to one. If 

this is the case, the procedure presented in this section allows us to overcome this problem. 

 

To perform our procedure, a simulation example is proposed. The model describing data is 

supposed to be log-linear where there are one input and one output such that for all 𝑖 =

1, 2, … , 𝑛 and for all 𝑡 = 1, 2, … , 𝑇, we have 𝑙𝑜𝑔(𝑌𝑖𝑡) = 𝛽0 + 𝛽1𝑙𝑜𝑔(10(1 + 𝑋𝑖𝑡)) where 

𝑋𝑖𝑡  ~ 𝑈(0, 1) and parameters will be set to 𝛽0 = 𝑙𝑜𝑔(10) and 𝛽1 = 1. As for the noise term 

and the inefficiency term, they are supposed to be normal as usual for the  first  such  that 

𝑣𝑖𝑡∼𝑁(0 , 𝜎𝑉
2) with  𝜎𝑉 = 0.5  and  half-normal  for  the  second  such  that 𝑢𝑖𝑡 =  𝜂(𝑡)𝑢𝑖 and 

𝑢𝑖∼𝑁+(0 , 𝜎𝑈
2) with 𝜎𝑈 = 1 and the two components are dependent using the Clayton copula 

with dependence parameter 𝜃 = 1. The time varying function is supposed to be 𝜂(𝑡) =
𝑒𝑥𝑝{−𝜂1(𝑡 − 𝑇)} with 𝜂1 = −0.1. We suppose that 𝑛 = 50, 𝑇 = 10 and 𝐵 = 500. To compute 

the true efficiencies, the number of simulations to approximate numerically the integral is set 

to 𝑚 = 10000 which is large enough to have a good approximation of the expectation in 

equation (A.4) evaluated at the true values. 

 

The bootstrap procedure shows that all estimated efficiencies are covered by their confidence 

intervals. The percentage for the true efficiencies is evaluated at 87%, 91.2% and 100% for a 

significance level of 10%, 5% and 1% respectively, so that the bootstrap coverage ratio is 

reasonably close to the nominal level given our moderate number of bootstrap replications. 
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4. EMPIRICAL ANALYSIS OF MOROCCAN DRINKING WATER SUPPLY 

 

Moroccan data was subject of the frontier analysis as in El Mehdi and Hafner (2014a, 2014b). 

The data set analyzed in this study and chosen to illustrate our methodology contains 

information on the water production and its sales to the subscribers and to the municipal utilities 

called the self-governance in Morocco. The national public company called the National Office 

of the Drinking Water (ONEP according to its French abbreviation) ensures the largest part 

of the production, the pipe and the distribution of water in the entire national territory. It 

produces more than 80 percent of the country’s drinking water. This sector depends mainly on 

the domestic consumption. So, to strengthen water resources and to rationalize its use, starting 

in the 1980s it led to certain administrative and technical actions such as an information 

campaign and the installation of individual water meters in households, in order for example to 

reduce wasting. 

 

We are interested in this practical case in the efficiency of certain national participants in the 

management of this particular and vital good. To do so, the Farrel technical efficiency rate will 

be estimated using a panel data set in order to compare the performance of certain Moroccan 

provinces with respect to their produced quantities in the sector and to their water sales. We 

shall analyze, thus, the degree of efficiency of every producing entity of water in order to 

situate it among the others at the national level and we shall know how much should be its 

sales to attain efficiency. Efficiency being an estimate, we also provide confidence intervals. 

 

The considered variables in this study are the ONEP’s sales and the number of the subscribers 

as inputs and the water production as output. Both of sales and production are evaluated in 

thousand cubic meter (1000 m3). Therefore, the model will be a simple model with two 

independent variables and the frontier function chosen to describe the production technology is 

the translog function. As for the copula function, the Archimedean Clayton copula is used 

because it is popular in empirical applications, it is flexible and easy to construct, and it nests 

the independence copula as a special case, see for example Bhat and Eluru (2009). 

