
Fundamentals of Contemporary Mathematical Sciences
doi:10.54974/fcmathsci.1035760

(2022) 3(1) 75 – 97

Pell-Lucas Collocation Method to Solve Second-Order Nonlinear
Lane-Emden Type Pantograph Differential Equations

Şuayip Yüzbaşı 1∗, Gamze Yıldırım 1,2

1 Akdeniz University, Faculty of Science, Department of Mathematics
Antalya, Türkiye

2 Gebze Technical University, Faculty of Basic Science, Department of Mathematics
Gebze, Türkiye, gamzeyildirim@akdeniz.edu.tr

Received: 12 December 2021 Accepted: 29 January 2022

Abstract: In this article, we present a collocation method for second-order nonlinear Lane-Emden type

pantograph differential equations under intial conditions. According to the method, the solution of the

problem is sought depending on the Pell-Lucas polynomials. The Pell-Lucas polynomials are written in

matrix form based on the standard bases. Then, the solution form and its the derivatives are also written

in matrix forms. Next, a transformation matrix is constituted for the proportion delay of the solution

form. By using the matrix form of the solution, the nonlinear term in the equation is also expressed in

matrix form. By using the obtained matrix forms and equally spaced collocation points, the problem is

turned into an algebraic system of equations. The solution of this system gives the coefficient matrix in the

solution form. In addition, the error estimation and the residual improvement technique are also presented.

All presented methods are applied to three examples. The results of applications are presented in tables

and graphs. In addition, the results are compared with the results of other methods in the literature.

Keywords: Collocation method, Lane-Emden differential equation, nonlinear differential equations, pan-

tograph differential equations, Pell-Lucas polynomials.

1. Introduction

Many scientific phenomena are modeled with the nonlinear differential equations [10], [11]. It

is not always possible to find the analytical solutions in such equations. For this reason, the

numerical methods are of great importance. To date, many numerical methods are available in

the literature for various types of the nonlinear differential equations [1]-[6], [9], [12]-[17], [19]-[26],

[29], [35]-[51]. Yüzbaşı et. al have worked on various numerical methods by using many special

polynomials until today [31]-[33], [52]-[62]. In addition, the pantograph-type differential equations

have been used to characterize the problems in many fields such as physics, electronic systems,
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electrodynamics, control problems, engineering, biology, population studies, infectious diseases,

medicine, and economics. Many studies on the pantograph differential equations are available in

the literature [3, 7, 8, 24, 30, 34, 36, 47].

On the other hand, there are studies by using the Pell-Lucas polynomials for many types

of the differential equations [18], [49], [63], [64]. Since no study has yet been done by using the

Pell-Lucas polynomials for the solutions of the nonlinear Lane-Emden type pantograph differential

equation (LETPDE), the Pell-Lucas polynomials are used for the approximate solutions of the

nonlinear second-order Lane-Emden type pantograph differential equation (LETPDE) in this study.

In this paper, we consider the second-order nonlinear Lane-Emden type pantograph differ-

ential equation (LETPDE)

γy
′′
(γt) + β

t
y
′
(γt) + yk(t) = g(t), 0 < t ≤ L, (1)

with the initial conditions

y(0) = λ, y
′
(0) = µ. (2)

Here, k ∈ N , y(t) is the unknown function, g(t) is a continuous function [0, L] and γ, β, λ, µ are

some suitable constants. L > 0 and t = 0 is the single singular point of the LETPDE. Our aim is

to find the approximate solution of the problem (1)-(2) in the form

y(t) ≊ yN(t) =
N

∑
n=0

anQn(t). (3)

Here, an (n = 0,1, ...,N) are the Pell Lucas coefficients, N is any positive integer and Qn(t) are

the Pell Lucas polynomials defined by

Qn(t) =
Jn/2K
∑
k=0

2n−2k
n

n − k
(n − k

k
)tn−2k.

