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1. INTRODUCTION

Humanity faces a major disaster rarely seen in history due 
to coronavirus disease, nowadays. This highly pathogenic 
coronavirus 2019 (COVID-19) is the new type of the 
coronavirus family, which is also called SARS-CoV-2 standing 
for severe acute respiratory syndrome coronavirus 2 [1]. To 
date, the COVID-19 has infected over one hundred million 
humans worldwide, with over 2 million deaths, and still 
continues threatening our lives [2]. The clinical studies have 
shown that most of the COVID-19 patients suffer from fever, 
cough, and shortness of breath, and other symptoms may 
include abdominal pain, muscle pain, diarrhea, sore throat, 
chills, sputum production, and loss of taste and smell [3]. 

Even though the spread of the virus may be possible before 
the appearance of symptoms, in symptomatic cases it is most 
contagious and symptoms may appear between 2-14 days after 
exposure to the virus [4]. Older adults and people who have 
severe medical conditions seem to be at higher risk [5] and need 
to take extra precautions [6]. Unfortunately, there is currently 
no specific antiviral treatment method or vaccine therapy for 
COVID-19, however, there are many clinical trials evaluating 
potential therapies.  

To combat the spread of COVID-19 disease, effective 
screening of patients and emergency medical response for 

infected patients is vital. The standard screening method of 
diagnosis is by reverse transcription-polymerase chain reaction 
(RT-PCR) test using nasopharyngeal swabs [7], [8]. Although 
the transcription-polymerase chain reaction (RT-PCR) test is 
the most common and reliable method for COVID-19 
detection, it is a time-consuming process, laborious and 
complex in means of application [9]. The epidemiological 
history of the disease, clinical symptom analysis, positive 
pathogenic tests, and chest radiography (i.e., CT and x-ray) can 
be used in the diagnosis of COVID-19. In most of the COVID-
19 cases, radiographic images have similar features in the early 
stage and pulmonary consolidation in the late stage [10]. A 
comparison of chest CT to RT-PCR test in the diagnosis of 
COVID-19 has been given by the study of Fang et al., which 
reports up to 98% sensitivity chest CT [11].  

Today, artificial intelligence (AI) based analyses are widely 
used in the diagnosis of a variety of types of tumor and cancer 
detection. A number of deep learning and machine learning-
based methods have been employed for the detection and 
screening of COVID-19 on the CT dataset, which is given in 
[12], [13]. There are several studies in the literature using AI 
and/or deep learning-based detection techniques from chest CT 
scans for the analysis and pre-diagnosis of COVID-19 cases, 
prior to applying PCR or pathogenic tests and thus saving 
significant time for further treatments [14], [15]. The CT 
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images of chests is known to be a very effective imaging 
method in the diagnosis of lung-related illness; however, chest 
x-ray imaging is more common in terms of availability, cost, 
and processing time [16]. One of the best ways to combat this 
epidemic is to turn the time in our favor by making the fastest 
diagnosis. The x-ray imaging is almost available even in all 
rural regions and most ambulatory care facilities and plays a 
vital role in clinical treatments and epidemiological studies 
[17]. Thus, the pandemic has pushed the health system to 
develop a telemedicine-integrable solution [18]. It is frequently 
used in the diagnosis of pneumonia, lung 
irritation/inflammation, swellings, distended/enlarged lymph 
nodes, and abscesses. While a typical x-ray imaging is very 
helpful in the early screening of suspicious cases, it may 
sometimes cause confliction as images of positive COVID-19 
cases are similar to images of other viral cases of pneumonia 
that cause difficulties in distinguishing it from other cases. It, 
therefore, requires a radiologist to be available to perform the 
task, and this may take a considerably valuable time when the 
epidemic rapidly spreads and healthcare professionals and 
other resources are scarce [19]. A misdiagnosis of a true 
positive COVID-19 case will cause a very crucial risk, as well 
as a misdiagnosis of the non-positive case, will cause 
unnecessary effort, cost, and congestion in the current situation 
where hospitals are overloaded. It is, therefore, necessary to 
develop and design an AI-based automatic diagnosis system to 
shorten the analysis time and significantly speed up the 
screening for medical professionals. 