 

Hence, the data represent sales, the number of subscribers and the water production for a set of 

50 provinces through 15 Moroccan regions for a duration of seven years from 2001 until 2007. 

Six provinces among a total of 56 were omitted because of lack or unavailability of data as 

indicated in the statistical yearbooks of the corresponding years published annually by the 

Statistics Direction and which have as source the ONEP entity in this area. These six provinces 

are Tan Tan, Inezgane-Ait-Melloul, Sidi Youssef Ben Ali and Al Ismailia in respectively 

Guelmim-Es-Semara, Souss-Massa-Daraâ, Marrakech-Tensift-AlHaouz and Meknès-Tafilalet 

regions and all provinces of Grand-Casablanca region which are Casablanca and Mohammedia. 

 

Being complex, the optimization of the log-likelihood function is performed using numerical 

optimization in three steps: 

Step 1. The model (2.1) is fitted using the pooled-OLS regression without the technical 

inefficiency term. Hence, the inefficiency is null (uit = 0) and the time effect is zero. 
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Step 2.  The OLS parameters of step 1, except the intercept 𝛽0 which is biased, are used as 

initial values in this step to estimate numerically the model (2.1) using the maximum 

likelihood estimation (MLE) assuming independence between 𝑢 and 𝑣. The 𝛽0 

parameter is adjusted by shifting it according to the Corrected Ordinary Least Squares 

procedure (COLS) used in the R frontier package, see e.g. Coelli (1995). 

 

Step 3. In this last step, MLE numerical optimization is performed using the step 2 estimates 

as initial values. As for the initial value of the copula parameter 𝜃,  a grid of values for 

𝜃 is given.  Given that the models are the same (the difference is just the value of 𝜃), 

the comparison of the log-likelihood function is done directly (without estimation) and 

hence the value which gives the highest log-likelihood value is chosen as initial value of 

θ in this step. 

 

About the model, the full translog function with two exogenous variables is considered in this 

analysis. Inputs are the number of subscribers and the total of sales. So, we will have the following 

number of parameters: one for the intercept, two for the variables, two for their terms squared 

and one for their interaction. The others are 𝜎𝑈, 𝜎𝑉, θ and 𝜂𝑘 and 𝜇 is added when the 

truncated-normal distribution is considered. The estimation of the model with the full translog 

function in the case of the independence, using the frontier package of the R software, has 

revealed that the number of subscribers variable, its squared term and the interaction term are 

not significant and consequently we do not reject that their coefficients are equal to zero. For 

this reason, only the sales and its square term will be included in the model. Hence, the total 

number of parameters included in the final considered model in the dependence case is at least 

seven parameters. 

 

Furthermore, the full translog model is not used because the minimal AIC criterion which is 

−2𝑙𝑜𝑔𝐿𝑖𝑘 + 2𝑘, where 𝑘 is the number of parameters to be estimated in the model, is smaller 

for the restricted function evaluated at -78.0919 in comparison with the full function evaluated 

at -75.3816; and being nested, the likelihood ratio test rejects the full model in favor of the 

restricted one at the 5% level of significance. Estimates are used as initial values in the 

numerical optimization in the case where 𝑣𝑖𝑡 is normal and 𝑢𝑖𝑡 is half-normal or truncated-

normal when dependence between them is considered. 

 

According to the expressions of the time-varying function and to the inefficiency distribution, 

Panel Stochastic Frontier models described by (2.1) and (2.3) - (2.10) are estimated and the 

model 𝑀7 which has the time-varying expression (2.9) is selected according the minimum AIC 

criterion with a log-likelihood value evaluated at 595.041 as pointed out in Table 4.1. In 

addition, 𝑀4 and 𝑀7 being nested, the latter one was not rejected according to the likelihood 

ratio test. 

 

First of all, it is noted that for this chosen model the time effect is significant, 𝜇 is not equal to 

zero and the two terms of inefficiency 𝑢 and noise 𝑣 are dependent. The parameter 𝜃 is not 

close to zero and hence the Clayton copula does not approach the Product copula related to the 

independence of the two error terms. All other parameters are statistically significant in the 
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model as pointed out in Table 4.2. 
 