In this study, we use two important properties of the Pell-Lucas polynomials: the recurrence

relation [27], [28]

Qn(s) = 2sQn−1(s) +Qn−2(s), n ≥ 2,

where Q0(s) = 2 , Q1(s) = 2s , and the recurrence relation for the derivative [27], [28]

Q
′

n(s) = 2sQ
′

n−1(s) +Q
′

n−2(s) + 2Qn−1(s), n ≥ 2, (4)

where Q
′

0(s) = 0 , Q′

1(s) = 2 . For more features on the Pell-Lucas polynomials, please see [27], [28].

The rest of this paper is organized as follows: The matrix form of the approximate solution

and the required matrix relations are established in Section 2. The Pell-Lucas collocation method
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is constituted in Section 3. The error estimation are presented in Section 4. The applications of

the method are given and the results are discussed in Section 5. In Section 6, the conclusions of

the paper are given.

2. Basic Matrix Relations

In this section, we express the matrix forms of the problem (1)-(2) via the Pell-Lucas polynomials.

Lemma 2.1 The vector QN(t) can be written as

QN(t) = TN(t)DN , (5)

where TN(t) = [ 1 t t2 ⋯ tN ] and if N is odd

DT
N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 ⋯ 0

0 21 1
1
(1
0
) 0 ⋯ 0

20 2
1
(1
1
) 0 22 2

2
(2
0
) ⋯ 0

0 21 3
2
(1
1
) 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 21 N

N+1
2

(
N+1
2

N−1
2

) 0 ⋯ 2N N
N
(N
0
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and if N is even

DT
N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 ⋯ 0

0 21 1
1
(1
0
) 0 ⋯ 0

20 2
1
(1
1
) 0 22 2

2
(2
0
) ⋯ 0

0 21 3
2
(1
1
) 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
20 N

N
2

(
N
2
N
2

) 0 22 N
N+2
2

(
N+2
2

N−2
2

) ⋯ 2N N
N
(N
0
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof By multiplying the vector TN(t) by the matrix DN from the right side, the vector

QN(t) = TN(t)DN is obtained. ◻

Lemma 2.2 The approximate solution based on the Pell-Lucas polynomials in (3) can be expressed

in the form

y(t) ≊ yN(t) = TN(t)DNAN , (6)

where

AN = [ a0 a1 ⋯ aN ]
T
.

Proof By multiplying the vector QN(t) = TN(t)DN by the vector AN from the right, the

relation (6) is found. ◻
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Lemma 2.3 The matrix relations for the first and second derivatives of the solution form (6) are

respectively as follows

y
′
(t) ≊ y

′

N(t) = TN(t)BNDNAN ,

y
′′
(t) ≊ y

′′

N(t) = TN(t)B2
NDNAN ,

(7)

where

BN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 ⋯ 0
0 0 2 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ N
0 0 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof When the first and second derivatives of (6) are taken, we have respectively

y
′
(t) ≊ y

′

N(t) = T
′

N(t)DNAN ,

y
′′
(t) ≊ y

′′

N(t) = T
′′

N(t)DNAN .
(8)

Next, the first and second derivatives of TN(t) are taken to obtain

T
′

N(t) = TN(t)BN ,

T
′′

N(t) = TN(t)B2
N .

(9)

Thus, by writing the relations (9) in place of (8) respectively, we obtain the matrix relations

for the first and second derivatives of the solution form (6). ◻

Lemma 2.4 The matrix relations for the proportional delay of the first and second derivatives of

the solution form (6) become respectively as follows

y
′
(γt) ≊ y

′

N(γt) = TN(t)MN(γ)BNDNAN ,

y
′′
(γt) ≊ y

′′

N(γt) = TN(t)MN(γ)B2
NDNAN ,

(10)

where

MN(γ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(γ)0 0 ⋯ 0
0 (γ)1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ (γ)N

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof If γt is written instead of t in (7), then it is achieved

y
′
(γt) ≊ y

′

N(γt) = TN(γt)BNDNAN ,

y
′′
(γt) ≊ y

′′

N(γt) = TN(γt)B2
NDNAN .