The rest of the paper has been organized as follows: the 
details of the image dataset and the employed methodology are 
expressed in Section 2. The results and discussion are given in 
Section 3 and Section 4, respectively. Finally, Section 5 
concludes the paper. 

 

2. Material and Methods 
2.1. Data Collection and Image Pre-processing 
The data used in this study is attained from the Kaggle’s Chest 

X-ray Images (Pneumonia) dataset [20]. The data set consists 

of 50 total x-ray images (25 of patients are diagnosed as 

COVID-19 positive and 25 of patients are healthy). Sample 

images for normal and Covid-19 x-ray are indicated in Figure 

1. 

 
Figure 1.  a) healthy patient b) Covid-19 patient c) low contrast x-ray d) high-

contrast x-ray 

Each of x-ray images is resized as 256 × 256. Then, these 
images are converted to 8-bit (unsigned integer) resolution 
monochrome images. Then, the low-contrast of each gray scale 
image is adjusted into high-contrast image intensity values as 
shown in Figure 1. The multi-feature extraction methods, 
which consist of Histogram of Oriented Gradients (HOG), 
Law’s Texture Energy Measurement (TEM), Gabor Wavelet 
Transform (GWT), Gray Level Co-Occurrence Matrix 
(GLCM), and Local Binary Pattern (LBP), are implemented to 
the attained pre-processed gray scale images and mentioned 
methods are elucidated in the following sub-section.  

2.2. Feature Extraction 
2.2.1. Histogram of Oriented Gradients 

Histogram of Oriented Gradients (HOG) is a gradient-based 
feature extraction method that is firstly suggested in the 
research of [21]. It explains an image as a series of local 
histograms and each local histograms is the dispersion of the 
occurrences number of gradients in specified directions 
computed in a particular field described as a cell upon the 
image [22]. The stage of feature extraction with the HOG 
algorithm is accomplished in three steps, which are the 
computation of gradient, computation of histogram, and block 
normalization. 

The Computation of Gradient 

The gradient values in horizontal and vertical directions of 
each point on the image are computed with the following 
equations. Here, Sobel filters are mostly employed to measure 
these components. 

𝑓𝑥(𝑖, 𝑗) = 𝐼(𝑖 + 1) − 𝐼(𝑖 − 1, 𝑗)                    (1) 

𝑓𝑦(𝑖, 𝑗) = 𝐼(𝑖, 𝑗 + 1) − 𝐼(𝑖, 𝑗 − 1)                           (2)     

Here, the expression I(i, j) points out the brightness at the 
spatial coordinates (i, j). The magnitude of the computed 
gradients M(i, j) and the direction of the gradient 𝜙(𝑖, 𝑗) are 
indicated via the following equation (3) and equation (4). 

𝑀(𝑖, 𝑗) = √{𝑓𝑖(𝑖, 𝑗)2 + 𝑓𝑗(𝑖, 𝑗)2}             (3) 

𝜙(𝑖, 𝑗) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑓𝑖(𝑖,𝑗)

𝑓𝑗(𝑖,𝑗)
)             (4) 

The Computation of Histogram (Experimental Distribution) 

While computing the histogram, 𝜙(𝑖, 𝑗) can be categorized into 
identical regions in the range of 0∘ to 180∘ or 0∘to 360∘angles, 
based on the implementation. In our study, nine gradient 
regions in different directions are picked up between 0∘ −
 180∘with angles of 20∘. The gradient dimension of each pixel 
in the cell is deployed to histogram regions on the basis of the 
angle it has, as indicated in Figure 1. This deployment is 
commonly carried out by linear and trilinear interpolation 
approaches [21]. The linear interpolation is utilized in our 
study. 

