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Abstract: For a continuous density f(x) with support on the real interval (0,∞) and finite mean µ, its
size biased density is defined to be of the form (x/µ)f(x). It is well known that for exponential variables,
the convolution of two copies of the density yields the size biased form. This is the basis of the so-called
inspection paradox. We verify that this agreement between size biasing and convolution actually characterizes
the exponential distribution. We next consider the case in which the addition of one more term in a sum of
independent identically distributed (i.i.d.) positive random variables also coincides with size biasing. Some
related conjectures are also introduced. We then consider the problem of characterizing the class of all pairs
of densities that can be called size-bias convolution pairs in the sense that their convolution is just a size
biased version of one of them. We then consider discrete analogs to the size bias convolution results. It turns
out that matters are more easily dealt with in the case of non-negative integer valued variables. Related
geometric and Poisson characterizations are provided. Next, denote the sum of n i.i.d non-negative integer
valued random variables {Xi}, i = 1,2, ... by Sn. We verify that the ratio of the densities of Sn1 and Sn2

determines the distribution of the X’s. The absolutely continuous version of this result, though judged to
be plausible, can only be conjectured at this time.

Key words : Continuous density, Size biased density, Convolution, Non negative integer valued variables,
Exponential distribution, Size-bias convolution pairs.

1. Introduction
If we consider the convolution of two identical exponential distributions, the resulting density is

just a size biased version of the exponential density involved in the convolution. This observation,
discussed below in Section 2, provides a characterization of the exponential density. This char-
acterization is so simply verified that it seems inevitable that it must have been proved in some
earlier paper, but we have not been able to find a reference. In fact, in the exponential case, we
can observe that the n-fold convolution of the exponential distribution also produces a weighted
version of the common density of the convolutants. This too will be shown to be a characteristic
property of the exponential density. In Section 3, we investigate the problem of identifying all pairs
of densities corresponding to positive random variables that can be called size-bias convolution
pairs in the sense that their convolution is just a size-biased version of one of the densities in the
pair. If we turn to consider non-negative integer valued random variables, as we shall in Section 4,
not unexpected parallel results involving geometric variables can be formulated. Analogous Poisson
characterizations can also be identified. In fact, in Sub-section 4.3, very general characterization
results will be proved for any distribution with support equal to the non-negative integers. Similar
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results are obtained for bounded non-negative integer valued random variables. It is tempting to
propose that parallel general results will be available for general absolutely continuous positive
random variables. This ambitious conjecture remains open, except for a few exponential cases.

2. Exponential characterizations
Suppose that X1 and X2 are i.i.d exponential random variables and that we define S2 =X1 +X2.

A comprehensive survey of distributional properties of exponential variables may be found in the
volume dedicated to the exponential distribution that includes [1]. The density function of S2 is
that of a gamma distributed random variable and thus is a size biased version of the density of the
Xi’s. That this is a characteristic property of the exponential distribution is readily confirmed as
follows.

Theorem 1. Suppose that X1 and X2 are i.i.d positive absolutely continuous random variables
and that S2 =X1 +X2. Suppose that, for some positive c we have

fS2(x) = cxfX1
(x), x > 0. (2.1)

It follows that X1 has an exponential distribution with mean 1/c.

Proof. Denote the Laplace transform of a positive random random variable X by LX(s) =
E(e−sX), s > 0. Chapter 13 of [3] will provide adequate discussion of Laplace transforms for our
current purposes. Since LS2(s) = [LX1

(s)]2, we can conclude from (2.1) that

[LX1
(s)]2 =

∫ ∞
0

e−sxcxfX1
(x)dx=−c(d/ds)LX1

(s).

However, this is a simple “variables-separable” differentiable equation with general solution of the
form LX1

(s) = (k+ s/c)−1. Since LX1
(0) = 1 it follows that k= 1, and that X1 has an exponential

density with λ= c.
Several closely related characterizations can be formulated. A sample of five such possibilities

follows. Proofs will be supplied for three of them, while the other two at present lack proofs and
are labeled as (plausible) conjectures.

