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 Yield prediction before harvest is one of the important issues in terms of managing 
agricultural policies and making the right decisions for the future. Using remote sensing 
techniques in yield estimation studies is one of the important steps for many countries to 
reach their 21st-century agricultural targets. The aim of this study is to develop a wheat yield 
model using Landsat-8 and Sentinel-2 satellite data. In this study, the development stages of 
winter wheat were examined with the help of satellite images obtained between the years 
2015-2018 of a selected region in Sanliurfa, Turkey, and it was aimed to predict the yields for 
other years by establishing a yield estimation model. The yield estimation model was 
established with the help of Normalized Difference Vegetation Index (NDVI), Soil-adjusted 
Vegetation Index (SAVI), Green Normalized Difference Vegetation Index (GNDVI) and 
Modified Soil-adjusted Vegetation Index (MSAVI) obtained from remote sensing satellite 
images. Linear regression analysis was established between calculated NDVI, SAVI, GNDVI, 
MSAVI indices, and actual yield values on the pre-flowering, flowering stage, and post-
flowering stage. As a result of the study, the highest correlation coefficient was found in the 
flowering stage between the vegetation indices values and the actual yield values. The values 
of NDVI, SAVI, GNDVI, and MSAVI and correlation coefficients are obtained in the flowering 
stage were 0.82, 0.80, 0.86, and 0.87, respectively. With the established model, yield values in 
2019 were tried to be estimated for three different fields. The highest correlations were seen 
in the flowering stage for MSAVI and GNDVI, pre-flowering stage for NDVI and post-flowering 
stage for SAVI. This clearly shows that the satellite images can be used in yield estimation 
studies with a remarkable correlation between vegetation indices and actual yield values. 

Research Article 
DOI: 10.26833/ijeg.1035037 
 
Received: 10.12.2021 
Accepted: 03.02.2022 
Published: 13.04.2022 
 

 
 

 
 
 

1. Introduction  
 

Nutrition is the basis of human survival and 
development [1]. Increasing population [2], air pollution, 
and reduction of cultivated lands have serious impacts on 
cereal crops [3] and food security has become a serious 
problem worldwide. Especially, for agriculture depended 
on economies like Turkey [4], yields prediction is vital for 
determining a sustainable supply-demand statistic [5]. In 
addition, considering in a timely manner predicting 
yields a few months earlier before harvest provides great 
advantages for securing national demand, organizing 
food transport [6,7], forecasting agricultural imports and 
exports, regulating grain markets, and managing 
plantations [8,9]. Previously, yield prediction studies 
were based on field measurements and observations. 
This traditional method is often subjective, costly, and 
prone to large errors [10]. Today, thanks to the 

developments in remote sensing techniques, it is possible 
to get more reliable results in agricultural applications by 
using satellite data. Aside from other possibilities, the 
satellite systems present high spatial resolution data and 
the multispectral information about the plants [11]. 
These possibilities allow us to analyze growth stages and 
physical conditions. Moreover, compared to terrestrial 
observations, satellite systems are more economical, 
more consistent, and more holistic. Pre-harvest yield 
prediction studies are not only advantageous in 
predicting yields for specific crops but also in controlling 
possible disease and pest control during the growing 
period [12]. Pre-harvest yield prediction and crop 
monitoring are a common issue for many countries [13]. 
The use of remote sensing in yield prediction studies is a 
very active research area [14,15]. There are many studies 
in the literature to predict pre-harvest yield. The known 
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earlier studies on the yield prediction model are 
AgRISTARS [16] and the Large Area Crop Inventory 
Experiment (LACIE) [17]. The Monitoring Agriculture 
with Remote Sensing (MARS) project in Europe and the 
National Agricultural Statistics Service (NASS) service of 
the US Ministry of Agriculture are play important role in 
remote sensing studies [18]. [19,20] reported that 
vegetation indices gave successful results in predicting 
yield before harvest. [21] used the AgroMetShell model 
developed by FAO and predict the wheat yield with, a 
correlation of R2 = 0.9067 between predict and actual 
yield. [22] used the BBCH scale to monitor the 
developmental stages of sunflower and wheat plants. 
[23] used Sentinel-2 data and vegetation indices to 
monitor the phenological stages of the sunflower plant. 
Among the VIs, they obtained the best forecast with NDVI 
(R2=0,74) when three months before harvest of 
sunflower. [24,25] reported that NDVI based pre-harvest 
yield prediction includes a 10% error rate. [26] examined 
the performance of Landsat-8 and Sentinel-2 satellites in 
their efficiency estimation studies. In Skakun's study, 
yield estimation was made using only Landsat-8, only 
Sentinel-2 and NDVI value obtained from the combined 
model and R2 values were found to be 0.64, 0.88, and 
0.90, respectively. [27] compared the NDVI and SAVI 
results and they indicated that SAVI performed better 
than NDVI.   