(11)

On the other hand, by multiplying the vector TN(t) by the vector MN(γ) from the right,

we gain

TN(γt) = TN(t)MN(γ). (12)
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Finally, the desired result is obtained by substituting the relation (12) in (11). ◻

Lemma 2.5 The matrix representation of the solution (6) for the nonlinear term in (1) is expressed

as follows

yk(t) ≊ ykN(t) = (TN(t)DNAN)k−1 (TN(t)DNAN) . (13)

Proof We can write ykN(t) as

ykN(t) = yk−1N (t)yN(t). (14)

Then by substituting (6) in (14), the desired results is obtained. ◻

Lemma 2.6 The matrix relations of the initial conditions (2) for the assumed solution form (6)

are respectively as follows

UNAN = λN , UN = TN(0)DN ,
VNAN = µN , VN = TN(0)BNDN .

(15)

Proof If 0 is written instead of t in (6) and (7), it becomes y(0) ≊ yN(0) = TN(0)DNAN

and y
′
(0) ≊ y

′

N(0) = TN(0)BNDNAN . Hence, we have UNAN = λN , UN = TN(0)DN and

VNAN = µN , VN = TN(0)BNDN . Consequently, the desired result is found. ◻

Theorem 2.1 It is assumed that the solution of the problem (1)-(2) is sought in form (6). In that

case, the following matrix relation is obtained

{γTN(t)MN(γ)B2
NDN +

β

t
TN(t)MN(γ)BNDN + (TN(t)DNAN)k−1TN(t)DN}AN = g(t).

(16)

Proof y
′′

N(t) , y
′

N(t) and ykN(t) in (11) and (13) are substituted in (1) and thus, the proof of

the theorem is completed. ◻

3. Method of the Solution
The purpose of this section is to present the Pell-Lucas collocation method. For this reason, firstly,

evenly spaced collocation points are defined. Next, the method is constructed by using these

collocation points and the matrix relations in the previous section.

Definition 3.1 The evenly spaced collocation points are defined by

ti = a +
b − a
N

i, i = 0,1, ...,N. (17)
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Note here that: According to Theorem 3.1, these collocation points are used in (1). If the

point a here becomes 0 , a singularity occurs. In Theorem 3.2, the matrix forms obtained for

the conditions are written instead of any two lines in the algebraic equation system obtained in

Theorem 3.1. Therefore, in order to prevent the singularity that occurs when a point is 0 , instead

of the row consisting of point that cause this singularity in Theorem 3.2, the matrix form formed

for the first condition is written.

Theorem 3.1 Suppose that the solution of (1) is of form (6). In this instance, (1) by using the

collocation points (17) is reduced to a system of nonlinear algebraic equations as follows

WNAN =GN , (18)

where

WN = [ W̄N(t0) W̄N(t1) ⋯ W̄N(tN) ]
T
, GN = [ g(t0) g(t1) ⋯ g(tN) ]

T
,

W̄N(ti) = γTN(ti)MN(γ)B2
NDN +

β

ti
TN(ti)MN(γ)BNDN + (TN(ti)DNAN)k−1TN(ti)DN .

Proof If the collocation points (17) are written in (16), then we get

γTN(ti)MN(γ)B2
NDNAN + β

ti
TN(ti)MN(γ)BNDNAN + (TN(ti)DNAN)k−1TN(ti)DNAN = g(ti)

(19)
or

{γTN(ti)MN(γ)B2
NDN + β

ti
TN(ti)MN(γ)BNDN + (TN(ti)DNAN)k−1TN(ti)DN}AN = g(ti).

(20)

We can briefly write (20) as WNAN =GN . Here,

WN = [ W̄N(t0) W̄N(t1) ⋯ W̄N(tN) ]
T

and

W̄N(ti) = γTN(ti)MN(γ)B2
NDN +

β

ti
TN(ti)MN(γ)BNDN + (T̄N(ti)D̄NĀN)k−1TN(ti)DN ,

which completes the proof of the theorem. ◻

Theorem 3.2 It is assumed that the solution of the problem (1)-(2) is sought in type (6). Then,

the problem (1)-(2) by using the collocation points (17) is reduced to a system of nonlinear algebraic

equations as follows

W̃NAN = G̃N . (21)
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Here, [W̃N ; G̃N ] is obtained by writing the matrix forms formed for the conditions instead of any

two rows in [WN ;GN ] in (18).