Theorem 2. Let {Xi}∞i=1 be i.i.d. positive absolutely continuous random variables and for each
n define Sn =

∑n

i=1Xi If, for some c > 0 and some positive integer k, we have

fSk+1
(x) = cxfSk(x) (2.2)

then X1 has an exponential distribution with mean 1/ck.

Proof. Using Laplace transforms we may rewrite (2.2) in the form

Lk+1
X1

(s) =−c(d/ds)LkX1
(s) =−ckLk−1X1

(s)(d/ds)LX1
(s)

Dividing both sides by Lk−1X1
(s) yields an equation identical to that encountered in the proof of

Theorem 1 with c replaced by ck. It follows that X1 has an exponential density with λ= ck.
In the next items we will use the standard notation for a convolution of two densities, f1 and f2,

namely f1 ∗ f2.

Theorem 3. If f ∗ g(x) = cxf(x) where g is an exponential density with intensity λ, then f is
a gamma density.
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Proof. Using Laplace transforms we have, by hypothesis,

Lf (s)(1 + s/λ)−1 =−c(d/ds)Lf (s).

The general solution to this differential equation is Lf (s) = (1 + s/λ)−α where α > 0, indicating
that f is a gamma density.

Instead of using x as a weighting or biasing function. we may ask what happens when x is
replaced by a power of x. For the case involving x2, we have the following result.

Theorem 4. Suppose that X1 and X2 are i.i.d positive absolutely continuous random variables
and that S2 =X1 +X2. Suppose that, for some positive c we have

fS2(x) = cx2fX1
(x), x > 0. (2.3)

Provided that var(X1) = (1/2)E2(X1), it follows that X1 has a gamma distribution with shape
parameter 2.

Proof. First, note that it is readily verified that if X1 ∼ Γ(2, β) then (2.3) holds. Suppose now
that (2.3) holds. Evidently we must have c= 1/µ2 = 1/E(X2

1 )<∞. Rewriting this in terms of L(s),
the Laplace transform of X1, we have

L′′(s) = µ2L
2(s). (2.4)

Multiplying both sides of this equality by 2L′(s), we have

2L′(s)L′′(s) =
2µ2

3
3L2(s)L′(s)

Integrating over the interval (0, t) and recalling that L(0) = 1 and L′(0) =−µ=−E(X1), we have

[L′(t)]2− (−µ)2 =
2µ23

L

3

(t)− 2µ2

3
.

This will simplify when we apply the condition, stated in the hypothesis of the theorem, that
var(X1) = (1/2)E2(X1), equivalently that µ2− (3/2)µ2 = 0. Under this assumption, we have

[L′(t)]2 =
2µ2

3
L3(t).

However, from (2.4) we can write
L′′(t)L(t) = µ2L

3(t),

and consequently
[L′(t)]2 = (2/3)L′′(t)L(t).

we may rearrange this to obtain
3

2

L′(t)

L(t)
=
−L′′(t)
−L′(t)

.

Integrating with respect to t over the interval (0, s) yields

(3/2) logL(s) = log[−L′(s)]− logµ,

so that −µ= [L(s)−3/2L′(s). Integrating with respect to s over the interval (0, t) produces

−µt=−2{[L(t)]−(3/2)−1− 1},

so that L(t) = (1+µt/2)−2 and consequently X1 ∼ Γ(2, µ/2). Since in this expression, µ can take on
any positive value, we conclude that, if (2.3) holds and if var(X1) = (1/2)E2(X1), then X1 ∼ Γ(2/β)
for some β > 0. After viewing this result, it is inevitable that one would consider the following
unproved conjecture.
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Conjecture 1. If f ∗ f(x) = cxαf(x) then, subject to regularity conditions involving certain
moments of the density, f is a gamma density with shape parameter α.

Motivated by the fact that for the exponential case, convolution corresponds to size biasing
(when n1 = 1 and n2 = 2 below) we have the following quite general conjecture.