In this study, the success of NDVI, SAVI, GNDVI and 
MSAVI values obtained from Landsat-8 and Sentinel-2 
satellite data provided free of charge for a selected 

region, unlike previous studies, was examined. The 
phenological stages of the wheat plant were examined 
with the vegetation indices obtained from satellite 
images. A linear regression model was established 
between the vegetation indices obtained for pre-
flowering, flowering, and post-flowering stage, and yield 
values. The yield prediction model was applied for 2018-
2019 data and a model performance accuracy was made. 
 

2. Method 
 

 

2.1. Study area and data 
 

 
2.1.1. Study area 
 

The study was conducted in a planting area 
dominated by winter wheat agricultural city, Şanlıurfa 
(38°45’E to 38°53’E and 37°06’N to 37°14’N), in the 
south-eastern part of Turkey (Fig. 1). The region covers 
approximately 1633 km2. The prevailing planting pattern 
is dominated by an intensive dual-cropping system based 
on winter wheat, including barley, cotton, maize, isot 
pepper, lentil [28]. Şanlıurfa has a hot and dry summer 
climate, and a rainy and mild winter climate. The city, 
which is close to the Equator in terms of mathematical 
location, has a continental climate. The region is suitable 
for wheat agriculture Due to enough rainfall, 
groundwater, and suitable temperature. 
 

 

 
Figure 1. Location of the study area and of the sample plots in the TIGEM of south-eastern Turkey 
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2.1.2. Satellite data 
 
We used Landsat-8 and Sentinel-2 data to monitor 

wheat fields. Because Landsat-8 and Sentinel-2 satellites 
have different temporal resolution [29], and they scan 
the same region at different times. Therefore, it is 
advantageous to use two satellite data in combination to 
monitor changes in plant growth. Landsat-8 data is 
shared free of charge by a collaboration of the National 
Aeronautics and Space Administration (NASA) and the 
United States Geological Survey (USGS). Landsat-8 
satellite was launched into space on February 11, 2013. 
It orbits at an altitude of 705 kilometers and completes 
one tour in 16 days. Operational Land Imager (OLI) and 
Thermal Infrared Sensor (TIRS) sensors were used on 
the Landsat-8 satellite [30,31]. The Sentinel-2 satellite 
mission was developed by the European Space Agency 
(ESA) and is shared free of charge on the internet. The 
Sentinel-2 mission consists of two polar-orbiting 
satellites phased at 180 degrees to each other placed in 
the same orbit. It scans between 56° south and 84° north 
latitudes. Its temporal resolution is 10 days at the 
equator. However, since there are 2 satellites in the 
system, the same place is displayed every 5 days. It has a 
temporal resolution of 3 days at 45° latitude. Band 
properties used in the study are shown in Table 1. 

In the study, the vegetation indices were created 
using satellite images obtained between 2015-2019 (3 
seasons for the model and 1 season for the test). Satellite 
images obtained in certain periods from sowing to 
harvest were downloaded for each season. For 2015-16, 
2016-17 and 2017-18 seasons, 8 Landsat-8 and 33 
Sentinel-2A satellite images were used from the sowing 
time (December) to the harvest time (June) of wheat, 
where the study area was cloudless (Table 2). 

 
2.1.3. Reference data 

 
The yield values of the study area were provided by 

the General Directorate of Agricultural Enterprises 
(TIGEM). Since it is forbidden to fly UAVs and measure 
land in the study area, the field study has not been 
conducted. Yield values and information on the land were 
obtained from the institution. In the study, 5 irrigated 
agricultural lands and 5 dry agricultural lands were used. 
Wheat plant is not generally cultivated every year [32]. 
Therefore, wheat cultivation was not made in some fields 
in some seasons. These fields have been removed from 
the data set. The parcel yields of the data set used in the 
study are shown in Table 3. 
 
