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Abstract. In this paper, we study the problem of two-dimensional free
surface flows past an inclined plate of an infinite length. The Riabouch-
insky model is considered. The fluid is assumed to be inviscid and in-
compressible and the flow to be steady and irrotational. For this study,
the effects of gravity and surface tension are negligible. This problem is
solved by using two methods. The first method allow us to compute an-
alytical solution by employing Schwarz-Christoffel mapping. The other
is numerically using the series truncation method. The obtained results
showed a good agreement between the numerical solution and the exact
solution.
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1 Introduction

In this paper, we consider the flow of an incompressible inviscid fluid past a semi-
infinite inclined plate. The two-dimensional flow is assumed to be irrotational
and steady. The Riabouchinsky model is adopted. This model were studied by
Riabouchinsky [11], Daboussy [5] and my work [9] and for a detailed description
of this problem, one can refer to the books Birkhoff and Zarantello [2], Gurevich
[7], Milne-Thomson [10] and others. In the absence of gravity and surface ten-
sion, the problem of Riabouchinsky’s flow past a plate of a finite length has an
exact solution calculated by authors such as [2], [7], [10] and [11]. In this work,
we study the problem of flow past a plate of an infinite length. The flow config-
uration is shown in Figure 1. In the case of zero gravity, we compute analytical
solution by using the classical theory, depend on the conformal mapping such as
Schwarz-Christoffel transformation and hodograph variable. We also solve this
problem numerically via a series truncation method. This method has been used
extensively by many researchers, Vanden-Broeck [12,13], Daboussy [5,6], Alex
[1], Charles [3], Dias [4]. The problem is formulated in Sect.2. The solution pre-
sented is computed using the conformal mapping described in Sect. 3. However,
we also compute the numerical solution using the series truncation method from
Sect. 4. The agreement between the analytical solution and numerical scheme
provides a convincing check on the methods used.
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Fig. 1. The physical z−plane z = x+ iy.

2 Problem formulation

We consider the steady two-dimensional flow past an infinite inclined plate. The
flow configuration shown in Figure 1 is considered. The flow domain is bounded
above by the walls AB and CA′ and the free surface BC. The walls are inclined
by the angle γ with the horizontal where 0 < γ ≤ π

2 . It is assumed that the
flow is symmetric about the y−axis. We suppose that the flow is irrotational
and the fluid is incompressible and inviscid. Far downstream and far upstream
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the velocity is infinite if γ > 0. Let us introduce Cartesian coordinates with
the x−axis along the bottom and the y−axis directed vertically upwards. Let’s
introduce the velocity potential φ and the stream function ψ by defining the
complex potential function f = φ + iψ. Without loss of generality, let φ = 0 at
the point G on the line of symmetry and let ψ = 0 along the free streamline
BC. By conformal transformation, the flow domain in z−plane can be mapped
onto the upper half f−plane. The flow in the f−plane is shown in Figure 2.
We define dimensionless variables by taking φC

VG
as unit length and VG as unit

velocity, where φC is the value of the potential at the point C and VG the velocity
at the point G.
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Fig. 2. The complex potential f−plane f = φ+ iψ.

Next we define the complex velocity

ξ =
df

dz
= u− iv (1)

where u and v denote the horizontal and vertical components of the velocity. The
function ξ is an analytic function of the complex potential f inside the flow do-
main. When the surface tension and the gravity are negligible, the mathematical
problem is to determine the function φ who verifies the following conditions

∆φ = 0 (2)

in the fluid domain. (
∂φ

∂x

)2

+

(
∂φ

∂y

)2

= Cte (3)

The Bernoulli’s equation on the free surface BC.

∂φ

∂y
= tanγ

∂φ

∂x
(4)
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The kinematic condition along the walls.

3 Analytical solution

We will present an exact solution for the flow configuration shown in Figure 1.
The problem is formulated in previous section. First, we introduce the hodograph
variable

Ω = log
dz

df
= log

1

q
+ iθ (5)

Where q and θ are the modulus and argument of the velocity respectively. In
the solution of problems involving polygonal boundaries the required mappings
can always be exhibited in closed form, except perhaps for the determination of
certain parameters. The principal tool is the Schwarz-Christoffel formula which,
through explicit mappings on a half plane. The Schwarz-Christoffel transforma-
tion in its usual form asserts that a simple plane polygon P in the Z− plane,
with vertices Bk having interior angles αkπ, k = 1, ..., n is mapped conformally
from a half-plane by the formula

z(t) = A

∫ n∏
k=1

(t− bk)αk−1dt+B, Imt > 0 (6)

where A and B are real constants, and the bk are points on the real t−axis
whose images are the respective vertices Bk. In this formula, three of the con-
stants bk can be chosen arbitrarily, and if one is placed at infinity the corre-
sponding factor does not appear in the integrand. The shape of free surface is
determined by quadrature

z(f) =

∫
eΩdf (7)

By using (5), the flow field in the f−plane (see Figure 2 ) is mapped to the
semi infinite band in the Ω−plane (see Figure 3). We obtain from the Schwarz-
Christoffel transformation (6)

dΩ

df
=

M√
f2 − 1

(8)

Where M is constant. After integration, we obtain

Ω =
2γ

π
arccoshf − iγ (9)