Block Normalization 

The main histogram is acquired by merging the entire sub 
histograms formed in a block and it is normalized using the 
following equation (5): 

𝜐 = (
𝑉𝑚

√‖𝑉𝑚‖2+1
)                   (5) 

Here, v  and Vm represent the normalized HOG feature 
vector and the main histogram vector of a block, respectively. 
In our study, histogram regions are constituted by computing 
the unsigned gradients on rectangular cells (R-HOG) [23] and 
L2-Norm is employed for normalization. Moreover, the whole 
image is 125 split up into 3 × 3 rectangular cells, and a local 
histogram is formed from each cell. After that, nine histogram 
regions per cell (180◦/20◦  =  9) are integrated with nine 
local histograms, and a feature vector with a length of (9 × 9 = 
81) is generated. Finally, these vectors are used as inputs of the 
classification stage. 
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2.2.2. Laws Texture Energy Measure 
Laws Texture Energy Measure (TEM) method gathers 

preset one-dimensional kernels into diverse convolution filters. 
Then, one-dimensional filters with vector length l = 5: L5 
(Level) = [1 4 6 4 1], E5 (Edge) = [-1 -2 0 2 1], S5 (Spot)= [-1 
0 2 0 1], R5 (Ripple) = [1 -4 6 -4 1] are employed for feature 
extraction. There, L5 offers the center-weighted local average. 
E5 replies to step edges in columns and rows. S5 detects points 
and R5 identifies fluctuations. If a column vector is multiplied 
by a row vector of the same length, a filter of size l × l is 
attained. Thus, different size filters are attained employing 
diverse rows and columns. These filters are then convolved 
with the image in order to extract texture features from this 
image and hence the attained new image is called ”energy 
image”. In the end, feature vectors are constituted by taking the 
statistical values (e.g., entropy, mean, standard deviation) of 
the obtained energy images. The mathematical expression of 
the texture energy map Em for filter m is stated in Equation 
6. 

∑ (𝑎, 𝑏) = ∑ ∑ 𝐹𝑚(𝑖, 𝑗)𝑎+7
𝑖=𝑎−7

𝑏+7
𝑗=𝑏−7𝑚                                   (6) 

Here, Fm(i, j), (i, j), and (a, b) represent the mth-filtered 
image at pixel (i, j), the sizes of the filtered image, and the sizes 
of the energy map, respectively. Finally, first-order statistic 
(i.e., mean) is implemented to the energy map to form a feature 
vector and sixteen parameters are computed as inputs of the 
classification stage from each image. 

2.2.3. Gabor Wavelet Transform 

Gabor wavelets are immensely similar to the visual system of 
human-based on their frequency and orientation characteristics. 
These wavelets compose a perfect filter for both orientation and 
spatial localization. A complex Gabor wavelet filter can be 
described as the product of a complex sinusoidal and a 
Gaussian kernel. A two-dimensional GWT can be stated by the 
convolution of the image I(a, b) as shown in Equation 7 [24]: 
 

𝐽(𝑎, 𝑏) = ∬ 𝐼(𝑎′, 𝑏′)𝑔(𝑎 − 𝑎′, 𝑏 − 𝑏′)𝑑𝑎′𝑑𝑏′                   (7) 

 

Here, the gf (a, b) function illustrates the Gabor filter as: 
 

𝑔𝑓(𝑎, 𝑏; 𝜆, 𝜑, 𝜎, 𝛾) = exp (
𝑎1

2 + 𝛾2

2𝜎2
) exp (𝑗 (2𝜋

𝑎1

𝜆
+ 𝜓))      (8) 

 
𝑎1 = acosφ + bsinφ and  𝑎1 = acosφ + bsinφ 
 

Here, ϕ and λ correspond to the angular orientation of the 
Gabor function and the wavelength scale of the cosine 
parameter, respectively. And ψ and γ express the phase 
offset value and the spatial view angle, respectively. The 
statistical parameters are computed from the GWT that are 
standard deviation (σ), mean (µ), and entropy (∈). Assume 
that I(i, j) represents the GWT matrix of each gray scale 
image with the size of m × n, then these parameters are 
computed as shown in Equation 9. 
 