Model M1 M2 M3 M4 M5 M6 M7 M8 

logL 413.384 418.518 400.134 502.000 433.728 492.155 595.041 165.156 

df 7 8 9 8 9 9 9 14 

AIC -812.768 -821.036 -782.268 -988.000 -849.456 -966.310 -1172.082 -302.312 

Table 4.1 The AIC values of the estimated models 
 

  Estimate Std. Error t value Pr(|T | > |t|) 

σU 3.2313 0.000400 8084.890 < 1e-16 

σV 0.0539 0.000215 250.615 < 1e-16 

β0 3.7094 0.001028 3607.835 < 1e-16 

β1 1.6721 0.000161 10413.472 < 1e-16 

β2 -0.0858 0.000082 -1048.721 < 1e-16 

η1 0.0425 0.000668 63.676 < 1e-16 

η2 0.2276 0.000625 364.036 < 1e-16 

θ 2.0389 0.000352 5789.226 < 1e-16 

µ 0.0179 0.000607 29.452 < 1e-16 

-2logL        -1190.083       

Table 4.2 The model estimation with correlated error terms 

  

As for the efficiency scores, which are one of our major objectives, Table 4.3 presents the 

estimation results of the model (2.1) under assumptions (2.9) denoted M7 and where 𝑣𝑖𝑡 and 𝑢𝑖𝑡 

are correlated by the Clayton copula. It mainly shows that all provinces are technically 

inefficient. The most efficient are Rabat-Skhirate-Témara and El Jadida in respectively Rabat-

Saĺe-Zemmour-Zaer and Doukkala-Abda regions with a mean score for the period greater than 

0.65 and the most inefficient one is Ben Slimane province in Chaouia-Ouardigha region. Rabat-

Skhirate-Témara is near the frontier and should on average increase its sales by just about 

0.3% to be efficient. Moreover, Table 4.4 which summarizes the previous one shows also that 

only 20% of the provinces exceed the national efficiency mean for the entire period evaluated 

at 0.102 which is a very weak score. Even if the average is low, it has progressed but slowly 

from year to the next one which may indicate that the ONEP policy in the production and selling 

of water was not adequate during the seven studied years. Moreover, the efficiency standard 

deviation is large because it is estimated at 0.176. Hence, with the exception of one or two 

provinces, scores are very low and the dispersion is high which reflect the mediocre 

performance of the sector with respect to the relation between the ONEP’s drinking water 

production and its sales. 

 

It is clear also that the time effect on the efficiency scores is positive given that 𝜂̂1 and 𝜂̂2 are 

positive and the TE  increases over the period under study as specified previously. Even if this 

effect is weak, it is statistically highly significant with a p-value less than 1e-16. 
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Nr DMUs Name 𝑇𝐸̂𝑖1 𝑇𝐸̂𝑖2 𝑇𝐸̂𝑖3 𝑇𝐸̂𝑖4 𝑇𝐸̂𝑖5 𝑇𝐸̂𝑖6 𝑇𝐸̂𝑖7 𝑇𝐸̂𝑖̅̅ ̅̅ ̅ 𝑏𝑖𝑎𝑠̂𝑖
∗̅̅ ̅̅ ̅̅ ̅ 𝜎̂𝑖

∗̅̅ ̅ 𝑇𝐸_𝑐𝑜𝑟̂
𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝐿𝑜𝑤𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑈𝑝𝑝𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅ 

