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Abstract. In this study, we implement a variant of infeasible interior-
point algorithm for solving monotone linear complementarity problems
(LCP). We first reformulate the monotone LCP as an minimization prob-
lem. Then a descent iterative method is applied to the latter. The descent
direction is computed via the Newton method. However, for maintaining
the positivity of iterates, a novel and efficient strategy is proposed. Some
numerical results are reported to show the efficiency of our proposed
approach.
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1 Introduction

Consider the following linear complementarity problem (LCP): find x ∈ Rn and
y ∈ Rn such that

y = Mx+ q, x ≥ 0, y ≥ 0, xT y = 0 (1)

where M ∈ Rn×n is a given matrix and q ∈ Rn. Here x, y ≥ 0 says that x and
y are nonnegative vectors in ∈ Rn.

The importance of the LCP is due to its broad range of applications in the
fields of economic, engineering such as game theory and mathematical program-
ming (linear and quadratic programming).

There are a variety of solution approaches for LCP which have been stud-
ied intensively. Besides the simplicial Lemeke’s method, the interior-point al-
gorithms (IPM) gained more attention than others. Primal-dual path-following
algorithms are the most attractive of IPM [10, 11]. We distinguish two type of
primal-dual IPMs such as feasible [3, 5, 7] and infeasible [1, 4]. As is known, in
all feasible interior-point algorithms, a crucial numerical problem is to find an
initial strictly feasible for their starting. Therefore an infeasible-interior-point
algorithm is suggested to remedy this drawback. The advantage of this latter is
that they start with any positive initial point which is not necessarily strictly
feasible. To do so, we use the so-called logarithmic penalty method to transform
the LCP into an equivalent minimization problem. The first order optimality
condition gives a perturbed nonlinear system of equations and the latter is then
solved by using a descent Newton method. For maintaining the positivity of iter-
ates during the algorithm process a novel and a practical strategy for computing
the step-length is proposed.

The rest of the paper is built as follows. In section 2, we give a through
description of the approach. In section 3, the prototype algorithm is described.
In section 4, numerical results are reported. Finally, a conclusion is drawn the
last section of the paper.

Throughout this paper the following notations are used. Given x, y ∈ Rn,
xT y =

∑n
i=1 xiyi is their usual scalar product whereas xy = (xiyi)1≤i≤n denotes

their coordinate-wise product and the same as for the vectors x/y = (xi/yi)1≤i≤n

and x−1 = (1/xi)1≤i≤n. The identity and the vector of all ones are denoted
respectively by I and e. Moreover, diag(x) is a diagonal matrix, which contains
on his main diagonal the components of x in the original order.

2 Description of the penalty method

The feasible set and the optimal solution set of the LCP, are denoted, respec-
tively, by:

F = {(x, y) ∈ R2n : Mx+ q = y, x ≥ 0, y ≥ 0},

and

Sol(LCP) = {(x, y) ∈ F : xT y = 0}.



An Infeasible Interior-point Algorithm for... 55

Throughout the paper, we assume the following assumptions.
Assumption 1. There exists a couple of vectors (x0, y0) such that:

y0 = Mx0 + q, x0 > 0, y0 > 0.

This assumption is often used to develop the interior-point method.
Assumption 2. The matrix M is positive semi-definite, i.e., for all v ∈ Rn,
vTMv ≥ 0 then the LCP is called monotone LCP.
Under these assumptions, the Sol(LCP) is nonempty convex and compact set.
We reformulate the LCP into the following equivalent minimization problem
given by:

min
(x, y)

[
xT y s.t. (x, y) ∈ F

]
, (2)

in the sense that if (x, y) is a complementarity solution, then it is a global
minimizer to (2) with the objective value is zero.
Applying the logarithmic penalty (barrier) function to system (2), we get the
following penalized problem associated to it:

min
(x, y)

[
xT y − µ

n∑
i=1

lnxi − µ

n∑
i=1

ln yi

]
s.t. (x, y) ∈ F . (3)