Conjecture 2. Let {Xi}∞i=1 be i.i.d. positive absolutely continuous random variables and for
each n define Sn =

∑n

i=1Xi Claim: If for a fixed pair 1≤ n1 <n2 we have

fSn2
(x) = cxn2−n1fSn1

(x)

∀x, and for some c > 0 then X1 has an exponential distribution. Here too, it is likely that it will be
necessary to invoke regularity conditions involving certain moments of the density of X1.

A proof or disproof of this last conjecture has eluded us. However, as we shall see below, better
results are available in discrete cases. To introduce the discussion of non-negative integer valued
random variables, we will first consider geometric and Poisson examples. But before leaving the
absolutely continuous case, we will consider the general problem of identifying all cases, not just
exponential and gamma cases, in which convolution is equivalent to size biasing.

3. Size-bias convolution pairs of densities
Throughout this section we will be dealing with density functions corresponding to positive

absolutely continuous random variables which are positive throughout the interval (0,∞). If f is
such a density, we will denote its Laplace transform by Lf (s), thus

Lf (s) =

∫ ∞
0

e−sxf(x)dx, s∈ (0,∞).

We know that if f is a gamma density with shape parameter α and scale parameter 1/λ and if g
is an exponential density with mean 1/λ,, then the convolutionf ∗ g is again a gamma density. In
fact we have the following situation:

f ∗ g(x) = cxf(x), x > 0. (3.1)

for some positive c. In the particular case just mentioned we have c= [
∫∞
0
xf(x)dx]−1.

If a pair of densities (f, g) satisfies equation (3.1), we will call it a size-bias-convolution (or sbc)
pair. We have seen one example of an sbc pair. The name comes from the fact that when (3.1)
holds then the convolution of f and g produces a size biased version of f .

Our goal is to characterize all valid sbc pairs of densities.

3.1. Laplace transforms corresponding to a size-bias-convolution pair of densities
If f and g are legitimate densities satisfying the sbc equation (3.1), then the corresponding

Laplace transforms can readily be shown to be related by

Lg(s) =−c
[
d

ds
logLf (s)

]
, (3.2)

or, equivalently

Lf (s) = exp

[
−1

c

∫ s

0

Lg(t)dt

]
. (3.3)

Note that in (3.2), in order that Lg(0) = 1 we must set c= 1/µf where µf is the necessarily finite
mean of the density f .
Uniqueness considerations: For a given density f it is clear that if there exists a density g
with (f, g) being an sbc pair. then g is the unique density with this property. Likewise, for a given
density g it is clear that if there exists a density f with (f, g) being an sbc pair. then f is the
unique density with this property.
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3.2. Identifying sbc pairs
It might be hoped that every density f , with Laplace transform Lf (s) will form part of an sbc

pair. We may consider a candidate choice of g to be that density with a Laplace transform given
by equation (3.2). This will be a solution provided that the expression on the right side of (3.2) is
a valid Laplace transform, i.e,. if it is completely monotone. Alternatively, it might be possible to
recognize the right hand side of (3.2) as the Laplace transform of some well-known density. It is
not at all obvious that the right hand side of (3.2) will always be completely monotone. We know
it is for certain choices for f of the gamma form. But are there other cases ?

It turns out that the key result that allows us to resolve our identification problem is a charac-
terization of infinite divisibility of distributions on (0,∞) provided by [3]. The result in question is
as follows. The Laplace transform Lf (s) corresponds to an infinitely divisible f if and only if the
function − log(Lf (s)) has a completely monotone derivative. However this is precisely the condition
necessary for Lg(s) defined by (3.2) to be a valid Laplace transform.
Note [2] made use of this characterization to verify the infinite divisibility of generalized inverse

Gaussian densities.
We are able then to characterize the set of all valid sbc pairs (f, g) to consist of all pairs in which

f is infinitely divisible and a corresponding g has its Laplace transform determined by (3.2).
Example 1. If we choose f to correspond to a gamma density, which is infinitely divisible, then

from (3.2) we can identify the choice of g to yield a valid sbc pair will be an exponential density.
This observations (and analogous observations involving different sbc pairs) can be rephrased as
characterizations of distributions. For example, we might wish to identify all possible densities g
such that (f, g) constitutes an sbc pair with f being a gamma density. It follows that g must be
an exponential density. This particular characterization appeared in [4], see also [5] and [6].
Example 2. If f is taken to correspond to an inverse Gaussian distribution with parameters

µ and λ denoted by IG(µ,λ), which is known to be infinitely divisible, then its Laplace transform
is of the form

Lf (s) = exp[(λ/µ)(1−
√

1 + 2µ2λ−1s)].