1 Oued Ed-Dahab 0.0143 0.0173 0.0211 0.0254 0.0294 0.0323 0.0333 0.0247 -0.0019 0.0118 0.0264 0.0084 0.0506 

2 Boujdour 0.0057 0.0072 0.0092 0.0115 0.0137 0.0154 0.0160 0.0112 -0.0003 0.0039 0.0115 0.0051 0.0195 

3 Laâyoune 0.0293 0.0344 0.0406 0.0473 0.0534 0.0578 0.0594 0.0460 -0.0054 0.0275 0.0517 0.0128 0.1105 

4 Assa-Zag 0.0057 0.0072 0.0092 0.0114 0.0137 0.0153 0.0160 0.0112 0.0006 0.0040 0.0108 0.0057 0.0203 

5 Es-Semara 0.0086 0.0107 0.0134 0.0164 0.0193 0.0215 0.0223 0.0160 0.0001 0.0071 0.0160 0.0067 0.0326 

6 Guelmim 0.0297 0.0348 0.0411 0.0478 0.0540 0.0583 0.0599 0.0465 -0.0045 0.0253 0.0508 0.0143 0.1038 

7 Tata 0.0096 0.0119 0.0148 0.0181 0.0212 0.0235 0.0244 0.0176 -0.0005 0.0073 0.0183 0.0072 0.0337 

8 Agadir-Ida ou Tanane 0.1623 0.1762 0.1920 0.2076 0.2210 0.2302 0.2334 0.2032 -0.0280 0.2269 0.2032 0.0364 0.8463 

9 Chtouka-Ait Baha 0.0097 0.0119 0.0148 0.0181 0.0212 0.0236 0.0244 0.0177 0.0001 0.0080 0.0176 0.0072 0.0361 

10 Ouarzazate 0.0301 0.0352 0.0415 0.0483 0.0545 0.0589 0.0606 0.0470 -0.0021 0.0314 0.0488 0.0142 0.1251 

11 Taroudannt 0.0271 0.0319 0.0378 0.0441 0.0500 0.0541 0.0557 0.0429 -0.0028 0.0269 0.0461 0.0127 0.1086 

12 Tiznit 0.0179 0.0215 0.0259 0.0308 0.0354 0.0388 0.0400 0.0300 0.0001 0.0186 0.0299 0.0101 0.0762 

13 Zagora 0.0145 0.0176 0.0214 0.0257 0.0298 0.0327 0.0338 0.0251 -0.0010 0.0120 0.0262 0.0092 0.0518 

14 Kenitra 0.1200 0.1322 0.1460 0.1599 0.1721 0.1804 0.1833 0.1563 -0.0160 0.1420 0.1614 0.0355 0.5265 

15 Sidi Kacem 0.0671 0.0759 0.0861 0.0967 0.1062 0.1128 0.1151 0.0943 -0.0087 0.0657 0.1007 0.0246 0.2559 

16 Ben Slimane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0025 

17 Khouribga 0.0199 0.0238 0.0286 0.0339 0.0387 0.0423 0.0436 0.0330 -0.0045 0.0238 0.0375 0.0078 0.0920 

18 Settat 0.0057 0.0072 0.0092 0.0115 0.0137 0.0154 0.0160 0.0113 -0.0012 0.0094 0.0125 0.0025 0.0355 

19 Al Haouz 0.0111 0.0137 0.0169 0.0205 0.0239 0.0264 0.0274 0.0200 -0.0002 0.0091 0.0205 0.0078 0.0406 

20 Chichaoua 0.0095 0.0118 0.0146 0.0179 0.0210 0.0233 0.0241 0.0175 -0.0002 0.0075 0.0176 0.0072 0.0343 

21 El  Kelaâ  des  Sraghna 0.0314 0.0368 0.0433 0.0502 0.0566 0.0611 0.0627 0.0489 -0.0034 0.0317 0.0525 0.0140 0.1264 

22 Essaouira 0.0204 0.0243 0.0292 0.0346 0.0395 0.0431 0.0444 0.0336 -0.0019 0.0193 0.0361 0.0106 0.0791 

23 Marrakech  Ménara 0.3315 0.3485 0.3671 0.3849 0.3999 0.4098 0.4133 0.3793 -0.0585 0.3183 0.4022 0.0582 0.9839 

24 Berkane - Taourirt 0.0820 0.0919 0.1033 0.1151 0.1255 0.1326 0.1352 0.1122 -0.0110 0.0949 0.1198 0.0262 0.3574 