 

 
 

Table 1. Feature of Landsat-8 and Sentinel-2 
 Landsat 8 OLI-TIRS Sentinel-2 

Scene size (km) 185 x 180 290 
Radiometric 

Resolution (bit) 
12 8 

Band Name Band Count Wavelength (µm) 
Spatial 

Resolution (m) 
Band Count 

Wavelength 
(µm) 

Spatial 
Resolution (m) 

Blue Band 2 0.45-0.51 30 Band 2 0.490 10 
Green Band 3 0.53-0.59 30 Band 3 0.560 10 

Red Band 4 0.64-0.67 30 Band 4 0.665 10 
Near Infrared Band 5 0.85-0.88 30 Band 8 0.842 10 

 
Table 2. Dates of satellite data (* refers Landsat-8 images) 

  2015-2016 2016-2017 2017-2018 

December 
05.12.2015  09.12.2016  04.12.2017  
19.12.2015 *  08.12.2017 * 
25.12.2015   14.12.2017   

January  08.01.2017  09.01.2018 * 

 18.01.2017  13.01.2018      

February 
 07.02.2017  02.02.2018  

 17.02.2017   

 23.02.2017 *     

March 
08.03.2016 *  19.03.2018  
24.03.2016    

    

April 
23.04.2016  28.04.2017  08.04.2018  
  13.04.2018  
  23.04.2018      

May 
03.05.2016  8.05.2017  18.05.2018  
 14.05.2017 * 23.05.2018  
 30.05.2017 *         

June 

02.06.2016  07.06.2017  07.06.2018  

12.06.2016  17.06.2017  12.06.2018  

22.06.2016  27.06.2017  17.06.2018  

28.06.2016 *  22.06.2018  

    27.06.2018  
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2.2. Methodology 
 

Health status, growth etc. has a direct impact on yield. 
Using remote sensing methods, the health status of the 
plant, its growth rate and the rate of foliage can be 
determined quickly. The satellite data used for this must 
go through certain phases. In this study, yield estimation 
was made using Sentinel-2 and Landsat-8 satellite 
images. This topic can best be treated under three 
headings: detection of phenological stage, yield 
estimation model and application of yield estimation 
model to test data. Firstly, we applied pre-processing 
operations on satellite images. The workspace was in two 
different scenes in Sentinel-2 satellite data. For this 
reason, Sentinel-2 images were mosaic processed in 
ENVI software. Secondly, since Sentinel-2 (10 m) and 
Landsat-8 (30 m) satellite images have different spatial 
resolution, Landsat-8 images were resampled to 10 m. In 
the next step, vegetation indices were then created. NDVI 
and SAVI were used to determine the phenological 
stages. Then 4 different indices values were determined 
for each field in the study area. A yield estimation model 
was established for three stages between index values 
and yield values. Finally, the model was applied to the 
same region for the 2018-2019 season. Model 
performance accuracy was performed for the obtained 
results (Fig. 2). 
 
2.2.1. Decision of phenological stage  
 

Plants are living things that show continuous 
development from the sowing period to the harvest 
period. Therefore, it does not make sense to wait for the 
harvest period to decide about the health and 
development of plants. BBCH-scale was used to 
determine the growth stages of the wheat plant from 
sowing to harvest [33] (Table 4). 

Due to the temporal and spatial resolution of satellite 
data and cloud conditions, all stages of plant 
development could not be monitored. Therefore, the 
growing stages of the wheat plant can be examined in 4 
basic stages.  

 
Germination and seedling stage: Germination begins 
with water intake by a wheat kernel, which ends the 
postharvest sleeping period. At the germination stage, 
enough temperature and humidity are needed for wheat 
seeds to germinate. The optimum temperature at the 
germination stage of wheat seeds is between 12 ºC and 
25 ºC. Under favorable conditions, seedling emergence 
usually takes place within seven days. The seedling stage 
begins with the emergence of the first leaf and the top of 
the plant usually becomes apparent after the third leaf. 
 
Tillering and stem elongation: Sprouts appear shortly 
after crown formation and crown root system develops. 
The crown root system provides nutrients and water to 
the plant during the growing season. After this stage, the 
wheat plant starts in the stem elongation stage. Most 
short season wheat produces 7-8 leaves on the stem 
before stem elongation. 
 
Heading and flowering: This stage is the stage when the 
wheat ear comes out of the stem completely. After this 
stage, the plant begins to grow and bloom. During 
flowering, high temperature and drought reduce the 
grain yield. 
 