Proof A new matrix system is created by writing two equations obtained for the conditions (2)

in Lemma 2.6 instead of any two rows in the system of algebraic equations in Theorem 3.1. This

new system is also represented as W̃NAN = G̃N . The important part here is to write the row

obtained for the first condition instead of the row with the singularity in the matrix [WN ;GN ] .

Thus, the proof is completed. ◻

4. Error Estimation
The purpose of this section is to given an error estimation technique with the help of the residual

function. In addition, by using this error estimation technique and the Pell-Lucas polynomial

solution, the residual improvement technique is also presented.

Theorem 4.1 (Error Estimation) Let y(t) be the exact solution and yN(t) be the Pell-Lucas

polynomial solution with N − th degree of the problem (1)-(2). Then, the error problem can be

obtained as follows

{ γe
′′

N(γt) +
β
t
e
′

N(γt) +∑
k
i=1 (

k
i
)eiN(t)yk−iN (t) = −RN(t),

eN(0) = 0, e
′

N(0) = 0,
(22)

where eN(t) = y(t) − yN(t) , e
′

N(t) = y
′
(t) − y

′

N(t) , e
′

N(γt) = y
′
(γt) − y

′

N(γt) , e
′′

N(γt) = y
′′
(γt) −

y
′′

N(γt) and RN(t) is the residual function of the problem (1)-(2).

Proof Firstly, inasmuch as the Pell-Lucas polynomial solution (3) satisfies the problem (1)-(2),

we can write

{ RN(t) = γy
′′

N(γt) +
β
t
y
′

N(γt) + ykN(t) − g(t),
yN(0) = λ, y

′

N(0) = µ
(23)

or

{ RN(t) + g(t) = γy
′′

N(γt) +
β
t
y
′

N(γt) + ykN(t),
yN(0) = λ, y

′

N(0) = µ.
(24)

Now, let’s subtract the equations in the problem (24) from equations in the problem (1)-(2),

respectively, and thus we have

{ γe
′′

N(γt) +
β
t
e
′

N(γt) + yk(t) − ykN(t) = −RN(t),
eN(0) = 0, e

′

N(0) = 0.
(25)

Now, since e(t) = y(t)− yN(t) , y(t) can be expressed as y(t) = e(t)+ yN(t) . From here, we

can write yk(t) = (e(t) + yN(t))k . Now, if the binomial expansion is also used in (e(t) + yN(t))k ,
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it becomes

yk(t) =
k

∑
i=0
(k
i
)eiN(t)yk−iN (t).

Here, since this expression for i = 0 is ykN(t) , the error problem is obtained as

{ γe
′′

N(γt) +
β
t
e
′

N(γt) +∑
k
i=1 (

k
i
)eiN(t)yk−iN (t) = −RN(t),

eN(0) = 0, e
′

N(0) = 0.
(26)

Hence, proof of theorem is completed. ◻

Corollary 4.1 When the error problem (22) is solved according to the method in the Section 3,

the estimated error function eN,M(t) is obtained.

Corollary 4.2 If the Pell-Lucas polynomial solution yN(t) is summed with the estimated error

function eN,M(t) , the improved approximate solution yN,M(t) is achieved.

Corollary 4.3 The improved error function is calculated by

EN,M(t) = y(t) − yN,M(t). (27)

5. Numerical Examples

In this section, the three numerical applications are presented. These applications and the graphics

are obtained with the help of Matlab program. In this section, y(t) , yN(t) and yN,M(t) represent

respectively the exact solution, the Pell-Lucas polynomial solution, the improved approximate

solution. Also, eN(t) , eN,M(t) and EN,M(t) represent respectively the actual absolute error

function, the estimated absolute error function and the improved absolute error function.