25 Figuig 0.0108 0.0133 0.0164 0.0199 0.0233 0.0258 0.0267 0.0195 -0.0021 0.0073 0.0216 0.0073 0.0336 

26 Jerada 0.0135 0.0165 0.0202 0.0243 0.0281 0.0310 0.0320 0.0236 0.0003 0.0119 0.0234 0.0094 0.0516 

27 Nador 0.0655 0.0741 0.0842 0.0947 0.1041 0.1106 0.1129 0.0923 -0.0095 0.0750 0.0989 0.0218 0.2844 

28 Oujda 0.0551 0.0628 0.0720 0.0816 0.0901 0.0961 0.0983 0.0794 -0.0063 0.0708 0.0848 0.0184 0.2692 

29 Khemisset 0.0355 0.0413 0.0483 0.0558 0.0626 0.0674 0.0692 0.0543 -0.0026 0.0409 0.0577 0.0148 0.1594 

30 Rabat-Skhirate-Témara 0.9966 0.9968 0.9970 0.9971 0.9972 0.9973 0.9973 0.9970 -0.0419 0.3040 0.9970 0.1733 1.0000 

31 El Jadida 0.6315 0.6448 0.6588 0.6720 0.6827 0.6898 0.6922 0.6674 -0.0966 0.3282 0.7533 0.1110 1.0000 

32 Safi 0.0636 0.0721 0.0820 0.0924 0.1016 0.1080 0.1103 0.0900 -0.0077 0.0847 0.0931 0.0205 0.3187 

33 Azilal 0.0215 0.0256 0.0307 0.0362 0.0413 0.0450 0.0463 0.0352 -0.0039 0.0170 0.0389 0.0113 0.0715 

34 Beni Mellal 0.1289 0.1415 0.1558 0.1702 0.1826 0.1911 0.1942 0.1663 -0.0151 0.1671 0.1663 0.0362 0.6114 

35 El Hajeb 0.0082 0.0103 0.0128 0.0158 0.0186 0.0207 0.0215 0.0154 -0.0008 0.0081 0.0163 0.0053 0.0341 

36 Errachidia 0.0469 0.0539 0.0623 0.0710 0.0790 0.0845 0.0865 0.0692 -0.0069 0.0487 0.0762 0.0180 0.1906 

37 Ifrane 0.0239 0.0283 0.0337 0.0396 0.0450 0.0489 0.0503 0.0385 -0.0026 0.0223 0.0415 0.0121 0.0909 

38 Khénifra 0.0310 0.0362 0.0427 0.0496 0.0559 0.0604 0.0620 0.0482 -0.0045 0.0367 0.0535 0.0100 0.1385 

39 Meknès  El  Menzeh 0.0452 0.0521 0.0602 0.0688 0.0765 0.0820 0.0840 0.0670 -0.0115 0.0495 0.0779 0.0000 0.1688 

40 Boulmane 0.0109 0.0134 0.0165 0.0201 0.0234 0.0259 0.0268 0.0196 0.0001 0.0093 0.0191 0.0078 0.0412 

41 Fès 0.3423 0.3594 0.3780 0.3958 0.4108 0.4207 0.4241 0.3902 -0.0587 0.3274 0.4020 0.0594 0.9844 

42 Sefrou 0.0234 0.0277 0.0331 0.0389 0.0442 0.0481 0.0495 0.0378 -0.0014 0.0259 0.0392 0.0113 0.1032 

43 Zouagha My Yacoub 0.0084 0.0104 0.0130 0.0160 0.0189 0.0210 0.0218 0.0156 -0.0005 0.0059 0.0161 0.0066 0.0281 

44 Al  Houcëıma 0.0297 0.0349 0.0411 0.0479 0.0540 0.0584 0.0600 0.0466 -0.0056 0.0286 0.0523 0.0126 0.1144 

45 Taounate 0.0304 0.0357 0.0420 0.0488 0.0551 0.0595 0.0611 0.0475 -0.0031 0.0252 0.0511 0.0156 0.1049 

46 Taza 0.0279 0.0328 0.0388 0.0453 0.0512 0.0555 0.0570 0.0441 -0.0058 0.0245 0.0499 0.0123 0.0995 

47 Chefchaouen 0.0199 0.0238 0.0286 0.0339 0.0388 0.043 0.0436 0.0330 -0.0021 0.0169 0.0349 0.0114 0.0713 