𝜇𝑖𝑗 =
1

𝑚𝑛
∑ ∑ 𝐼𝑖𝑗

𝑛
𝑗

𝑚
𝑖                                                          (9a) 

 

𝜎𝑖𝑗 =
1

𝑚𝑛
∑ ∑ (𝐼𝑖𝑗 − 𝜇𝑖𝑗

2 𝐼𝑖𝑗)𝑛
𝑗

𝑚
𝑖                  (9b) 

 
𝜖𝑖𝑗 = − ∑ 𝐼(𝑖, 𝑗)log (𝐼𝑖𝑗)𝑖,𝑗             (9c) 

 

After calculating three statistical parameters for each 
wavelet, the statistical variables obtained from eight 
wavelets (two scales and four angular orientations) of each 
image are added sequentially and (3 × 8 = 24) parameters 
are created to form the feature vector of each gray scale 
image. 

2.2.4. Gray Level Co-Occurrence Matrix 
Gray Level Co-Occurrence Matrix (GLCM) describes the 

relationship amid the reference pixel and adjacent pixel [25]. A 
co-occurrence matrix is clarified as being the distribution of co-
occurring pixel values, at a predetermined offset (∆a, ∆b).  The 
number of columns and rows of a GLCM matrix is equal to the 
145  gray level numbers in the image.  In which, the distribution 
is set on the basis of the distance between the angles and pixels 
[26]. An image with p distinct gray levels gives a p × p co-
occurrence matrix for a predetermined offset. The GLCM 
matrix (G) of an image I(k × l) is indicated in Equation 10. 

𝐺Δa,Δb = ∑ ∑ {
1     𝐼(𝑎, 𝑏) = 𝑖 an𝑑  𝐼(𝑎 + Δ, 𝑏 + Δ𝑏) = 𝑗
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑙
𝑏=1

𝑘
𝑎=1                  (10)  

Here,(a, b), (i, j), (∆a, ∆b) and I(a, b) illustrate the spatial 
location in the image, the pixel values, the offset values, and 
the pixel value at pixel (a,b), respectively. The G matrix can 
also be described in terms of an angle θ and distance d instead 
of the offset values (∆a, ∆b) and I(a, b). Here, θ angles are used 
commonly as 0◦, 45◦, 90◦, and 135◦ [27]. In this study, 22 
GLCM parameters are employed which consist of auto-
correlation, contrast, correlation, cluster prominence, cluster 
shade, difference entropy, difference variance, dissimilarity, 
energy, entropy, homogeneity, information measure of 
correlation1&2, inverse difference normalization, inverse 
difference moment normalization, maximum probability, sum 
average, sum entropy, the sum of squares and sum variance. 
Mathematical statements of these parameters are given in detail 
in [28]. 

2.2.5. Local Binary Pattern 
Micro-texons are sought for on the basis of the relation 

among the pixels and their neighbors by Local Binary Pattern 
(LBP) [29]. A binary number is then assigned by comparing a 
central pixel by its neighbors [30]. After all comparisons, a set 
of binary numbers is attained and these numbers are 
transformed to decimal numbers that will be employed instead 
of these pixels [30].   The decimal number corresponds to the 
textural information regarding the relationship among the 
central pixel and its neighbors. Thus, each of them indicates a 
distinct pattern. The statement of Local Binary Pattern (LBP) 
[L(x)] for each pixel is indicated as [31]. 

𝑡 = 𝐼(𝑥𝑖) − 𝐼(𝑥)         (11) 

𝐿(𝑥) = ∑ 𝑅(𝑡)2𝑝
𝑖=0 (𝑖 − 1)          (12) 

𝑅(𝑡) = {
1   𝑡 ≥ 0
0   𝑡 > 0

                    (13) 

Here, x, xi, and I(.) represents the central pixel, neighboring 
pixel at ith, and the gray-scale image, respectively. Eventually, 
a histogram is composed of the attained decimal numbers that 
are between 0 and 255 [33]. Moreover, it is observed that 
uniform patterns might be used in place of an overall histogram 
that has 256 distinct values.  The uniform patterns have at the 
best bitwise passage as (0 to 1 or 1 to 0). 