It known that (3) has a unique solution for any µ > 0. Moreover if µ goes to
zero, we get an optimal solution (1) (see [10]). The role of the logarithmic penalty
function is to keep x and y both positive, and if we denote by L(x, y, z, µ) the
Lagrangian for (3), we have that

L(x, y, z, µ) = xT y − µ

n∑
i=1

lnxi − µ

n∑
i=1

ln yi − zT (Mx+ q − y) (4)

The first order conditions for (4) yield the system of non linear equations

y − µX−1e−MT z = 0, (5)

x− µY −1e+ z = 0, (6)

Mx+ q − y = 0, (7)

where z ∈ Rn , X = diag(x) and Y = diag(y) and under our assumptions, the
matrix XMT +Y is non singular [6]. Using the equations in (5-7), we obtain the
following system (

Mx+ q − y
XY e

)
=

(
0
µe

)
. (8)

Hence, solving system (3) is equivalent to solving system (8).



56 W.Grimes et al.

2.1 Computation of Newton search direction

Now, by a direct application of Newton’s method to (8), we get the following
system of equations: (

M −I
Y X

)(
∆x
∆y

)
=

(
y −Mx− q
µe− xy

)
, (9)

Under our hypothesis system (9) has a unique solution (∆x,∆y), since the bloc
matrix is nonsingular (Proposition 3.1 in [12]).

2.2 A novel strategy for determining the step-length

In this subsection, we are interested to determine a step-length along the Newton
direction for keeping iterates positives. Let define α−, α+, β− and β+ as:

α+ =

{
+∞ if (∆x)i ≤ 0, ∀ i,

mini
xi

(∆x)i
if not;

α− =

{−∞ if (∆x)i ≥ 0, ∀ i,

maxi
xi

(∆x)i
if not;

β+ =

{
+∞ if (∆y)i ≤ 0, ∀ i,

mini
yi

(∆y)i
if not;

β− =

{−∞ if (∆y)i ≥ 0 ∀ i,

maxi
yi

(∆y)i
if not.

In this work we choose (α, β) as the optimal solution of the linear program:

∆ = max{α⟨y,∆x⟩+ β⟨x,∆y⟩ : ρα− < α < ρα+ and ρβ− < β < ρβ+},

where ρ ∈ (0, 1).
Then it is easily seen that α and β are as follows:

α =

{
ρα+ if ⟨y,∆x⟩ > 0
ρα− if ⟨y,∆x⟩ ≤ 0,

(10)

and

β =

{
ρβ+ if ⟨x,∆y⟩ > 0
ρβ− if ⟨x,∆y⟩ ≤ 0.

(11)

By taking a step-length along this direction, we construct a new ordered pair
(x+, y+) with

x+ = x+ α∆x, y+ = y + β∆y.
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3 The prototype algorithm for monotone LCPs

In this section, we describe the Damped-Newton step IPMs for monotone LCP
in Figure 1. First, we use an accuracy parameter ε > 0 and a barrier default
µ̂ > 0. The algorithm starts by a positive point (x0 > 0, y0 > 0) not necessarily
strictly feasible. Using the obtained search directions (∆x,∆y) from (9) and the
step-length (α, β) from (10) and (11) and we take a Damped-Newton step, the
algorithm produces a new iterate (x+, y+) = (x+α∆x, y+β∆y). Then, it updates
the barrier parameter µ to θµ where 0 < θ < 1 and target a new µ-center and so
on. This procedure is repeated until the stopping criterion max(∥z∥, ∥s∥) ≤ ε is
satisfied where z = X−1∆x, s = Y −1∆y. If α = β = 1, we get the full-Newton
steps IPMs for monotone LCPs.

An accuracy parameter ε > 0 and a barrier default µ̂ > 0 are given.