Ripening and senescence: The senescence stage begins 
after the flowering stage. Ripening takes place in four 
stages: milk, soft dough, hard dough and finally mature. 
Meanwhile, the wheat plant turns straw color, and the 
grain becomes very hard. 
 

Flowering phase is very important for yield 
estimation of wheat plant. During the flowering phase, 
the chlorophyll content of the wheat plant reaches its 
highest level and reaches its greenest form. In the study, 
by examining the NDVI and SAVI indexes, the flowering 
phase was determined for each season, and the previous 
satellite image was evaluated as the pre-flowering phase 
and the next satellite image post-flowering phase. 
 
 

 
Table 3. Wheat Yield (kg/daa) (* refers fallowing field) 

CEYLANPINAR TIGEM WHEAT YIELDS (kg/daa) 

 Irrigated Agricultural Fields Dry Agricultural Fields 
Cropland Number 

1 17 32 36 47 207 333 350 354 361 
Season 

2015-2016 496.9 * * * * 285.6 359.9 * 161.0 * 
2016-2017 * 627.0 411.0 397.0 532.8 * * 167.3 * 249.6 
2017-2018 506.2 558.4 403.1 371.8 445.0 125.1 46.6 * 37.3 * 

 
Table 4. Phenological Stage of Wheat in the BBCH-Scale (Meier 2001) 

BBCH-Scale Principal Growth Stage Stage 
0-10 Stage 0 Germination 

10-20 Stage 1 Leaf development 
20-30 Stage 2 Tillering 
30-40 Stage 3 Stem elongation 
40-50 Stage 4 Booting 
50-60 Stage 5 Inflorescence emergence, heading 
60-70 Stage 6 Flowering, anthesis 
70-80 Stage 7 Development of fruit 
80-90 Stage 8 Ripening 

90-100 Stage 9 Senescence 
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Figure 2. Flow-process diagram 

 
2.2.2. Vegetation indices 
 

Vegetation density is one of the important indicators 
in the plant, soil, and climate formation [34,35]. In 
vegetation determination studies, the original spectral 
bands on satellites may not always be enough to 
determine the characteristic spectral features of the 
vegetation in the target region [36]. In this case, 
vegetation indices, which are frequently used in remote 
sensing studies, help to understand the characteristic 
features of vegetation [37,38]. 

The NDVI designed to monitor biomass [39,40] and 
makes use of the reflection near-infrared (NIR) and red 
spectrum [41]. The NIR is between 0.76 nm and 0.90 nm 
in the TM sensor and 0.77-0.90 in the ETM sensor. The 
red spectrum is between 0.63-0.69 in the TM and ETM 
sensors. High NDVI values refer to green and healthy 
plants, low NDVI values indicate that the plant is not 
green or low amounts of vegetation. Unlike the NDVI, 
GNDVI uses green wavelength instead of visible red 

wavelength. GNDVI is useful in calculating 
photosynthesis rates and monitoring plant stress. SAVI is 
basically like NDVI. However, in SAVI, unlike NDVI, the 
effect of land areas is more. Therefore, the soil correction 
(L) is used in SAVI calculations according to the 
vegetation density in the field. [42] reported that the L 
parameter should take a value close to 0 or very close to 
0 in regions with dense vegetation, and a value close to 1 
or 1 in areas where vegetation is sparse. The soil 
correction is expressed with a variable L, for which we 
select 0.50. Changes occur in the L factor in the SAVI 
value according to the density of the vegetation. When 
the L factor is 0, the SAVI value is equal to the NDVI value. 
However, the soil correction factor (L) must vary 
according to the amount of vegetation available in order 
to obtain the optimum setting for the effect of the soil. 
Thus, the modified SAVI (MSAVI) index is obtained [43] 
(Table 5). 
 

 
Table 5. Equations of Vegetation Indices 

Index Equation References 

NDVI 
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 [44] 

GNDVI 
𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 [45] 

SAVI 
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿
𝑥(1 + 𝐿) [46] 

MSAVI 2𝑥𝑁𝐼𝑅 + 1 − √(2𝑥𝑁𝐼𝑅 + 1)2 − 8𝑥(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

2
 [47] 

 
𝑌𝑖𝑒𝑙𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  = 𝑎 𝑥 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 + 𝑏   (1) 
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The peak date of the vegetation indices values 
(NDVI, GNDVI, SAVI and MSAVI) during the year is the 
heading and flowering stage. While establishing the yield 
model in the study, pre-flowering, flowering stage and 
post-flowering reflectance values were evaluated 
separately and the relationship between each stage and 
yield was investigated. The average values of each field 
were matched with the amount of yield in the season and 
linear regression analysis was performed between these 
two variables. The yield prediction model is established 
by the equation 1. 
 