Example 5.1 Our first example is the nonlinear differential equation [3]

1

2
y
′′
(1
2
t) + 3

t
y
′
(1
2
t) + y2(t) = t8 + 2t4 + 3t2 + 1, 0 < t ≤ 1, (28)

and the initial conditions

y(0) = 1, y
′
(0) = 0. (29)

. . .

The exact solution of the problem (28)-(29) is y(t) = 1 + t4 . The Pell-Lucas polynomial

solution of the problem (28)-(29) for N = 3 is sought in the form

y3(t) =
3

∑
n=0

anQn(t). (30)
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Here, the colocation points for N = 3 are {t0 = 0, t1 = 1
3
, t2 = 2

3
, t3 = 1}. Notice

that the point t0 = 0 creates a singularity in (28). For this reason, one of the lines created for

the conditions is used instead of this line, which creates a singularity in the continuation of the

method. With the help of the Theorem 3.1, the fundamental matrix equation is written as

W3A3 =G3, (31)

where

W3 = [ W̄3(t0) W̄3(t1) W̄3(t2) W̄3(t3) ]
T
,

W̄3(ti) =
1

2
T3(ti)M3(1/2)B2

3D3 +
3

ti
T3(ti)M3(1/2)B3D3 + (T3(ti)D3A3)1T3(ti)D3,

D3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 0 2 0
0 2 0 6
0 0 4 0
0 0 0 8

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, G3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
8911/6561
18157/6561

7

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, B3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, A3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0
a1
a2
a3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

T3(ti) = [ 1 ti t2i t3i ] , MN(1/2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1/2 0 0
0 0 1/4 0
0 0 0 1/8

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

On the other hand, the matrix representations of the condition (29) are

[U3;λ3] = [ 2 0 2 0 ; 1 ]

and

[V3;µ3] = [ 0 2 0 6; 0 ] .

Since singularity occurs in the first row of the matrix (31), the matrix [U3;λ3] is written

instead of this row. On the other hand, the matrix [V3;µ3] is written instead of the last row of

the matrix (31) and thus a new algebraic matrix system called [W̃3; G̃3] is obtained. It should

be noted that the second or third line can also be used instead of the last line here. When the

nonlinear system [W̃3; G̃3] is solved by using the Matlab program, the Pell-Lucas coefficients

matrix is calculated as follows:

A3 = [ 655/999 −1065/1838 −450/2891 355/1838 ]T .

Then, the Pell-Lucas polynomial solution becomes

y3(t) = 1.5452e + 00t3 − 6.2262e − 01t2 − 5.5511e − 17t + 1. (32)
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Table 1: Comparison of the results of the problem (28)-(29) for the Pell-Lucas collocation method
and the Bernoulli collocation method [3]

ti The Actual Error for PM The Estimated Error for PM The Improved Error for PM The Actual Error for BCM [3]
N = 4 (N,M) = (4,6) (N,M) = (4,6) N = 4

0.1 1.9317e-15 2.1204e-15 1.8866e-16 5.1070e-14
0.2 5.0030e-15 5.2348e-15 2.3175e-16 1.2745e-13
0.3 8.0536e-15 8.7198e-15 6.6618e-16 1.6875e-13
0.4 1.2899e-14 1.5806e-14 2.9072e-15 1.8607e-13
0.5 2.4440e-14 3.8594e-14 1.4153e-14 2.6268e-13
0.6 5.0667e-14 1.1186e-13 6.1191e-14 5.5400e-13
0.7 1.0265e-13 3.1564e-13 2.1299e-13 1.2870e-12
0.8 1.9456e-13 8.0664e-13 6.1208e-13 3.7605e-12
0.9 3.4364e-13 1.8584e-12 1.5147e-12 5.3457e-12
1 5.7022e-13 3.9101e-12 3.3399e-12 9.4853e-12

