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Abstract

This work proposes a novel method for solving the general split common �xed point problem of demicon-
tractive operators in the framework of real Hilbert spaces. Our proposed technique is principally based on
the Mann algorithm. The proof of the weak convergence theorem is additionally established under some
particular conditions. We subsequently verify the convergence of our algorithm via numerical examples.
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1. Introduction

The Split Feasibility Problem (SFP) was �rst proposed by Censor and Elfving [5] in 1994. In this problem,
we assume that H1 and H2 are real Hilbert spaces with inner product ⟨·, ·⟩ and norm ∥ · ∥. By letting C and
Q be nonempty closed and convex subsets of H1 and H2 respectively, an arduous endeavor is to �nd a point
x ∈ H1 that satis�es the following condition:

x ∈ C such that Ax ∈ Q, (1)

where A : H1 → H2 is a given bounded linear operator. Several algorithms for solving SFP (1) were proposed
in various ways in both �nite and in�nite-dimensional spaces with the requirement of the existence of the
inverse of A. A classical way to solve the SFP (1) is to employ the CQ algorithm which was introduced by
Byrne [3], which is de�ned in the following manner: for any x0 ∈ H1,

xn+1 = PC(xn − γA∗(I − PQ)Axn), ∀n ≥ 0,
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where the operator A∗ is adjoint of A, the step size γ is in an open interval
(
0, 2

∥A∥2

)
, PC and PQ are

the orthogonal projections on to C and Q, respectively. Many researchers have developed novel methods
that do not require PC and PQ calculations. For example, Kesornprom et al. [9] proposed two gradient-CQ
algorithms in 2020 and demonstrated their weak and strong convergence under speci�c situations. Motivated
by the aforementioned problem, Censor and Segal [4] accordingly introduced the Split Common Fixed Point
Problem (SCFP) in a purpose of searching a point

x ∈ Fix(U) such that Ax ∈ Fix(T ),

where U : H1 → H1 and T : H2 → H2 are both nonlinear operators. The notations Fix(U) and Fix(T )
indicate the sets of �xed points of U and T respectively. It is worth noting that the SCFP is a generalization
of the SFP. Mouda� [11] later provided an algorithm for solving the SCFP in the case of demicontractive
operators where the weak convergence theorem of such algorithm was also acquired. Zheng et al. [16] set
forth the iterative Algorithm 1.1 that is given below for the SCFP of a pair of demicontractive operators U
and T along with the proof of the weak convergence theorem.
Algorithm 1.1 Initialization: Let x0 ∈ H1 be arbitrary and xn+1 be recursively de�ned by

xn+1 = (1− α)xn + α[Uxn − τA∗(I − T )Axn], n ≥ 0,

where α ∈
(
0, 1−k1

2

)
and τ ∈

(
0, 1−k2

2α∥A∥2

)
with constants k1 ∈ [0, 1) and k2 ∈ [0, 1). Some interesting studies

of the SCFP and the associated problems can be found in [6, 13, 14, 15]. Kangtunyakarn [8] recently presented
the General Split Feasibility Problem (GSFP) in which its aim is to determine a point, x, satisfying

x ∈ C such that Ax,Bx ∈ Q,

where B : H1 → H2 is another bounded linear operator.
Inspired by both SCFP and GSFP, we put forward the General Split Common Fixed Point Problem

(GSCFP) in which we attempt to seek a point

x ∈ Fix(U) such that Ax,Bx ∈ Fix(T ).

In this work, an algorithm based on the Mann algorithm for the GSCFP of demicontractive operators is
presented. This proposed algorithm de�nes a sequence that weakly converges to a solution to the problem
under some additional conditions. Some results of the associated problems of the prolbem have been reported,
see

The structure of this paper is as follows. Section 2 contains the underlying backgrounds including the
technical lemma (Lemma 2.4) which is a key to our main result. Whilst the novel algorithm for the GSCFP
as well as its proof for the weak convergence of a sequence (Theorem 3.2) are described in Section 3. Last
but not least, Section 4 provides some numerical examples of the convergence result of the algorithm.

2. Preliminaries

Let C be a nonempty, closed and convex subset of a real Hilbert space H. For x ∈ H, we de�ne the
metric projection PC from H onto C by

PCx := argmin
y∈C

∥x− y∥2.