 

3. Results  
 

First step of the yield prediction is to determine the 
phenological stages of the wheat. Hence a continuous 
remote sensing data set is required. In this section, 
determination of phenological stages and establishment 
of yield estimation model will be explained, respectively. 
Finally, the obtained yield prediction model was tested 
for the season of 2018-2019 and the model accuracy was 
determined. 

 
3.1. Detection of phenological stages 

 
The development processes of plants can be 

determined numerically with the vegetation indices 
obtained from satellite images, and it is possible to 
comment on the analyzed field with the help of the 
graphics. NDVI and SAVI values were obtained from all 
available satellite images in the process from sowing to 
harvest for the investigation of phenological stages. The 
changes in NDVI and SAVI values were examined for each 
season. The peaks of the index values were determined 
as the flowering stage, the previous date pre-flowering 
stage, and the next date the post-flowering stage. (Table 
6). 

Table 6 shows that the flowering stage is towards the 
end of April in the 2015-2016 season and at the 
beginning of May in the 2016-2017 season. In the 2017-
2018 season, the flowering stage occurred in the middle 
of March (19 March). 

In the yield prediction model, the indices value pre-
flowering, flowering and post-flowering period were 
used. NDVI, GNDVI, SAVI and MSAVI values for three 
seasons in three periods are shown in Table 7. 

 
3.2. Yield estimation model 

 
We used simple linear regression model, that is, a 

model with a single regressor x that has a relationship 
with a response y that is a straight line. Simple linear 
regression model is given in equation 2. 
 

𝑌 =  𝛽0 + 𝛽1𝑋 + 𝜀   (2) 
 

where the intercept 𝛽0 and the slope  𝛽1 are unknown 
constants and 𝜀 is a random error component. The error 
does not depend on the value of other error. Correlation 
coefficient is calculated by equation 3. 
 

𝑟 =  
𝑛(∑ 𝑥𝑦) − (∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2 − (∑ 𝑥)2][𝑛 ∑ 𝑦2 − (∑ 𝑦)
2

]

     
(3) 

 
 

Linear regression analysis was performed between 
NDVI, GNDVI, SAVI and MSAVI values and actual yield 
values in wheat cultivated areas. A yield estimation 
model has been established to determine yield values. 
Yield equations, correlation coefficients and 
determination coefficients are shown in Table 8(a). 

Table 8(a) shows that when all indices are examined, 
the correlation coefficient obtained during the flowering 
period is higher than the other stages. The highest 
correlation coefficient was determined in MSAVI (0.87). 
Correlation coefficients for GNDVI, NDVI and SAVI were 
0.86, 0.82 and 0.80, respectively. 
 
3.3. Model performance accuracy 
 

The yield estimation model obtained from 
experiments shown in Fig. 3. Position number 1 in Fig. 3 
is in the same position as the reference data used in the 
yield estimation model. Field numbers 2 and 3 are 
approximately 72 km from field number 1. 

NDVI, GNDVI, SAVI and MSAVI indices were 
generated from remote sensed Landsat-8 and Sentinel-
2A satellite data at certain time intervals from planting to 
harvest. The obtained index values were determined pre-
flowering, flowering stage, and post-flowering, and the 
indices values at these dates were applied to the equation 
obtained in the yield model. The yield values of the 
cultivated fields have been tried to be estimated by using 
all indices values for every three periods and the results 
are shown in Table 8(b, c and d) for test areas 1, 2, and 3, 
respectively. Model accuracy was calculated with 
equation 4. 

Table 8(b) shows that the most suitable result out of 
four indexes is during flowering with MSAVI. GNDVI and 
MSAVI also achieved 95.88% and 99.99% accuracy at the 
flowering stage, respectively. In NDVI, the highest 
accuracy was achieved pre-flowering (95.80%). In 
addition, high accuracy was obtained in other periods 
(88.76% for flowering and 87.98% for post-flowering). 
SAVI is the only index with more than 90% accuracy in 
all three periods. Although the highest accuracy was 
achieved after flowering (98.62%), high accuracies were 
also obtained pre-flowering and during the flowering 
phase (97.11% for pre-flowering and 93.47% for the 
flowering period) (Fig. 4). 
 