Thus, the estimated error function for M = 4 is written as

e3,4(t) = t4 − 1.5452e + 00t3 + 6.2262e − 01t2 + 5.5511e − 17t. (33)

Figure 1 shows the exact solution and the Pell-Lucas polynomial solutions for N = 4,6,9 of

the model (28)-(29). Figure 2 displays the exact solution and the impoved Pell-Lucas polynomial

solutions for (N,M) = (4,6), (6,7), (9,10) of the model (28)-(29). In Figure 3, the actual absolute

errors functions of the model (28)-(29) for N = 4 and N = 7 are compared. In Figure 4, the

actual absolute error function, the estimated absolute error function and the improved absolute

error function for (N,M) = (4,6) are compared. Table 1 indicates the actual absolute error

for N = 4 , the estimated absolute error for (N,M) = (4,6) and the improved absolute error for

(N,M) = (4,6) of the model (28)-(29). In addition, the results of the present method are compared

with the results of the Bernoulli collocation method for N = 4 in Table 1.
According to Figure 3, a better result is obtained with a larger value of N . According to

Figure 4, the estimated absolute error function gives similar results to the actual absolute error

function, and the improved absolute error function gives better results than the actual absolute

error function. According to Table 1, the results of the present method give better results than

the results of the Bernoulli collocation method [3].

Example 5.2 As the next example, let’s consider the nonlinear differential equation

1

2
y
′′
(1
2
t) + 1

t
y
′
(1
2
t) + y2(t) = 1

2
e−t/2 − 1

t
e−t/2 + e−2t (34)

and the initial conditions

y(0) = 1, y
′
(0) = −1. (35)

.
.
.
.
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Figure 1: Comparison of the exact solution with the Pell-Lucas polynomial solutions of the problem
(28)-(29) for N = 4,6,9
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Figure 2: Comparison of the exact solution with the improved Pell-Lucas polynomial solutions of
the problem (28)-(29) for (N,M) = (4,6) , (N,M) = (6,7) and (N,M) = (9,10)
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Figure 3: Comparison of the actual absolute errors of the problem (28)-(29) for N = 4 and N = 7
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Figure 4: Comparison of the actual absolute error for N = 4 , the estimated absolute error for
(N,M) = (4,6) and the improved absolute error for (N,M) = (4,6) of the problem (28)-(29)
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.

.

The exact solution of the problem (34)-(35) is y(t) = e−t . The solution of the problem

(34)-(35) for any N is sought in the form

yN(t) =
N

∑
n=0

anQn(t). (36)

By using the Theorem 3.1, the fundamental matrix equation is obtained as

WNAN =GN , (37)

WN = [ W̄N(t0) W̄N(t1) ⋯ W̄N(tN) ]
T
, GN = [ g(t0) g(t1) ⋯ g(tN) ]

T
,

W̄N(ti) =
1

2
TN(ti)MN(1/2)B2

NDN +
1

ti
TN(ti)MN(1/2)BNDN + (TN(ti)DNAN)1TN(ti)DN .

The actual absolute errors, the estimated absolute errors, and the improved absolute errors

of the problem (34)-(35) for various values of N and M are presented in Table 2. The exact

solution of the problem (34)-(35) are compared with the Pell-Lucas polynomial solutions for

N = 3,5,8 in Figure 5. Also, the improved Pell-Lucas polynomial solutions are compared for

(N,M) = (3,4), (5,6), (8,9) in Figure 6. The actual absolute error functions of the problem (34)-

(35) for N = 3 , N = 5 and N = 8 are compared in Figure 7. The actual absolute error function of

the problem (34)-(35) for N = 3 is compared with the estimated absolute error function and the

improved absolute error function for (N,M) = (3,4) in Figure 8.

Figure 7 shows that the errors decrease as the value of N increases. From Figure 8, it can be

observed that the estimated absolute error function gives similar results to the actual absolute error

function, and the improved absolute error function gives better results than the actual absolute

error function. Their results can also be seen from Table 2. According to all tables and graphs, it

is concluded that the method gives very successful results.