It is somewhat noteworthy the following equality

2⟨x, y⟩ = ∥x∥2 + ∥y∥2 − ∥x− y∥2 (2)

for all x, y ∈ H.
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De�nition 2.1. [7, 10, Section 2] A self-operator T on C is said to be demicontractive (or k-demicontractive)

if there exists a constant k ∈ [0, 1) such that

∥Tx− x∗∥2 ≤ ∥x− x∗∥2 + k∥x− Tx∥2,

or equivalently,

⟨x− Tx, x− x∗⟩ ≥ 1− k

2
∥x− Tx∥2,

for all x ∈ C and x∗ ∈ Fix(T ).

De�nition 2.2. [2, De�nition 5.1] Let D be a nonempty subset of H and let {xn} be a sequence in H. Then

{xn} is Fejér monotone with respect to D if for every x ∈ D

∥xn+1 − x∥ ≤ ∥xn − x∥ for all n ≥ 0.

Throughout this work, the notation ⇀ will be used for the weak convergence theorem, whereas the
notation → for the strong convergence theorem and the notation ωw(xn) is the weak ω-limit set of the
sequence {xn}.

De�nition 2.3. [12, Section 1] Let T : C → H be an operator. Then T is said to be demiclosed at y ∈ H if

Txn → y implies Tx = y for any sequence {xn} in C such that xn ⇀ x ∈ C.

Now, let us state some essential facts which will be used to present our main result.

Lemma 2.4. [1, Theorem 2.16] If the sequence {xn} is Fejér monotone with respect to C, we consequently

have the following conclusions:

(i) xn ⇀ x∗ ∈ C if and only if ωw(xn) ⊂ C;
(ii) the sequence {PC(xn)} converges strongly;

(iii) if xn ⇀ x∗ ∈ C, then x∗ = lim
n→∞

PC(xn).

3. Main Results

Before embarking on the main results, some essential assumptions are primarily assumed to be held:
• H1 and H2 are real Hilbert spaces;
• A,B : H1 → H2 are bounded linear operators;
• U : H1 → H1 is a k1-demicontractive operator with k1 ∈ [0, 1);
• T : H2 → H2 is a k2-demicontractive operator with k2 ∈ [0, 1);
• I − U , I − T are demiclosed at zero;
• Ω := {r : r ∈ Fix(U) and Ar,Br ∈ Fix(T )} is nonempty.
The succeeding lemma plays a crucial role in solving the GSCFP.

Lemma 3.1. r ∈ Ω if and only if r ∈ Fix (U − τ (A∗(I − T )A+B∗(I − T )B)) for any τ > 0.

Proof. Suppose r ∈ Ω, we accordingly have r = Ur and (I − T )Ar = (I − T )Br = 0. This also
leads to r ∈ Fix (U − τ (A∗(I − T )A+B∗(I − T )B)) for any τ > 0. Conversely, when we assume r ∈
Fix (U − τ (A∗(I − T )A+B∗(I − T )B)) for any τ > 0. By taking z ∈ Ω and exploiting the equivalence of
demicontractive operators, we obtain

0 = ⟨r − Ur + τA∗(I − T )Ar + τB∗(I − T )Br, r − z⟩
= ⟨r − Ur, r − z⟩+ τ⟨A∗(I − T )Ar, r − z⟩+ τ⟨B∗(I − T )Br, r − z⟩
= ⟨r − Ur, r − z⟩+ τ⟨(I − T )Ar,Ar −Az⟩+ τ⟨(I − T )Br,Br −Bz⟩

≥ 1− k1
2

∥r − Ur∥2 + 1− k2
2

τ∥(I − T )Ar∥2 + 1− k2
2

τ∥(I − T )Br∥2.

This implies that r ∈ Fix(U) and Ar,Br ∈ Fix(T ), that is, z ∈ Ω. This completes the proof.
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The iterative scheme based on the Mann algorithm in which it converges weakly to the solution of the GSCFP
for demicontractive operators can now be described.
Algorithm 3.1: By choosing an initial guess x0 ∈ H1 arbitrarily, xn+1 can be recursively computed through
the formula

xn+1 = (1− αn)xn + αn [Uxn − τ (A∗(I − T )Axn +B∗(I − T )Bxn)] , n ≥ 0 (3)

where αn ∈ [a, b] ⊂
(
0, 1−k1

2

)
. We see that the proposed method is easy to compute as it has only one step

and it can be applied to solve the SCFP, GSFP, SFP and signal recovery problem.

