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Abstract. In this paper, we present an interior-point algorithm for solv-
ing P∗(κ)-linear complementarity problem. The specificity of our method
is to compute Newton’s step using a modified system of the centrality
equation. For this reason, we consider three know function in the litera-
ture applied in the centrality equation, so a new Newton’s direction are
determined. The convergence of these algorithms is accomplished. This
search is followed by comparative study between the numerical result
obtained through these three functions.
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1 Introduction

Given M ∈ Rn×n and q ∈ Rn, the standard linear complementarity problem
(LCP ) is to find a vector pair (x, s) ∈ Rn ×Rnsuch that

s = Mx+ q, xs = 0, ( x, s) ≥ 0. (1)

where xs denotes Hadamard product of vector x and s, i.e., xs = [x1s1, ..., xnsn]
T

.

We shall also use the notation
x

s
=

[
x1
s1
, ...,

xn
sn

]
, where si 6= 0 for all 1 ≤ i ≤ n.

LCPs arises in many areas such as variational inequalities, economic equilibri
a problems and bimatrix games. It is known that this problem trivially includes
the two important domains in optimization: the linear programming (LP )and
the convex quadratic programming (CQP) in their usual formulations, then this
problem became the subject of many research interest.

In this paper, we consider problem (1) with M being a P∗(κ)-matrix. The
class

of P∗(κ)-matrices was introduced by Kojima et al. [6]. Let κ be a nonnegative
number. A matrix M ∈ Rn×n is called a P∗(κ)-matrix if and only if

(1 + 4κ)
∑

i∈I+(x)

xi (Mx)i +
∑

i∈I−(x)

xi (Mx)i ≥ 0,∀x ∈ Rn

where

I+(x) = {i ∈ I : xi (Mx)i ≥ 0} , I−(x) = {i ∈ I : xi (Mx)i < 0} .

The class of all P∗(κ)-matrices is denoted by P∗(κ), and the class P∗ is
defined by P∗ =

⋃
κ≥0

P∗(κ), i.e., M is a P∗ -matrix if M ∈ P∗(κ) for some κ ≥ 0.

Obviously, P∗(0) is the class of positive semidefinite matrices.

2 Problem statement

The basic idea of IPMs for P∗(κ)-LCP is to replace the second equation in
P∗(κ)-LCP by the parameterized equation xs = µe, with parameter µ > 0 and
e = (1, 1, ..., 1)T . The system (1) becomes :

s = Mx+ q, xs = µe, ( x, s) ≥ 0. (2)

Without loss of generality, we assume that (1) satisfies the interior point
condition (IPC), i.e., there exists (x0, s0) > 0 such that s0 = Mx0 + q. Since
M is a P∗(κ)-matrix and IPC holds, the parameterized system (2) has a unique
solution for any µ > 0 (Lemma 4.3 of [6]) and it is denoted as ((xµ, sµ)). We call
it µ-center for µ > 0 and the solution set {(xµ, sµ) \ µ > 0} is called the central
path of (1). As goes to zero, the limit of the central path exists and it naturally
yields the optimal solution for (1) (Theorem 4.4 of [6]).
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3 A new search directions

The basic idea behind this approach is to replace the non linear equation :

xs = µe in (2) by an equivalent algebraic transformation ψ(
xs

µ
) = ψ(e), where

ψ, is a real valued function on [0,+∞[such that ψ(0) = 0 and differentiable
on(0,+∞)such that ψ′(t) > 0, for all t > 0. Then the system (2) can be written
as the following equivalent form:

s = Mx+ q, ψ(
xs

µ
) = ψ(e), ( x, s) ≥ 0. (3)

For any strictly feasible point x and s, we find displacements ∆x and ∆s such
that −M (x+∆x) + (s+∆s) = q

ψ(
xs

µ
+
x∆s+ s∆x+∆s∆x

µ
) = ψ(e)

(4)

Neglecting the quadratic term∆s∆x in the above equation and using Taylor’s
development we get{