 

Model Accuracy = (1 −
| Estimated Yield − Actual Yield|

Actual Yield
 ) ∗ 100 (4) 
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Table 6. Dates of Phenological Stages 
Season Pre-Flowering Date Flowering Date Post-Flowering Date 

2015-2016 24.03.2016 23.04.2016 03.05.2016 
2016-2017 28.04.2017 08.05.2017 14.05.2017 
2017-2018 02.02.2018 19.03.2018 18.05.2018 

 

 
Figure 3. Locations of Test Fields 

 
 
Table 7. Indices Values for Pre-flowering, flowering and post-flowering seasons (a) NDVI, (b) GNDVI, (c) SAVI, (d) MSAVI 
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2015-2016 

1 0.64 0.81 0.41 0.55 0.7 0.37 0.51 0.59 0.27 0.45 0.63 0.24 
350 0.65 0.67 0.51 0.58 0.59 0.47 0.54 0.64 0.34 0.49 0.48 0.31 
354 0.37 0.4 0.29 0.32 0.3 0.25 0.29 0.3 0.13 0.67 0.09 0.08 
361 0.66 0.75 0.6 0.58 0.67 0.54 0.53 0.6 0.44 0.48 0.6 0.43 

2016-2017 

17 0.56 0.72 0.43 0.51 0.63 0.56 0.43 0.65 0.44 0.42 0.5 0.4 
32 0.62 0.74 0.44 0.55 0.64 0.57 0.46 0.66 0.45 0.46 0.51 0.42 
36 0.66 0.73 0.43 0.58 0.63 0.54 0.49 0.65 0.4 0.48 0.51 0.39 
47 0.61 0.74 0.44 0.55 0.65 0.58 0.46 0.66 0.48 0.46 0.53 0.43 

207 0.49 0.52 0.28 0.45 0.5 0.39 0.36 0.41 0.23 0.34 0.34 0.18 
333 0.47 0.63 0.31 0.44 0.56 0.44 0.37 0.46 0.24 0.35 0.4 0.24 

2017-2018 

1 0.48 0.81 0.5 0.42 0.68 0.45 0.29 0.59 0.31 0.27 0.62 0.28 
17 0.49 0.81 0.49 0.44 0.68 0.36 0.3 0.64 0.3 0.28 0.68 0.18 
32 0.47 0.82 0.44 0.41 0.69 0.41 0.28 0.6 0.26 0.25 0.64 0.24 
36 0.39 0.75 0.37 0.38 0.46 0.42 0.25 0.46 0.28 0.23 0.35 0.26 
47 0.52 0.8 0.46 0.44 0.67 0.43 0.31 0.57 0.28 0.28 0.6 0.25 

350 0.47 0.69 0.34 0.46 0.35 0.6 0.3 0.49 0.19 0.27 0.17 0.48 
354 0.24 0.34 0.12 0.3 0.27 0.28 0.09 0.12 0.06 0.11 0.06 0.08 
361 0.37 0.49 0.27 0.41 0.36 0.56 0.23 0.42 0.18 0.21 0.15 0.41 
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Table 8. (a) Yield equations (y refers yield value; x refers indices value) and Model performance accuracy calculations 
for phonological stages per vegetation index: (b) Test field 1, (c) Test field 2, (d) Test field 3 
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NDVI 
Pre-Flowering y= 894.5x-111.36 0.59 0.35 0.47 310.33 297.3 0.6 420.87 450 0.86 657.91 700 
Flowering y= 1006x-340.5 0.82 0.67 0.67 334.96 297.3 0.71 373.76 450 0.9 564.9 700 
Post-Flowering y= 1159x-114.11 0.73 0.53 0.39 337.9 297.3 0.52 488.57 450 0.86 876.84 700 

SAVI 
Pre-Flowering y= 698.68x+92.319 0.48 0.23 0.28 288.95 297.3 0.34 326.38 450 0.68 563.93 700 
Flowering y= 987.73x-178.09 0.8 0.64 0.46 279.09 297.3 0.48 293.55 450 0.67 486.16 700 
Post-Flowering y= 1147.5x+8.0299 0.74 0.55 0.25 293.27 297.3 0.29 340.8 450 0.71 817.02 700 