1. An initial positive point (x0, y0) > 0 and µ > µ̂ > 0.
2. Compute (∆x,∆y) from (9), z = X−1∆x and s = Y −1∆y.
3. If max(∥z∥, ∥s∥) > ε. Then determine (α, β) following (10) and (11) .

Set x := x+ α∆x and y := y + β∆y and return to 2.
4. If max(∥z∥, ∥s∥) ≤ ε we have a good approximation.

(a) If µ ≥ µ̂, decrease µ (µ := θµ) with 0 < θ < 1 and go to 2.
(b) If µ < µ̂, STOP. We have obtained a good approximation of the

optimal solution for LCP.

Fig 1. The prototype algorithm for monotone LCPs

4 Numerical results

In this section, we test our algorithm on some examples of monotones LCPs. We
implemented the algorithm on software MATLAB 7.9 and run on a PC with
CPU 2.13 GHz and 2G RAM memory and double precision format. In the
implementation, our accuracy is set to ε = 10−8. Also in view of the influence of
barrier parameter µ and θ, different values of them are used in order to improve
the performances of algorithm. Also in the numerical tables, we display the
following notations: ”Iter” and ”CPU” to denote the number of iterations and
the elapsed times, respectively.
Problem 1. The data of the following monotone LCP problem is given by

M =


7 13 6 8 7
13 34 19 20 24
6 19 12 10 15
8 20 10 14 13
7 24 15 13 22

 , q =


−3.2
−17
−7.4
−8

−11.2

 .



58 W.Grimes et al.

An exact solution of Problem 1, is:

xexact = (0, 0.5, 0, 0, 0)T , yexact = (3.3, 0, 2.1, 2, 0.8)T .

The numerical results with different values of µ and θ are shown in Table 1.

Table 1. Numerical results for Problem 1. where ρ = 1

µ0 → 0.5 0.05 0.005 0.0005 0.00005

θ ↓ Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

0.9 153 0.3774 132 0.3282 110 0.2799 88 0.2362 66 0.1780

0.7 46 0.1642 39 0.1121 33 0.0930 26 0.0742 20 0.0537

0.5 24 0.0585 20 0.0551 17 0.0403 14 0.0384 10 0.0302

0.3 14 0.0338 12 0.0215 10 0.0194 8 0.0173 6 0.0158

0.1 8 0.0173 7 0.0164 6 0.0158 5 0.0143 4 0.0035

Problem 2. The monotone LCP problem in this example is given by

M =



4 −2 0 · · · 0

−1 4 −2
. . . 0

0 −1 4
. . . 0

...
. . .

. . .
. . .

...
0 0 0 · · · 4


, q =


−1
1
...
1
−1

 .

An exact solution of Problem 1, is:

xexact = (0.25, 0, · · · , 0, 0.25)T , yexact = (0, 0.75, 1, · · · , 1, 0.5, 0)T .

The numerical results with different values of n and µ are shown in Table 2.

Table 2. Numerical results for Problem 2. where θ = 0.1 and ρ = 0.9

µ0 → 0.5 0.05 0.005 0.0005 0.00005

n ↓ Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

5 8 0.0073 7 0.0065 6 0.0059 5 0.0037 4 0.0030

10 8 0.0093 7 0.0081 6 0.0073 5 0.0062 4 0.0038

25 8 0.0232 7 0.0214 6 0.0181 5 0.0168 4 0.0091

50 8 0.0472 7 0.0384 6 0.0327 5 0.0285 4 0.0224

100 8 0.4225 7 0.3993 6 0.3453 5 0.2789 4 0.1468

500 8 8.0997 6 6.4651 6 5.6456 5 4.7452 4 4.0035

1000 8 241.0415 7 215.1133 6 189.6889 5 155.1797 4 123.2585
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5 Conclusion

In this study, we presented a variant of an infeasible interior-point algorithm for
solving monotone LCP. For its numerical implementation an efficient step length
is suggested. Moreover, our preliminary numerical results are very encouraging.
Future work, we may extended this new idea for the class of sufficient LCPs.
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