Differentiating with respect to s yields

L
′

f (s) = exp[(λ/µ)(1−
√

1 + 2µ2λ−1s)]

{
−µ
(

1 +
2µ2

λ
s

)−1/2}
.

The corresponding density g to form an sbc pair is, from (3.2), one with Laplace transform given
by

Lg(s) =−c d
ds

logLf (s) =−c
L‘
f (s)

Lf (s)
= cµ

(
1 +

2µ2

λ
s

)−1/2
=

(
1 +

2µ2

λ
s

)−1/2
.

where c has been chosen equal to 1/µ to ensure that Lg(0) = 1. Thus g is a gamma density with
shape parameter α = 1/2 and scale parameter (2µ2/λ), i.e. corresponding to a random variable
Y = (µ2/λ)U where U has a chi-squared distribution with one degree of freedom.
Example 3. If f is taken to correspond to a generalized inverse Gaussian distribution with

parameters a, b and p denoted by GIG(a, b, p), which is also known to be infinitely divisible, then
its Laplace transform is of the form

Lf (s)∝ (a+ 2s)−p/2Kp(
√
b(a+ 2s)),

where Kp(u) is a modified Bessel function of the second kind. Differentiating with respect to s
yields

L‘
f (s)∝ (−p)(a+ 2s)−p/2−1Kp(

√
b(a+ 2s)) + b(a+ 2s)−(p+1)/2K ‘

p(
√
b(a+ 2s)).
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The corresponding density g to form an sbc pair is, from (3.2), one with Laplace transform given
by

Lg(s) =−c
L‘
f (s)

Lf (s)

where c is chosen to ensure that Lg(0) = 1. We can then recognize the density g as a linear
combination of gamma densities.

4. Analogous discrete characterizations
We now turn to consider a selection of discrete characterizations suggested as natural analogs of

the absolutely continuous results in Section 2.

4.1. Geometric characterizations
Parallel to the situation for exponential variables, in the geometric case, convolution essentially

corresponds to size biasing. For a sample of size two, we have the following geometric characteri-
zation.

Theorem 5. Let X1 and X2 be i.i.d. non-negative integer valued random variables. Suppose
that for each k and some c > 0

P (X1 +X2 = k) = c(k+ 1)P (X1 = k), (4.1)

it follows that X1 has a geometric distribution.

Proof. Let P (s) be the probability generating function of X1. Then, from (4.1) we have

P 2(s) = csP ′(s) + cP (s).

Rearranging this becomes:
P ′(s)

P (s)[P (s)− c]
=

1

cs

i.e., writing dP/ds for P ′(s) and P for P (s), as is usual in differential equations,

dP

P (P − c)
=
ds

cs
.

Using partial fractions applied to 1/P (P − c) this is equivalent to

ds

s
=

dP

P − c
− dP

P
.

Integrating we get
log(s) = log(P − c)− log(P ) + k.

Thus

s= k̃
P − c
P

.

From this we have
P =

c

1− s

k̃

.

However, we know that P (0) = p0 and that P (1) = 1, so that finally we get

P (s) =
p0

1− (1− p0)s
,
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i.e., X1 has a geometric(p0) distribution.
A more general result is available. First note that if we have i.i.d. geometric(p) random variables,

then for any n≥ 2,we have

P (Sn = k) = p

(
1 +

k

n− 1

)
P (Sn−1 = k). k= 0.1,2, ...

where Sn =
∑n

i=1Xi.