Example 5.3 The last example is the nonlinear differential equation

1

2
y
′′
(1
2
t) + 1

t
y
′
(1
2
t) + y2(t) = −1

2
sin(t/2) + 1

t
cos(t/2) + sin2(t) (38)

and the initial conditions

y(0) = 0, y
′
(0) = 1. (39)

The exact solution of the problem (38)-(39) is y(t) = sint . The solution of the problem

(38)-(39) for any N is sought in the form

yN(t) =
N

∑
n=0

anQn(t). (40)
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Table 2: Absolute errors of Example 5.2 for N = 3 , N = 5 , N = 8 , (N,M) = (3,4) , (N,M) = (8,9)

Actual Absolute Error Estimated Absolute Error Improved Absolute Error
ti ...N = 3 ...N = 5 ...N = 8 (N,M) = (3,4) (N,M) = (8,9) (N,M) = (3,4)
0.1 1.7278e-04 8.4002e-7 5.2864e-11 1.7663e-04 4.8429e-11 3.8457e-6
0.2 5.2756e-04 1.8825e-6 8.7766e-11 5.4919e-04 8.3974e-11 2.1638e-05
0.3 8.8554e-04 2.4972e-6 1.0562e-10 9.4038e-04 1.0451e-10 5.4837e-05
0.4 1.1500e-03 2.8774e-6 1.1801e-10 1.2532e-03 1.1906e-10 1.0319e-04
0.5 1.2983e-03 3.1012e-6 1.2039e-10 1.4709e-03 1.3015e-10 1.7261e-04
0.6 1.3751e-03 2.9342e-6 4.4906e-11 1.6574e-03 1.4307e-10 2.8226e-04
0.7 1.4857e-03 2.3052e-6 1.4415e-10 1.9566e-03 2.8488e-10 4.7093e-04
0.8 1.7904e-03 2.3894e-6 2.5977e-11 2.5932e-03 1.3396e-9 8.0281e-04
0.9 2.4993e-03 7.2417e-6 1.5975e-9 3.8721e-03 5.9841e-9 1.3727e-03
1 3.8675e-03 2.5928e-05 5.2919e-9 6.1784e-03 2.0743e-8 2.3109e-03
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Figure 5: Comparison of the exact solution and the Pell-Lucas polynomial solutions of the problem
(34)-(35) for N = 3,5,8
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Figure 6: Comparison of the exact solution and the improved Pell-Lucas polynomial solutions of
the problem (34)-(35) for (N,M) = (3,4) , (N,M) = (5,6) and (N,M) = (8,9)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

T
he

 A
ct

ua
l A

bs
ol

ut
e 

E
rr

or
s

|e
3
(t)|

|e
5
(t)|

|e
8
(t)|

Figure 7: Comparison of the actual absolute errors of the problem (34)-(35) for N = 3,5,8
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Figure 8: Comparison of the absolute errors of the problem (34)-(35) for N = 3 and M = 4

From the Theorem 3.1, the fundamental matrix equation becomes

WNAN =GN , (41)

where

WN = [ W̄N(t0) W̄N(t1) ⋯ W̄N(tN) ]
T
,GN = [ g(t0) g(t1) ⋯ g(tN) ]

T
,

W̄N(ti) =
1

2
TN(ti)MN(1/2)B2

NDN +
1

ti
TN(ti)MN(1/2)BNDN + (TN(ti)DNAN)1TN(ti)DN .

In Table 3, we give the actual absolute errors, the estimated absolute errors and the improved

absolute errors of the problem (38)-(39) for various values of N and M . In Figure 9 and Figure

10, we respectively compare the exact solution of the problem (38)-(39) with the approximate

solutions and the improved approximate solutions. In Figure 11, we show the actual absolute error

function of the problem (38)-(39) for N = 4 , N = 7 and N = 9 . In Figure 12, we depict the actual

absolute error function of the problem (38)-(39) for N = 3 , the estimated absolute error function

and the improved absolute error function for (N,M) = (3,4) .