2.2.6. Randomized Neural Network 
Randomized Neural Network (RNN) is a robust machine 

learning method for feed-forward neural networks (FFNN), 
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which has a single hidden layer. It can be utilized for 
classification and regression purposes. Input weights and bias 
parameters are not required to be set in contrast to other usual 
feed-forward network implementations. Therefore, these 
parameters can be chosen as random, and the output weights 
can be analytically ascertained. This situation allows RNN to 
be easy and fast in data processing [32] and ensures a fine 
generalization achievement for a single FFNN [33]. Compared 
to the other known gradient-based learning algorithms, RNN 
has several advantages like the potential of reaching the 
minimum training error, operating with non-differentiable 
activation functions, and employing a single hidden layer [34]. 
Moreover, the number of observations is more than the number 
of neurons in the RNN hidden layer [35]. The RNN output y 
can be computed via Equation 14 [33]. 

𝑦 = ∑ 𝜌𝑗𝐺(∑ 𝑊𝑖𝑗 . 𝑥𝑖 + 𝑏𝑗
𝑛
𝑖=1 )𝑚

𝑗=1                                    (14) 

Here,  x,  n,  m,  Wij,  ρj,  bj and  G(.)  express the input,  
neuron numbers of the input, neuron numbers of the hidden 
layer, the input weights, the output weights, the biases of the 
neurons,  and the activation function,  respectively. 

2.3. The Proposed Approach  
The block diagram of the recommended system is indicated 

in Figure 2. First, a dataset, which consists of 50 x-ray images 
(25 COVID-19 positives and 25 normal cases) are obtained  

Figure 2.  A block diagram, which summarizes all stages of the Covid-19 

detection from x-ray images.  

from the Kaggle. Second, whole x-ray images are resized as 
256 × 256 and these images are transformed to 8-bit resolution 
gray scale images. After the transformation phase, the low-
contrast of each gray scale image is set into high-contrast image 
intensity values. The multi-feature extraction methods, namely 
HOG, TEM, GWT, GLCM, and LBP, are then applied to the 
pre-processed images.  

Finally, the attained feature vectors for each image are 
employed as inputs of the RNN classifier to determine whether 
the existence of the virus. In the training and testing stage of 
RNN, 10-fold cross-validation is implemented and 16 different 
activation functions (1-sigmoid, 2-sinusoidal, 3-radial-basis, 4-
hard-limit, 5-symmetric hard-limit, 6-saturating linear, 7-
tangent sigmoid, 8- triangular-basis, 9-positive linear, 10-pure 
linear, 11-cosinusoidal, 12-log sigmoid, 13-saturating linear, 
14-hyperbolic tangent, 15-Gaussian, 16-multi quadratic) with 
the different number of hidden neurons (NHN) is chosen to 
determine optimal parameters. Moreover, the testing 
accuracies vs.  NHN for all activation functions (AF) are given 

in the Results and Discussion section. Here, the testing 
accuracy is computed as: 

Testing Accuracy (%)  =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
×  100 (15) 

Here, TP, FN, FP, and TN illustrate the number of true 
positives, false negatives, false positives, and true negatives, 
respectively. 

3. EXPERIMENTS 

In this section, the total of 50 x-ray images (25 COVID-19 
positives and 25 normal) with different resolutions are resized 
as 256×256 and they are converted to 8-bit resolution gray 
scale images. After that, the contrast of resized gray scale 
images is increased into high-intensity values. Then, multi-
feature extraction methods, which are HOG, TEM, GWT,  
GLCM,  and  LBP,  are implemented to the pre-processed 
monochrome images and feature vectors are attained from 
them. As a final step, the RNN classifier that utilized the feature 
vectors extracted from x-ray images detects COVID-19. The 
methodology performances are presented individually for all 
feature vectors are employed in the following subsections. 

3.1. Detection of COVID-19 from X-ray Images Using 
HOG and RNN 

 In this section, 81 HOG features are employed as inputs of 
the RNN classifier, and testing accuracies vs. NHN for all 
activation functions (AF) are given in Table I. The performance 
of the system employed by the HOG feature differs according 
to the parameters of seven NHN and sixteen AF functions. 
There is not an evident linear relationship between the accuracy 
of diagnosis and the NHN and AF parameters. The maximum 
accuracy rate, which is 95%, is obtained by employing AF-2 
with 20 NHN. 