GNDVI 
Pre-Flowering y=980.68x-113.13 0.48 0.23 0.46 340.78 297.3 0.41 288.95 450 0.71 583.15 700 
Flowering y=1044.6x-239.74 0.86 0.74 0.5 285.54 297.3 0.63 418.36 450 0.81 601.16 700 
Post-Flowering y=356.08x+180.76 0.64 0.4 0.41 326.75 297.3 0.46 342.78 450 0.76 451.38 700 

MSAVI 
Pre-Flowering y=301.09x+234.53 0.71 0.5 0.32 331.31 297.3 0.24 305.29 450 0.48 377.55 700 
Flowering y=771.23x+7.5578 0.87 0.75 0.38 297.32 297.3 0.48 377.75 450 0.57 443.3 700 
Post-Flowering y=325.98x+247.37 0.64 0.41 0.22 318.15 297.3 0.28 338.64 450 0.47 398.95 700 

 

 
Figure 4. Model Performance Accuracy Analysis for all phenological stages per index for test field 1 
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Figure 5. Accuracy Analysis for all phenological stages per index for test field 2 

 

 
Figure 6. Accuracy Analysis for all phenological stages per index for test field 3 

 
 

Table 8(c) shows that the highest accuracy is 
achieved with NDVI pre-flowering. GNDVI and MSAVI 
achieved 93% and 83.9% accuracy at the flowering stage, 
respectively. Although the highest accuracy was obtained 
pre-flowering (93.5%) in NDVI, high accuracy was also 
obtained in other stages. The highest accuracy in SAVI 
was obtained post-flowering (75.7%) (Fig. 5). 

Table 8(d) shows, as Table 8(c), that the highest 
accuracy is achieved with NDVI (94%) pre-flowering. 
The second highest accuracy was obtained with GNDVI in 
the flowering stage (85.9%). While 83.3% accuracy was 
obtained post-flowering with SAVI, 63.3% accuracy was 
obtained at the flowering stage with MSAVI (Fig. 6). 

When Table 8(b, c and d) are evaluated together, 
GNDVI and MSAVI gave more accurate results in the 
flowering stage compared to the other stages. In addition, 
compared to other stages, the highest accuracy was 
obtained pre-flowering in NDVI while it was obtained 
post-flowering in SAVI. 

4. Conclusion  
 

The main aim of this study was to establish a yield 
estimation model by using four widely used spectral 
indices. Since the life cycle of a vegetation starts with 
sowing, passes from several stages, and ends with 
harvest, firstly a phenological stages determination 
process was applied to get yearly proper dates for 
spectral indices. In the next step, a linear regression 
model was established between vegetation indices and 
actual yield values for pre-flowering, flowering, and post-
flowering stages. The highest correlation of the 
generated model was observed in MSAVI with a 
coefficient of r = 0.87. The other correlation coefficients 
were calculated as GNDVI (r = 0.86), NDVI (r = 0.82) and 
SAVI (r = 0.80). The generated yield estimation model 
was applied to get predict actual yield of 3 different test 
field and compared with its actual value. According to the 
index-based results, the NDVI was the most successful 



International Journal of Engineering and Geosciences– 2023, 8(1), 52-62 

 

  61  

 

index to predict yield with an 87.77% mean accuracy 
value. GNDVI, SAVI, and MSAVI had 82.36%, 81.78%, and 
76.04% mean accuracy value, respectively. Besides, in a 
phenological stages manner, NDVI was more successful 
in Pre-Flowering stage with a 94.43 % mean accuracy 
rate. In Flowering stage, GNDVI reach the best mean 
accuracy rate with 91.59%. In Post-Flowering stage the 
SAVI showed the highest mean accuracy rate 85.87%. 

Although this comprehensive study reached notable 
results yet includes limitations. Firstly, the resolution of 
the satellite images has direct effect on the results. 
Secondly the generated model could not apply different 
fields due to the model is depending on the reference 
data. This means, for a region which has similar 
conditions the model should be re generated.  

In future studies, it is planned to develop a wider 
range of yield estimation models from satellite images 
with higher spatial resolution and images obtained with 
hyperspectral cameras. In addition, further studies need 
to be carried out in order to validate field measurements. 
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