It can be observed from Figure 11 and Table 3 that a more accurate result is obtained with

a larger value of N . The interpretation that the estimated absolute errors are very close to the

actual absolute errors and that the improved absolute error function gives better results than the

actual error function can be made from Figure 12 and Table 3. It is concluded from all tables and

graphs that the presented method is a suitable method for the nonlinear second-order Lane-Emden

type pantograph differential equation (LETPDE) (1).
. . . .
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Table 3: Absolute errors for of the problem (38)-(39) N = 3 , N = 7 , N = 9 , (N,M) = (3,4) ,
(N,M) = (9,10)

The Actual Absolute Error The Estimated Absolute Error The Improved Absolute Error
ti ...N = 3 ...N = 7 ...N = 9 (N,M) = (3,4) (N,M) = (9,10) .........(N,M) = (3,4)
0.1 7.7249e-05 9.6696e-10 1.0658e-12 ...9.2330e-05 ...8.5039e-13 ............1.5081e-05
0.2 2.4963e-04 1.7706e-9 1.7337e-12 ...2.8836e-04 ...1.4459e-12 ............3.8732e-05
0.3 4.3707e-04 2.2067e-9 2.0464e-12 ...4.9283e-04 ...1.7841e-12 ............5.5762e-05
0.4 5.7931e-04 2.4466e-9 2.2737e-12 ...6.5394e-04 ...2.0335e-12 ............7.4622e-05
0.5 6.4562e-04 2.7323e-9 1.9327e-12 ...7.6354e-04 ...2.4017e-12 ............1.1791e-04
0.6 6.4414e-04 3.6030e-9 9.0949e-13 ...8.5715e-04 ...5.2066e-12 ............2.1301e-04
0.7 6.3085e-04 4.1655e-9 4.3201e-12 ...1.0139e-03 ...3.1257e-11 ............3.8309e-04
0.8 7.1812e-04 1.9963e-10 2.1487e-11 ...1.3567e-03 ...1.9426e-10 ............6.3858e-04
0.9 1.0826e-03 1.4526e-8 4.8317e-11 ...2.0519e-03 ...9.3476e-10 ............9.6929e-04
1 1.9727e-03 2.3543e-8 8.3901e-11 ...3.3097e-03 ...3.6115e-9 ............1.3370e-03
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Figure 9: Comparison of the exact solution and the approximate solutions of the problem (38)-(39)
for N = 4,7,9
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Figure 10: Comparison of the exact solution and the improved approximate solutions of the problem
(38)-(39) for (N,M) = (4,5) , (N,M) = (7,8) and (N,M) = (9,10)
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Figure 11: Comparison of the actual absolute errors of the problem (38)-(39) for N = 4,7,9
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Figure 12: Comparison of the absolute errors of the problem (38)-(39) for N = 3 and M = 4

6. Conclusions

The aim of this study is to present an effective and a reliable method for a class of the nonlinear

differential equations. For this purpose, the Pell-Lucas collocation method is presented in the

third part of the article. In addition, in the fourth part of the article, an error estimation method

is introduced by using the residual function and with the help of the third part of the article.

Moreover, the residual improved technique is also presented. In the fifth section of the article, the

methods presented in the previous sections are tested for three examples. These applications are

made by using the Matlab program. Application results are tabulated and graphed. According

to these results, it is observed that more accurate results are obtained when the value of N in

the method is chosen large enough. In addition, it can be said that the error estimation method

is quite successful. The importance of the error estimation method is to have information about

the results of the method even when the exact solution of the problem is not known. Another

result of the study is that the residual improvement technique also yields appropriate results.

According to all these results, it can be interpreted that the Pell-Lucas collocation method, the

error estimation technique and the residual improvement method for the nonlinear second-order

Lane-Emden type pantograph differential equation (LETPDE) (1) are quite effective and reliable.

These presented methods can also be applied to other types of the nonlinear differential equations

after the necessary adjustments are made.
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