Erratum to "A New Pre-Order Relation for Set Optimization using ℓ-difference" [Communications in Advanced Mathematical Sciences, 4(3) (2021), 163-170]

Emrah Karaman ${ }^{1 *}$

Abstract

In this work, an erratum for a proposition in the paper "A New Pre-Order Relation for Set Optimization using ℓ-difference" is outlined. It was pointed out by Stefan Rocktäschel and Ernest Quintana that the proof of Proposition 3.11 is wrong in [1]. A small detail in the proof of Proposition 3.11 has been overlooked. A new proposition, which is closely related to Proposition 3.11 in [1], is presented. The main results of the paper are not affected by this erratum.

Keywords:Order relation, pre-order relation, set optimization
${ }^{1}$ Eskişehir Technical University, Faculty of Science, Department of Mathematics, 26470 Eskişehir, Turkey, ORCID: 0000-0002-0466-3827 Corresponding author: e.karaman42@gmail.com
Received: 9 December 2021, Accepted: 25 January 2022, Available online: 19 March 2022

1. A new order relation for set approach

There is a subtle error in the proof of Proposition 3.11 in [1]. So, Proposition 3.11 in [1] needs to be restate. The main results of the paper are not effected from this erratum. The following example can be given as a counter example for Proposition 3.11 (i) in [1]:
Example 1.1. Let $Y=\mathbb{R}^{2}, K=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x\right.$ and $\left.x \geq 0\right\}$, $A=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x\right\}$ and $B=\left\{0_{\mathbb{R}^{2}}\right\}$. Then, we can find $a \in A$ and $b \in B$ such that $b \leq_{K} a$. But, $A \preceq \preceq^{\ell_{1}} B$ is not satisfied.

I want to put the following proposition instead of Proposition 3.11 in [1]:
Proposition 1.2. Let $A, B \in \mathscr{P}(Y)$. If $b \leq_{K}$ a for all $a \in A$ and all $b \in B$, then $A \preceq{ }^{\ell_{1}} B$.
Proof. Assume that $b \leq_{K} a$ for all $a \in A$ and all $b \in B$. By contradiction, suppose that $A \npreceq^{l_{1}} B$. Then, $\left(B \ominus_{\ell} A\right) \cap K=\emptyset$, and we have $k+A \not \subset B+K$ for all $k \in K$. By setting $k=0_{Y} \in K$, we have $A \not \subset B+K$. Hence, there exists $a \in A$ with $a \notin B+K$. Consequently, it holds $a \notin b+K$ for all $b \in B$ and therefore, $b \not \mathbb{Z}_{K} a$ for all $b \in B$, which is contradict.

Besides of all them, we can easily show that the order relation \preceq^{3} implies the order relation $\preceq^{\ell_{1}}$, where the order of sets should be changed. That is, if $B \preceq^{3} A$ (or $A \subset B+K$) for any $A, B \in \mathscr{P}(Y)$, then $A \preceq^{\ell_{1}} B$. But, the inverse inclusion may not be true. For example, let $Y=\mathbb{R}^{2}, \bar{K}=\mathbb{R}_{+}^{2}, A=(-1,0)$ and $B=(0,0)$, where \mathbb{R}_{+}^{2} is nonnegative orthant of the space. Although $A \preceq^{\ell_{1}} B$, we have $B \npreceq^{3} A$.

Acknowledgements

I would like thank to Stefan Rocktäschel and Ernest Quintana for spotting the error in the original paper. Also, the author put a sincere thanks to the reviewers and editors for their valuable comments to enhance the paper.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

${ }^{[1]}$ E. Karaman, A new pre-order relation for set optimization using l-difference, Comm. Adv. Math. Sci., 4(3) (2021), 163-170.