Theorem 6. Let {Xi}∞i=1 be i.i.d. non-negative integer valued random variables. For each n
define Sn =

∑n

i=1Xi. If for a fixed integer n≥ 2 and for every k we have

P (Sn = k) = c

(
1 +

k

n− 1

)
P (Sn−1 = k). k= 0.1,2, ... (4.2)

for some positive c, then the Xi’s have a common geometric distribution.

Proof. Let P (s) be the probability generating function of X1, so that the generating function
of Sn is [P (s)]n. From (4.2) we then have

[P (s)]n = c[P (s)]n−1 +
cs

n− 1

d

ds
[P (s)]n−1 = c[P (s)]n−1 + cs[P (s)]n−2P ′(s).

Consequently we have

[P (s)]2 = c[P (s)] + csP ′(s).

But this is exactly the equation solved in the case n= 2 and we can conclude that

P (s) =
p0

1− (1− p0)s
,

i.e., X1 has a geometric(p0) distribution.
In fact, in the geometric case, we are able to prove an even more general result which is parallel

to the conjectured exponential characterization described in the previous section.

Theorem 7. Let {Xi}∞i=1 be i.i.d. non-negative integer valued random variables. For each n
define Sn =

∑n

i=1Xi

If for a fixed pair 1≤ n1 <n2 we have

P (Sn2 = k) = c
(n2 + k− 1)!

(n1 + k− 1)!
P (Sn1 = k) (4.3)

∀k, for some c > 0 then X1 has a geometric distribution.

We will defer proving this result until Section 5, where will prove an even more general result as
follows.

Consider a sequence of non-negative integer valued random variables {Xi}∞i=1 and define

A(n,k) =
P (
∑n

i=1Xi = k)

P (
∑n−1

i=1 Xi = k)
.

Claim : For any fixed n≥ 2, the sequence A(n,k) determines the common distribution of the Xi’s.
We will illustrate a special case of this claim in the following Section where a Poisson sequence

is considered.
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4.2. Poisson characterizations
As usual, let the Xi’s be i.i.d. non-negative integer valued r.v.’s and for each n define Sn =∑n

i=1Xi. It is readily verified that if the Xi’s have a common Poisson(λ) distribution then for a
fixed pair 1≤ n1 <n2 we have

P (Sn2 = k) = c

(
n2

n1

)k
P (Sn1 = k), (4.4)

∀k, for c= e−(n2−n1)λ.
This observation leads to the following characterization of the Poisson distribution.

Theorem 8. Let the Xi’s be i.i.d. non-negative integer valued random variables and for each
n define Sn =

∑n

i=1Xi. If for a fixed pair 1≤ n1 <n2 we have

P (Sn2 = k) = c

(
n2

n1

)k
P (Sn1 = k) (4.5)

∀k, for some c > 0, i.e., if (4.4) holds for some c > 0, then X1 has a Poisson distribution.

Proof. It is tempting to try to resolve this issue by using probability generating functions. The
generating function of X1, denoted by P (s) must satisfy

P n2(s) = cP n1(
n2

n1

s).

However, it is not obvious how to solve this equation, even in the case in which n1 = 1 and n2 = 2.
We can make progress by considering equation(4.5) for a series of values of k. We will denote

P (X1 = i) by pi for i= 0,1,2... Next denote the ratio between p1 and p0 by λ. The case k = 2 of
(4.5) simplifies to yield p2 = p21/(2p0) = λ2p0/2. Next if we consider k= 3 we obtain an equation for
p3 as a function of p0, p1 and p2 which can be solved to yield p3 = λ3p0/3!. We may then conclude
that pi = λip0/i! for every i by using an induction argument whereby we assume that for j < i
we have pj = λjp0/j! and, inserting these values in equation (4.5) for k = i, we may verify that
pi = λip0/i!. The value of p0 is then determined by the requirement that

∑∞
i=0 pi = 1. Thus we find

p0 = e−λ and confirm that X1 has a Poisson(λ) distribution.