Theorem 3.2. Assume that τ ∈
(
0, 1−k2

4bmax{∥A∥2,∥B∥2}

)
. Then the sequence {xn} generated by Algorithm 3.1

converges weakly to a point p ∈ Ω, that is lim
n→∞

PΩ(xn).

Proof. We start the proof by showing the sequence {xn} is bounded. This is simply done by taking z ∈ Ω
and utilizing the equivalence of demicontractive operators, we therefore have

⟨xn − Uxn + τA∗(I − T )Axn + τB∗(I − T )Bxn, xn − z⟩
= ⟨xn − Uxn, xn − z⟩+ τ⟨A∗(I − T )Axn, xn − z⟩+ ⟨B∗(I − T )Bxn, xn − z⟩
= ⟨xn − Uxn, xn − z⟩+ τ⟨(I − T )Axn, Axn −Az⟩+ ⟨(I − T )Bxn, Bxn −Bz⟩

≥ 1− k1
2

∥xn − Uxn∥2 +
1− k2

2
τ∥(I − T )Axn∥2 +

1− k2
2

τ∥(I − T )Bxn∥2. (4)

This henceforth results in

α2
n∥xn − Uxn + τA∗(I − T )Axn +B∗(I − T )Bxn∥2

≤ α2
n [∥xn − Uxn∥+ τ∥A∗(I − T )Axn +B∗(I − T )Bxn∥]2

≤ 2α2
n

[
∥xn − Uxn∥2 + τ2∥A∗(I − T )Axn +B∗(I − T )Bxn∥2

]
≤ 2α2

n

[
∥xn − Uxn∥2 + 2τ2∥A∥2∥(I − T )Axn∥2 + 2τ2∥B∥2∥(I − T )Bxn∥2

]
≤ 2α2

n

[
∥xn − Uxn∥2 + 2τ2max

{
∥A∥2, ∥B∥2

} (
∥(I − T )Axn∥2 + ∥(I − T )Bxn∥2

)]
. (5)

De�ne R1 = a(1− k1 − 2b) and R2 = aτ
(
1− k2 − 4bτ max

{
∥A∥2, ∥B∥2

})
. By applying (2) and (3)-(5),

we obtain

∥xn+1 − z∥2

= ∥(1− αn)xn + αn [Uxn − τA∗(I − T )Axn − τB∗(I − T )Bxn]− z∥2

= ∥xn − z − αn [xn − Uxn + τA∗(I − T )Axn + τB∗(I − T )Bxn]∥2

= ∥xn − z∥2 − 2αn⟨xn − Uxn + τA∗(I − T )Axn + τB∗(I − T )Bxn, xn − z⟩
+ α2

n∥xn − Uxn + τA∗(I − T )Axn +B∗(I − T )Bxn∥2

≤ ∥xn − z∥2 − αn

[
(1− k1)∥xn − Uxn∥2 + τ(1− k2)

(
∥(I − T )Axn∥2 + ∥(I − T )Bxn∥2

)]
+ 2α2

n

[
∥xn − Uxn∥2 + 2τ2max

{
∥A∥2, ∥B∥2

} (
∥(I − T )Axn∥2 + ∥(I − T )Bxn∥2

)]
= ∥xn − z∥2 − αn(1− k1 − 2αn)∥xn − Uxn∥2

− αnτ
(
1− k2 − 4αnτ max

{
∥A∥2, ∥B∥2

}) (
∥(I − T )Axn∥2 + ∥(I − T )Bxn∥2

)
.

≤ ∥xn − z∥2 −R1∥xn − Uxn∥2 −R2

(
∥(I − T )Axn∥2 + ∥(I − T )Bxn∥2

)
. (6)

The sequence {xn} is therefore Fejér monotone with respect to Ω. This leads to the conclusion that {xn} is
bounded. It is then required to create a particular restraint in which Lemma 2.4 can be applied. In other
words, the condition ωw(xn) ⊂ Ω must be proven. By using (6), it leads to

R1∥xn − Uxn∥2 +R2∥(I − T )Axn∥2 +R2∥(I − T )Bxn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2.
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By the induction hypothesis, it is rather straightforward to justify

R1

n∑
j=1

∥xj − Uxj∥2+R2

n∑
j=1

∥(I − T )Axj∥2 +R2

n∑
j=1

∥(I − T )Bxj∥2

≤ ∥x0 − z∥2 − ∥xn+1 − z∥2 ≤ ∥x0 − z∥2.