TABLE I  

Testing Accuracy (%) for all AF with 5 different NHN using 

HOG features and  RNN Classifier 

 

In general, the performances for NHN 1 and 5 remain 
under average performance compared to other NHN. However, 
considering the AF parameter, there does not exist a significant 
difference in the performance of the system between the AF 
parameters employed, except the functions 4 and 5 that provide 
the least accuracy rate regardless of the NHN parameters. In 
addition, the activation functions AF-7, AF-11, and AF-16 
were also applied experimentally, and they are not presented in 
Table I because their performances are below the other 
functions given in the table. 

 

 

NHN 

                                                                                  AF 

1 2 3 4 5 6 8 9 10 12 13 14 15 

1 30 34 34 33 36 38 33 35 35 34 36 33 36 

5 73 66 61 35 33 66 76 71 69 64 78 76 74 

10 83 88 80 41 40 86 88 81 88 74 80 79 79 

15 85 84 85 45 41 88 81 90 91 83 83 91 86 

20 86 95 83 43 44 88 81 89 86 91 85 93 83 

25 85 89 84 48 45 83 85 90 80 84 88 80 79 

50 84 83 80 53 44 75 78 78 76 73 85 71 71 
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3.2. Detection of COVID-19 from X-ray Images Using 
TEM and RNN 
The proposed system employs 15 TEM features as inputs 

of the RNN classifier and testing accuracies vs. NHN for all 
activation functions (AF) are yielded in Table II. Similar to the 
HOG, except for functions 4 and 5, the use of other functions 
(AF parameters) does not make a significant difference to the 
performance of the system, and functions 4 and 5 provide the 
least accuracy rate regardless of the NHN parameters. The 
system achieves the highest accuracy rate, which is 100%, by 
employing AF-7 with 10 NHN. The TEM feature achieves 
better accuracy of diagnosis compared to the HOG feature, in 
general. 

The performance of the system considerably decreases for 
NHN 1 and 50. The decrease reaches up to nearly 50% 
compared to the previous accuracy rate, e.g. 88% for NHN 25 
and 54% for NHN 50 both for the AF 3. Accordingly, the 
determination of optimality for the parameters of the system is 
crucial to obtain better results for diagnosis. The system 
employing the TEM reaches remarkable performance for 
diagnosis of the COVID-19, overall. 

TABLE II 

 Testing Accuracy (%) for all AF with 5 different NHN using 

TEM features and RNN Classifier 

3.3.  Detection of COVID-19 from X-ray Images Using 
GWT and RNN 

The system is implemented using 24 GWT features as inputs 
of the RNN classifier and testing accuracies vs. NHN for all 
activation functions (AF) are yielded in Table III. The GWT is 
the feature that provides knowledge about the orientation of the 
patterns existing in x-ray images that may uncover the 
indicators for diagnosis. The performance of the GWT reaches 
a 96% rate for diagnosis that is the second-highest 
performance. A recent deep-learning classifier announces a 
%95 accuracy rate of diagnosis using chest Xr-ray images [36]. 

TABLE III 

Testing Accuracy (%) for all AF with 5 different NHN using 

GWT features and   RNN Classifier 

 

NHN 
                                                  AF 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 26 22 24 32 26 32 32 26 24 24 26 22 30 32 26 30 

5 64 68 64 28 28 64 78 64 70 76 74 72 62 60 66 70 

10 82 82 84 34 32 84 76 86 88 84 72 84 86 80 78 80 

15 82 76 82 28 26 88 86 82 88 86 78 84 88 84 82 74 

20 92 84 84 26 28 92 90 90 88 92 92 92 86 94 86 80 

25 82 80 90 36 30 88 86 96 92 90 88 86 90 86 86 88 

50 60 58 48 28 32 86 66 82 92 88 58 68 94 60 62 68 

 

The feature provides the least accuracy rate in the case of 
NHN 1, 5, and 50, similar to TEM and HOG. For the remaining 
NHN, the systems achieve a notable accuracy rate of diagnosis. 