4.3. General characterizations of discrete distributions
Conjecture 2 in Section 2 was an instance in which for a sequence of i.i.d. Xi’s with sums

defined by Sn =
∑n

i=1Xi, it was felt to be plausible that the ratio of densities of Sn1 and Sn2
would determine the density of the Xi’s. In the absolutely continuous case, the conjecture remains
open. However, progress can be made in the case in which the Xi’s are non-negative integer valued
random variables.

Suppose that X∗i ’s are i.i.d. random variables with P (X∗i = k) = p∗k > 0, k = 0,1,2, .... The
corresponding sums will be denoted by S∗n =

∑n

i=1X
∗
i . For 1≤ n1 < n2 the corresponding ratio of

densities of sums will be denoted by

A∗(n1.n2, k) =
P (
∑n2

i=1X
∗
i = k)

P (
∑n1

i=1X
∗
i = k)

(4.6)

We claim that if another sequence {Xi}∞i=1 has the same ratio of densities of sums as do the X∗i ’s

and if P (X1 = 1) = P (X∗1 = 1) then X1
d
=X∗1 .
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Theorem 9. Let {Xi}∞i=1 be a sequence of i.i.d non-negative integer valued random variables
with P (X1 = k) = pk > 0, k = 0,1,2, ... and with p1 = p∗1 as defined above. Suppose that for some
pair n1, n2 with 1≤ n1 <n2 and every k= 0,1,2, ... we have

P (Sn2 = k) =A∗(n1, n2, k)P (Sn1 = k). (4.7)

It follows that X1
d
=X∗1 .

Proof. Note that (4.7) holds for the S∗n’s as well as for the Sn’s.
Consider the case in which k= 0, we have

pn20 = P (

n2∑
i=1

Xi = 0) =A∗(n1.n2,0)P (

n1∑
i=1

Xi = 0) =A∗(n1.n2,0)pn10 ,

so that p0 is determined by A∗(n1.n2,0), and indeed p0 = p∗0.
Next consider k= 1, we have

n2p1p
n2−1
0 = P (

n2∑
i=1

Xi = 1) =A∗(n1.n2,1)P (

n1∑
i=1

Xi = 1) =A∗(n1.n2,1)n1p1p
n1−1
0 .

Note that p1 cancels and is not determined by this equation. However, by one of our hypotheses,
p1 = p∗1. Next consider k= 2,

[n2p2p
n2−1
0 +n2(n2− 1)p21p

n2−2
0 ] = P (

n2∑
i=1

Xi = 2) =A∗(n1.n2,2)P (

n1∑
i=1

Xi = 2)

=A∗(n1.n2,2)[n2p2p
n2−1
0 +n2(n2− 1)p21p

n2−2
0 ].

This gives p2 as a linear function with coefficients that are functions of p0 and p1. Thus p2 is
determined by A∗(n1, n2,2) and indeed p2 = p∗2.

Now each successive value of k will introduce a new pk which will be a linear function with
coefficients that are known functions of the preceding pi’s. By an inductive argument the full

sequence p0, p1, p2, p3, .... is determined by the sequence A∗(n1, n2, k) . Thus we conclude that X1
d
=

X∗1 .

Corollary 1. If the random variables, the Xi’s have bounded support say 0,1,2,...,M, then for
any fixed 1≤ n1 <n2, the finite sequence {A∗(n1, n2, k)}Mk=0 determines the common distribution of
the Xi’s.

Proof. Just the same as in the theorem, except that we only need to consider values of k that
are less than or equal to M .

5. Conclusions
Almost inevitably, when characterization results are presented to a statistical audience, the

question of possible application of the results is raised. One strong argument for the study of
characterizations is that they often enable researchers to realize interesting consequences of dis-
tributional assumptions that they routinely make. Characterizations often can be used to apply
quick preliminary tests of certain distributional assumptions. In reliability settings, it will be of
interest to know whether a size biased version of the lifetime distribution (the lifetime of an item in
service) really behaves like a sum of two independent device lifetimes. If it doesn’t, then a desirable
assumption of exponentially distributed lifetimes must be set aside. If it does, then we can be more
comfortable about the common distributional assumption.
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