This thus gives

R1

∞∑
j=1

∥xj − Uxj∥2 +R2

∞∑
j=1

∥(I − T )Axj∥2 +R2

∞∑
j=1

∥(I − T )Bxj∥2 < ∞,

which implies that

lim
n→∞

∥xn − Uxn∥ = lim
n→∞

∥(I − T )Axn∥ = lim
n→∞

∥(I − T )Bxn∥ = 0.

By the demiclosedness property of I − U and I − T (at zero), we can deduce that ωw(xn) ⊂ Ω. Finally, by
Lemma 2.4, we arrive at the conclusion that xn ⇀ p = lim

n→∞
PΩ(xn). The proof is now complete.

By using Theorem 3.2, we can solve the SCFP, GSFP, and SFP where C ⊂ H1 and Q ⊂ H2 are two
nonempty closed and convex sets.
Algorithm 3.2: Let x0 ∈ H1 be an arbitrarily initial guess. Then xn+1 can be evaluated recursively via
the formula

xn+1 = (1− αn)xn + αn [Uxn − τAA
∗(I − T )Axn] , n ≥ 0

where αn ∈ [a, b] ⊂
(
0, 1−k1

2

)
.

Corollary 3.3. Assume that τA ∈
(
0, 1−k2

2b∥A∥2

)
and ΩA ̸= ∅, where ΩA := {r : r ∈ Fix(U) and Ar ∈ Fix(T )}.

The sequence {xn} derived from Algorithm 3.2 converges weakly to a point p ∈ ΩA, precisely lim
n→∞

PΩA
(xn).

Algorithm 3.3: Let x0 ∈ H1 be an arbitrarily initial guess. Then xn+1 can be calculated recursively by
means of

xn+1 = (1− αn)xn + αn [PCxn − τ (A∗(I − PQ)Axn +B∗(I − PQ)Bxn)] , n ≥ 0

where αn ∈ [a, b] ⊂
(
0, 12

)
.

Corollary 3.4. Assume that τ ∈
(
0, 1

4bmax{∥A∥2,∥B∥2}

)
and Γ ̸= ∅, where Γ := {r : r ∈ C and Ar,Br ∈ Q}.

The sequence {xn} generated by Algorithm 3.3 converges weakly to a point p ∈ Γ which means lim
n→∞

PΓ(xn).

Algorithm 3.4: Let x0 ∈ H1 be an arbitrarily initial guess. Then xn+1 can be computed recursively using
the following formula

xn+1 = (1− αn)xn + αn [PCxn − τAA
∗(I − PQ)Axn] , n ≥ 0

where αn ∈ [a, b] ⊂
(
0, 12

)
.

Corollary 3.5. Assume that τA ∈
(
0, 1

2b∥A∥2

)
and ΓA ̸= ∅, where ΓA := {r : r ∈ C and Ar ∈ Q}. The

sequence {xn} gained from Algorithm 3.4 converges weakly to a point p ∈ ΓA that is lim
n→∞

PΓA
(xn).
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4. Numerical experiments

In this section, numerical examples are provided to demonstrate the performance of our algorithms.

Example 4.1. Let H1 = H2 = L2([0, 1]) with norm ∥x∥ := (
∫ 1
0 |x(t)|2dt)

1
2 and inner product ⟨x, y⟩ :=∫ 1

0 x(t)y(t)dt, x, y ∈ L2([0, 1]). De�ne

(Ux)(t) =

(
t+ 1

4

)
x(t), (Tx)(t) =

x(t)

2
, (Ax)(t) = 3x(t), and (Bx)(t) = 5x(t),

where x ∈ L2([0, 1]). Then αn ∈ [a, b] ⊂
(
0, 12

)
and τ ∈

(
0, 1

100b

)
, and we set τ = 1

120b .

To investigate the sensitivity of the initial guess x0, three di�erent choices are undertaken; x0 = t (Choice

1), x0 =
t2

2 (Choice 2) and x0 =
cos(t)

5 (Choice 3). We additionally examine the impact of the sequence {xn}
on each iterative scheme by classifying αn into three cases; αn = 1

6 (Case 1), αn = 1
4 (Case 2) and αn = e

6
(Case 3).