3.4. Detection of COVID-19 from X-ray Images Using 
GLCM and RNN 

For detection of the virus, 22 GLCM features are employed 

as inputs of the RNN classifier, and testing accuracies vs. NHN 

for all activation functions (AF) are given in Table IV. Overall 

performance of the GLCM feature remains under the TEM, 

HOG, and GWT.  
TABLE IV 

Testing Accuracy (%) for all AF with 5 different NHN using GLCM 

features and RNN Classifier 

 

The system performed by the  GLCM  reaches an 88% rate 

that remains under the performance of the aforementioned 

features for diagnosis. Not surprisingly, functions 4 and 5 

provide the least diagnosis performance while the performance 

of other activation functions does not show a notable 

fluctuation. 

 

3.5. Detection of COVID-19 from X-ray Images Using 
LBP and RNN 
The proposed system has been implemented with 6 LBP 

features that are employed as inputs of RNN classifier and 

testing accuracies vs. NHN for all activation functions (AF) are 

yielded in Table V. 
TABLE V 

Testing Accuracy (%) for all AF with 5 different NHN using LBP 

features and RNN Classifier 

 

The proposed methodology reaches an 86% accuracy 

rate with parameters of the activation function number of 15 

and 50 NHN. The performance of LBP remains under the other 

features in general. Similar to t h e  remaining features 

employed by the system, the least performance achievement 

is obtained in the case of using 4 and 5 AF. 

 

 

 

 

 

NHN 

 

                                                      AF 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 36 40 34 36 32 32 36 34 42 36 36 40 36 36 32 30 

5 82 92 82 36 38 92 94 82 84 88 92 88 90 90 88 96 

10 92 88 86 38 38 88 100 94 96 92 92 92 90 92 94 94 

15 94 96 88 40 38 90 92 94 88 86 96 94 82 90 88 92 

20 90 94 86 58 46 92 88 90 88 88 92 92 88 88 92 92 

25 86 88 88 42 54 94 88 86 94 88 86 88 88 82 86 94 

50 66 54 72 44 66 88 64 86 88 94 60 66 90 58 60 66 

 

NHN 
                                                          AF 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 30 34 30 28 26 26 32 34 34 34 30 32 32 28 26 26 

5 62 78 62 34 38 70 54 46 60 58 58 64 62 58 62 66 

10 56 60 62 32 42 68 66 64 60 72 64 58 74 54 56 68 

15 78 82 70 32 42 70 66 70 76 72 78 80 68 78 74 58 

20 78 74 78 44 48 78 76 66 68 66 68 74 70 74 84 72 

25 76 78 88 40 32 72 70 70 78 80 78 86 66 74 80 68 

50 64 50 58 40 48 76 46 62 68 66 58 48 74 60 40 72 

 

NHN 
                                                 AF 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 28 26 30 38 28 30 36 32 28 24 28 26 32 38 28 32 

5 72 64 70 30 30 60 54 64 64 62 72 70 68 64 64 62 

10 64 74 66 44 36 56 60 68 60 64 62 72 70 66 68 58 

15 70 62 74 28 40 66 62 66 68 50 68 68 62 68 68 76 

20 70 74 68 32 34 70 74 62 60 66 78 76 64 62 72 68 

25 78 76 74 44 42 66 74 52 60 68 78 72 64 80 74 74 

50 74 68 68 38 50 62 80 72 72 64 80 58 54 84 86 66 
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4. DISCUSSION 
 

The proposed automated COVID-19 diagnostic system has 

been implemented using 5 different feature extraction methods 

with 16 AF and 7 NHN parameters for a comprehensive 

evaluation. The best mean accuracy (%) results using multi-

feature extraction methods and RNN classifiers with the 

aforementioned parameters are tabulated in Table VI. 
 