48 Larache 0.0567 0.0646 0.0739 0.0836 0.0923 0.0984 0.1006 0.0815 -0.0112 0.0657 0.0909 0.0179 0.2481 

49 Tanger 0.2548 0.2711 0.2891 0.3066 0.3215 0.3314 0.3349 0.3013 -0.0365 0.2979 0.3013 0.0501 0.9696 

50 Tétouan 0.1522 0.1658 0.1811 0.1964 0.2096 0.2185 0.2217 0.1922 -0.0275 0.2205 0.1922 0.0354 0.8186 

 

Where  𝑇𝐸̂𝑖
̅̅ ̅̅̅ , 𝑏𝑖𝑎𝑠̂𝑖

∗̅̅ ̅̅ ̅̅ ̅,  𝜎̂𝑖
∗̅̅ ̅ , 𝑇𝐸_𝑐𝑜𝑟̂

𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , 𝐿𝑜𝑤𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑈𝑝𝑝𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅ are the means according  𝑇 of their corresponding expressions  𝑇𝐸_𝑐𝑜𝑟 : Bias corrected efficiency 

Table 4.3 Technical Efficiency scores for the 2001-2007 period and their confidence intervals 
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Region Name [0, 0.2[ [0.2, 0.4[ [0.4, 0.6[ [0.6, 0.8[  [0.8, 1[  

Oued Ed-Dahab - Lagouira 1     

Laâyoune-Boujdour-S. EL Hamra 2     

Guelmim - Es-Semara 4     

Souss - Massa - daraâ 5 1    

Gharb - Chrarda - Béni Hssen 2     

Chaouia - Ouardigha 3     

Marrakech - Tensift - Al Haouz 4 1    

Oriental 5     

Rabat-Salé-Zemmour-Zaer 1    1 

Doukala-Abda 1   1  

Tadla - Azilal 2     

Meknès  -  Tafilalet 5     

Fès  -  Boulemane 3 1    

Taza  -  Al  Hoceïma  -  Taounate 3     

Tanger  -  Tétouan 3 1       

Table 4.4 Provinces number in each region according to the mean of TE estimates 
(The table is the same according to the median of TE estimates) 

 

Inference on the technical efficiency measure is made using a parametric percentile bootstrap 

procedure to estimate robust confidence intervals of the statistic of interest. Bootstrap 

samples are obtained according to the step 2 of the procedure in Section 3 and Table 4.3 

presents technical efficiency estimates for each province and for the 2001-2007 period, their 

means, their corrected bias and the mean of the estimated lower and upper confidence interval 

bounds following the rest of the steps of the same bootstrap procedure. So, for each 

province, the mean of  𝑇𝐸̂𝑖 is bounded by the mean of (𝜉𝑖𝑡
∗ )𝛼 2⁄  and the mean of  (𝜉𝑖𝑡

∗ )1−𝛼 2⁄   

for  the seven years.  Inference performed with 𝐵 = 500  bootstrap replications shows that 

TE estimates for all provinces are in their corresponding confidence intervals at a 5% 

significant level but with a relatively large range for that which have great TE scores as 

depicted in Table 4.3. However, the global average width of the intervals is 0.22 with fifteen 

provinces (30% of all) having a width bigger than this average. 