We compute xn by Algorithm 3.1 until the stopping criterion is satis�ed, i.e. En := ∥xn+1 − xn∥ <
5× 10−3. The results are presented next.

Case 1 Case 2 Case 3

Choice 1
No. of Iter. 14 12 9

Elapsed Time (s) 8.6537 6.0198 4.2984

Choice 2
No. of Iter. 10 9 7

Elapsed Time (s) 4.5562 4.7548 2.9943

Choice 3
No. of Iter. 9 8 6

Elapsed Time (s) 3.8632 3.6014 2.4522

Table 1: Numerical experiments of Example 4.1.
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Figure 1: En versus number of iterations of Choice 1.
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Figure 2: En versus number of iterations of Choice 2.
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Figure 3: En versus number of iterations of Choice 3.

The number of iterative processes as well as the total elapsed time required for di�erent x0 and αn values
are provided in Table 1. Whilst Figures 1-3 display the errors obtained from 3 distinct choices of x0 with
di�erent values of αn. According to the results shown in the Table and Figures, in the case when step size
αn approaching 1

2 , it is apparent that the sequence {xn} generated by Algorithm 3.1 converges faster than
the other cases.

Example 4.2. We apply Algorithm 3.4 to solve the problem of recovering the original signal from compressive

measurements in this example. Let x̄ ∈ RN and y ∈ RM be the original signal and the observed data with

noise ε ∈ RM , respectively. Consider

y = Ax̄+ ε, (7)

where A ∈ RM×N (M < N). The compressive sensing signal reconstruction described in the preceding

equation is what we want to solve. However, it is well known that solving (7) is identical to the LASSO

problem:

min
x∈RN

1

2
∥Ax− y∥22 subject to ∥x∥1 ≤ ζ,

where ζ > 0. This problem can be seen as the SFP through the following settings: H1 = RN , H2 = RM ,
C = {x ∈ RN : ∥x∥1 ≤ ζ}, and Q = {y}. Suppose that the signal size to be N = 1024 and M = 512,
and the original signal x̄ is generated by the uniform distribution in [−2, 2] with k nonzero elements. Let A
be the Gaussian matrix generated by the MATLAB routine randn(M,N), the observation y be generated by

white Gaussian noise with signal-to-noise ratio SNR = 40 and ζ = k. For any n ≥ 0, let αn = e
6 . Select

γ = 1
5∥A∥22

, τA = 10
3e∥A∥22

and x0 = Aty as the initial point. Then, we compare the accuracy between the

recovered signals with the mean-squared error: MSEn = 1
N ∥xn − x̄∥22 < 5 × 10−4. The results are presented

next.



P. Charoensawan, R. Suparatulatorn, Results in Nonlinear Anal. 5 (2022), 213�221. 220

k Nonzero Elements
k = 25 k = 50 k = 75 k = 100

CQ algorithm
No. of Iter. 250 351 1255 1923

Elapsed Time (s) 0.0855 0.1303 0.4026 0.5788

Algorithm 3.4
No. of Iter. 111 169 610 840

Elapsed Time (s) 0.0384 0.0542 0.1587 0.2430

Table 2: Numerical experiments of Example 4.2.

Figure 4: From top to bottom: the original signal, the measurement, and the reconstructed signals by CQ
algorithm and Algorithm 3.4 in Table 2 for k = 100.
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Figure 5: Plots of MSEn over number of iterations when k = 100.

The numerical tests in Table 2 were done with di�erent numbers of nonzero elements: k = 25, 50, 75, 100.
For these four cases, the CPU times and the number of iterations for CQ algorithm and Algorithm 3.4
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are reported. In Figure 4, we also show the recovery signals for k = 100. We compute the errors of each
reconstructed signal displayed in Figure 5 to detect the di�erences between these �ndings. To summarize,
Algorithm 3.4 requires fewer iterations and takes less time than CQ algorithm.

5. Conclusion

This work presents the unprecedented approach in order to solve the GSCFP. Under some straightforward
conditions, the algorithm provides a sequence that converges weakly to a solution of the problem. The
convergence of our main theorem is furthermore con�rmed by the numerical experiments.
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