By using (7) and (9), we obtain

z(f) = e−iγ
∫

(f + i
√

1− f2)
2γ
π df (10)
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Fig. 3. The Ω−plane

On the free surface BC (−1 ≤ f ≤ 1), introducing the change of variables
f = φ = cos θ, after integration (10), the parametric equations of the form of
free surface BC become {

x (θ) = 1
2θ −

1
4 sin(2θ)− π

4
y (θ) = − 1

4 cos(2θ) + 1
4

(11)

for γ = π
2 andx (θ) = − 1

2

(
1

1+2πγ cos((1 + 2πγ)θ − γ) + 1
1−2πγ cos((1− 2πγ)θ + γ)

)
y (θ) = 1

2

(
1

1+2πγ sin((1 + 2πγ)θ − γ)− 1
1−2πγ sin((1− 2πγ)θ + γ)

) (12)

for each value γ where 0 < γ < π
2 and 0 < θ < π.

4 Numerical solution

We consider steady two-dimensional flow past an infinite inclined plate ( see
Figure 1). In this section, we will present a numerical scheme based on series
truncation to compute fully non-linear solutions with both surface tension and
gravity are negligible. Following Birkhoff and Zarantello [2] and Daboussy [5] we
define a new variable by the relation

f(t) =
1 + t2

2t
(13)

This transformation maps the flow domain in f−plane ( see Figure 2) into
the upper half of the unit disc in the complex t−plane so that the free surface
on the circumference (see Figure 4). The image of the solid boundaries is the
real diameter. The images of the five points A,B,C,G,A′ labelled in Figures 3
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Fig. 4. The complex t−plane.

and 4 are t = 0, t = −1, t = 1, t = i, t = 0. The points of the free surface in the
t−plane are given by the relation:

t = eiσ, 0 < σ < π (14)

We introduce the function τ − iθ as

ξ =
df

dz
= eτ−iθ (15)

In these new variables, the Bernoulli equation in condition (3) becomes

eτ = 1 (16)

The behaviour of the complex velocity at infinity is ξ ∼ zp where 2α = π p
p+1 .

It follows that
ξ(t) ∼ t

−2γ
π as t −→ 0 (17)

Next the complex velocity ξ is expanded as

ξ(t) = eiγt
−2γ
π exp

(
k=∞∑
k=0

akt
2k

)
(18)

Where the coefficients ak are real. The expansion takes advantage of the symme-
try of the problem and of the singularity of the velocity at infinity, and satisfies
the kinematic condition (4) along the walls. At the point G (t = i), the velocity
approaches unity (VG −→ 1). Where VG is the velocity at the point G.

The kinematic condition (4) are satisfied by requiring the coefficients ak to
be real. It can be checked that (18) satisfies (17). Therefore we expect the series
in (18) to converge for |t| ≤ 1. The coefficients ak must be determined to satisfy
the boundary condition (16) on the free surface BC. According to (14) and (18),
we have: {

θ (σ) = γ − 2γ
π σ +

∑k=∞
k=1 ak sin (2 (k − 1)σ)

τ (σ) =
∑k=∞
k=1 ak cos (2 (k − 1)σ)

(19)
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The problem is solved numerically by truncating the infinite series in (18)
after N terms. We find the N coefficients ak by collocation. We introduce the
N mesh points on the free surface (0 < σ < π)

σI =
π

N

(
I − 1

2

)
, I = 1, ..., N (20)

We satisfy the equation (16) at the mesh points (20). This yields N equations
of the N unknowns (ak, k = 1, ..., N). For given values of γ, this system of N
non-linear equations with N unknowns is solved by Newton’s method.

The profile of the free surface is obtained by integrating numerically the
relation {

∂x
∂σ = sinσe−τ(σ) cos (θ (σ))
∂y
∂σ = sinσe−τ(σ) sin (θ (σ))

(21)

Most of the calculations were performed with N = 50.
The numerical scheme based on series truncation was used to compute so-

lutions for different values of the angle γ and α −→ ∞ where 0 < γ ≤ π
2 . For

each value of γ, there is a unique solution. We found that the coefficients ak are
vanishes. For example, a1 = 3.77× 10−15, a10 = 1.49× 10−17, a30 = 5.09× 10−18

and a50 = −6.66 × 10−18 for γ = π
4 . In precedent section, we computed the

solution of this problem analytically for each value of γ where 0 < γ ≤ π
2 . In

the case γ = π
2 , the comparison between the exact solution in equation (11) and

numerical solution is shown in Figure 5. Figures 6-9 show the free surface profiles
for some values of the angle γ where γ = 4π

9 , γ = π
4 , γ = π

6 and γ = π
30 by using

the two precedent methods. These figures provide the good agreement between
the exact free-streamline solution and numerical free surface profile.
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tion(—) for α =∞, γ = π
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Fig. 9. Comparison of the numerical free surface profile (�) with the analytical solu-
tion(—) for α =∞, γ = π
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5 Conclusion

In this work, we have considered both an analytical method and a numerical
method for determining the free-surface flow past an infinite inclined plate. The
flow configuration is shown in the Figure 1. We have computed solutions whose
gravity and surface tension are negligible. We calculated the analytical solution of
this problem using the Schwarz-Christoffel mapping and the numerical solution
using the series truncation method. Figures 5-9 show that the comparison of
the numerical solution with the analytical solution of which it provides good
agreement between them.
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