 

Technical efficiencies being estimates and in order to know if the bias correction is needed, 

their bias were estimated using the bootstrapped efficiencies as defined in Daraio and Simar 

(2007, p.55) but using the median instead of the mean given that the TE distribution is skewed 

(mean estimated at 0.1024 is greater than median estimated at 0.0423). Then, for each 

individual 𝑖 at time period 𝑡 the bias is expressed by  𝑏𝑖𝑎𝑠̂∗(𝑇𝐸̂𝑖𝑡) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑇𝐸̂𝑏
∗)

𝑖𝑡
− 𝑇𝐸̂𝑖𝑡   

and the bias corrected estimate of TE is defined as 𝑇𝐸_𝑐𝑜𝑟̂
𝑖𝑡 = 𝑇𝐸̂𝑖𝑡 −  𝑏𝑖𝑎𝑠̂∗(𝑇𝐸̂𝑖𝑡). 

Generally, the correction is needed if |𝑏𝑖𝑎𝑠̂∗(𝑇𝐸̂𝑖𝑡)|/𝜎̂𝑖𝑡
∗ > 0.25   as pointed out in Efron 

(1982), where 𝑏𝑖𝑎𝑠̂∗(𝑇𝐸̂𝑖𝑡)  is the estimated bias of the bootstrap estimates and 𝜎̂𝑖𝑡
∗  is their 

standard error. Indeed, the bias was important for forty-four DMUs among fifty and the ratio 

reached on average its maximum with 1.03 points for the Assa-Zag province. The correction 

has reduced the average of the scores of the period for six DMUs and has increased this 

average for the thirty-eight others. So, the efficiency scores were overestimated for the first 
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ones and underestimated for the last ones. Furthermore, the means of the corrected TE  are 

well in their confidence intervals. 

 

5. CONCLUSION 

 

This paper presented and proposed, at first, the panel stochastic frontier analysis when the 

error terms are dependent and secondly an associated confidence interval procedure on 

efficiency with an empirical study on the drinking water in Morocco. The analysis was 

performed using some previous time effect functions in the literature and using some 

proposed sinusoidal time effect functions. Given the appeal of the numerical optimization 

due to the complexity of the log-likelihood functions in the presence of dependence and given 

the use of the parametric bootstrap in the construction of the confidence intervals, the 

computation was highly intense. 

 

The study has demonstrated that the consideration of the dependence between the error 

components was strongly recommended given that the copula does not approach the product 

copula. It has revealed that the proposed time effect model which expresses that the 

amplitude of the time function decreases and that the time effect disappears over time is 

appropriate for our data according to the AIC criterion. The results revealed also a positive 

and significant time effect on the technical efficiency scores. It showed that the bias was 

important for several entities and that the efficiency scores were underestimated for thirty-

eight among the fifty provinces. It showed also a weak efficiency score and hence a weak bias 

corrected for almost all provinces, a very low national average of efficiency and therefore a 

weak performance of the ONEP’s drinking water. This might be due to several factors such 

as public management of the sector, the lack of cooperation projects to supply rural 

communities, the waste due to damaged pipes and the free distribution of drinking water 

through public fountains either in some rural districts or in informal areas of large cities. 

Unfortunately, the effect of factors on efficiency can not be measured in the absence of data 

in this regard. If data will be available, a study of the effect of the environmental variables 

will be done with the aim to identify the main determinants of the inefficiency in this domain 

in Morocco. 

 

Will the total privatization of the sector yield to an improved efficiency? Some experiences 

as in Portugal indicate the poor performance of the private management in comparison with 

the public one as shown in De Witte and Marques (2008). Otherwise, it should be noted that 

business creation and economic development of rural municipalities enable rural citizens to 

have a considerable income and to fund their partial or total need of water and pipes. In 

addition, as an open issue, it will be interesting to perform a frontier analysis on the drinking 

water quality management in the country and to compare the provinces performance in this 

regard. 
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APPENDIX 

1. Density of the error 𝝐𝒊 

Density  of 𝜖𝑖  in  the  panel  SFA  when  the  dependence  between  the  two error terms is 

considered and when 𝑢𝑖 ∼ 𝑁+(0 , 𝜎𝑈
2) becomes 

 𝑔(𝜖𝑖) = ∫ 𝑓(𝜖𝑖, 𝑢𝑖) 𝑑𝑢𝑖
+∞

0
                               (A.1) 