TABLE VI 

The best mean accuracy (%) results with computational time (s) for 

all features and RNN Classifier 

 

In addition, analyzes are made according to the 
computational time parameter, which will become even more 
important in the case of integration of the system into an active 
e-health network. In terms of overall performance, the ELM 
feature achieved an average of 100% performance in the 
automatic diagnosis of the data set, leaving all other features 
behind. It is seen that the ELM feature, which achieved the best 
diagnostic performance, classified the data set in a time of 3.2 
seconds, which is a longer computational load than other 
methods. Although ELM is seen to have a relatively higher 
burden in terms of computational time compared to other 
methods, this does not prevent real-time use of the method 
thanks to modern workstations and advanced systems.  Other 
remarkable features in terms of diagnostic success are GWT 
and HOG. These features both achieve over 95% performance 
(GWT 96% and HOG 95%) and provide the best results in 
terms of computing load. The accuracy announced between 
87% and 98% for binary and multi-classes images [37], 
respectively. Deep-learning solutions announced in [38] and 
[39] give over a 90% diagnosis rate. Recent studies [40], [41] 
that utilize a deep learning-based framework as a support 
system achieves over %95 diagnosis rate. It is clear that the 
HOG feature has a significant advantage when considering 
both computational load and diagnosis performance The 
system performs the least but still notable diagnosis accuracies 
rate for the GLCM (88%) and LBP (86%) features. Although 
these two features do not impose a high computational load, 
their performance remains under the performance of the ELM, 
HOG, and GWT features. The features utilized by the system 
can reveal different textural features of the image due to their 
algorithmic and mathematical structures. One example of this 
is GWT, which focuses on directional tissues in chest x-ray im- 
ages, revealing some indicators that other methods cannot 
achieve. Since the mathematical structure and algorithmic 
designs of other features differ, a similar conclusion with GWT 
can be reached characteristics properties that aid to unveil 
diverse structures and indicators of the x-ray images. 
Therefore, an ensemble model established by utilizing diverse 
types of features has the potential to increase the performance 
of the system for COVID-19 diagnosis. 

 

5. CONCLUSION 
 

The COVID-19 pandemic, which has created great 
uneasiness all over the world, is a case that has not been 
encountered before by the modern health systems and as a 
result, it has brought a serious burden to the systems. In recent 
years, artificial intelligence-based systems have been widely 
used successfully in the field of health for decision support and 
making diagnoses. In this respect, it has the potential to 
significantly reduce the workload of healthcare workers by 
using AI-assisted systems in the preliminary diagnosis and 
decision-support phase of an easily transmitted virus such as 
COVID-19. Indeed, studies in this area have shown that 
artificial intelligence-based systems promise significant 
success. 

The diagnosis and controlling of the large number of people 
applying to health institutions with the suspicion of a virus in a 
short time are serious burdens for health organizations due to 
the restricted time and cost of the tests. Therefore, it is clear 
that an artificial intelligence-based auxiliary system to be used 
for pre-diagnosis and decision support will make a great 
contribution to the health ecosystem. Motivated by this fact, an 
automated system based on AI that exploits multi-features 
extracted from x-ray images is proposed for the diagnosis of 
the virus, in this study. A set of two-dimensional image texture 
features having diverse characteristics have been used for 
unveiling the indicators for automatically diagnosing the cases. 
The TEM, GWT, LBP, GLCM, and HOG features are extracted 
from an x-ray image, and the RNN decision-maker is trained 
with these features. These features show diverse characteristics 
having the ability to uncover the indicators exiting in x-ray 
images. These features show diagnosis performance ranging 
from 86% to 100%. It has been observed that the most 
dominant feature in automatic detection of the virus is TEM 
and, in the applications, performed on the dataset, it is 
diagnosed correctly with an average performance of 100%. 
Moreover, the various activation functions used are 
mathematical forms with different characteristics. Therefore, it 
directly affects the performance of the method in terms of 
physical and representation. 

The fact that the system is performing a commonly used, 
fast, and easily accessible imaging system such as x-ray, is 
promising in terms of preliminary diagnosis for geographical 
regions where diagnostic kits are hard to access. Although the 
study has been carried out on a large data set, it has the potential 
to be further improved if the proposed system is integrated with 
an active health network that contains more diverse images and 
kinds of images such as CT or PET. Moreover, the features 
utilized by the proposed systems can be widened by using 
different textural features to improve the performance of the 
systems. Consequently, it has been shown that the proposed 
system based on AI for the diagnosis of COVID-19 using x-ray 
images achieved remarkable results. This proposed system, 
which has the potential to be developed in terms of data-set and 
image texture features, can be integrated into modern health 
systems and thus it can make significant contributions for the 
public heaths. 
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