           =  ∫ 𝑓(𝜖𝑖1, … , 𝜖𝑖𝑡 , … , 𝜖𝑖𝑇 , 𝑢𝑖) 𝑑𝑢𝑖
+∞

0
 

          =  ∫ 𝑓1(𝑢𝑖) ∏ 𝑓2(𝜖𝑖𝑡 + 𝜂(𝑡)𝑢𝑖)  𝑡
+∞

0
 

                        .  𝑐𝜃(𝐹1(𝑢𝑖), 𝐹2(𝜖𝑖1 +  𝜂(1)𝑢𝑖), … , 𝐹2(𝜖𝑖𝑇 +  𝜂(𝑇)𝑢𝑖)) 𝑑𝑢𝑖 

          =  ∫ 𝑓1(𝑢𝑖) ∏ 𝑓2(𝜖𝑖𝑡 + 𝜂(𝑡)𝑢𝑖) 𝑡  
+∞

0
. ∏  𝑐𝜃(𝐹1(𝑢𝑖), 𝐹2(𝜖𝑖𝑡 +  𝜂(𝑡)𝑢𝑖)) 𝑑𝑢𝑖𝑡  =

 ∫ 𝑓1(𝑢𝑖) 
+∞

0
. ∏ [𝑓2(𝜖𝑖𝑡 + 𝜂(𝑡)𝑢𝑖) . 𝑐𝜃(𝐹1(𝑢𝑖), 𝐹2(𝜖𝑖𝑡 +  𝜂(𝑡)𝑢𝑖))] 𝑡 𝑑𝑢𝑖 

                        =  ∫ 𝑓1(𝑢𝑖) ∏ 𝐴𝑖𝑡  𝑡  𝑑𝑢𝑖
+∞

0
= 𝐸(∏ 𝐴𝑖𝑡  𝑡 )                                            (A.2) 

where  Ait =  f2(𝜖it + η(t)𝑢i)  cθ(F1(𝑢i), F2(𝜖it +  η(t)𝑢i)).          

 

2.  Technical efficiency for each DMU at time t 

The associated technical efficiency of  𝐃𝐌𝐔𝐢𝐭 is expressed as 

𝑇𝐸𝑖𝑡 = 𝐸[𝑒𝑥𝑝{−𝑢𝑖𝑡}|𝜖𝑖]                             (A.3) 

         = 𝐸[𝑒𝑥𝑝{−𝜂(𝑡)𝑢𝑖}|(𝜖𝑖1, … , 𝜖𝑖𝑡 , … , 𝜖𝑖𝑇)] 

         = ∫ 𝑒𝑥𝑝{−𝜂(𝑡)𝑢𝑖} 𝑓1(𝑢𝑖|(𝜖𝑖1, … , 𝜖𝑖𝑡 , … , 𝜖𝑖𝑇)) 𝑑𝑢𝑖

+∞

0

  

         =  ∫ 𝑒𝑥𝑝{−𝜂(𝑡)𝑢𝑖} 
𝑓( 𝑢𝑖 , 𝜖𝑖)

𝑔(𝜖𝑖)
 𝑑𝑢𝑖

+∞

0

  

         =  
1

𝑔(𝜖𝑖)
∫ 𝑒𝑥𝑝{−𝜂(𝑡)𝑢𝑖} 𝑓1(𝑢𝑖) ∏ 𝐴𝑖𝑡  

𝑡

 𝑑𝑢𝑖

+∞

0

  

         =  
𝐸(𝑒𝑥𝑝{−𝜂(𝑡)𝑢𝑖} ∏ 𝐴𝑖𝑡 𝑡  )

𝐸(∏ 𝐴𝑖𝑡 𝑡 )
                                                  (A.4) 
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