−M 4 x+4s = 0

x∆s+ s∆x = µ(ψ′(
xs

µ
))−1 (ψ(e)− ψ(

xs

µ
)) (5)

Now to simplify the matters, we define the vectors

v =

√
xs

µ
, dx :=

υ∆x

x
and ds :=

υ∆s

s
. (6)

Then we have the scaled Newton system as follows{
−M dx + ds = 0
dx + ds = pv

, (7)

where M̄ = DMD with D = X
1
2S−

1
2 , X := diag(x), S := diag(s) and

pv =
ψ(e)− ψ(v2)

vψ′(v2)
By choosing function ψ(t) appropriately, the system (7) can be used to define

a class of search directions. For example:
ψ(t) = t yields pv = v−1 − v which gives the classical search directions [8]

ψ(t) =
√
t yields pv = 2 (e− v) which gives Darvay search directions [3]

ψ(t) =

√
t

2
(
1 +
√
t
) yields pv = e− v2 the new search directions [5]

The new iterate is obtained by taking a full-Newton step according to

x+ := x+∆x, s+ := s+∆s (8)
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For the analysis of the algorithm, we de ne a norm-based proximity measure as
follows:

δ (v) = δ (x, s;µ) := ‖pv‖ (9)

Generic feasible IPM for P∗(κ)-LCP

Input:
Accuracy parameter ε > 0;
a barrier update parameter θ, 0 < θ < 1;
threshold parameter 0 < τ < 1;
a strictly feasible point (x0, s0) and µ0 > 0 such that δ (x0, s0;µ) ≤ τ .

begin
x := x0, s := s0, µ = µ0;
while nµ > ε do
begin

solve (7) to obtain (dx, ds) and then use (6) to compute (∆x,∆s)
x := x+ α∆x; s := s+ α∆s; µ := (1− θ)µ

end
end.

Analysis of the algorithm

For the choice of ψ(t) =

√
t

2
(
1 +
√
t
) , we have the following results:

1. δ (v) =
∥∥e− v2∥∥ and δ (v) = 0⇔ v = e⇔ xs = µe.

2. Let δ := δ (x, s;µ) <
2

1 +
√

1 + 4κ
. Then the full-Newton step is strictly

feasible and δ(x+, s+, µ) ≤ (1 + 2κ) δ2, (the quadratic convergence of the
newton step ).

3. Let (x, s) such that δ := δ (x, s;µ) <
2

1 +
√

1 + 4κ
and µ+ = (1− θ)µ where

θ ∈ (0, 1) then

δ(x+, s+, µ+) ≤ 1

(1− θ)
+ (θ
√
n+ δ(x+, s+, µ)).

4. Let

δ := δ (x, s;µ) <
1

2 (1 + 2κ)
<

2

1 +
√

1 + 4κ
, θ =

1

2 (4 + 7κ)
√
n

and n ≥ 4. Then δ(x+, s+, µ+) ≤ 1

2 (1 + 2κ)
.
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Let τ =
1

2 (1 + 2κ)
and θ =

1

(4 + 7κ)
√
n
. Then the algorithm requires at

most

O

(
(4 + 7k)

√
n log

(x0)
T
s0

ε

)
.

Lemma 1 : Assume that (x0, s0) is a strictly feasible solution of (2), µ0 =

(x0)
T
s0

n
and δ (x0, s0;µ0) ≤ 1

2 (1 + 2κ)
. Moreover, let

(
xk, sk

)
be the point

obtained after k iterations. Then the inequality
(
xk
)T
sk ≤ ε is satisfied for

k ≥ 1

θ
log

(x0)
T
s0

n

4 Numerical results

To illustrate the numerical behavior of the proposed function compared to other
functions of the literature, we implemented an algorithm with these functions
and we took the results in Table 1 and Table 2. The results of the application

of the algorithm on this function with different values of θ (θ1 =
1

(4 + 7κ)
√
n
,

θ2 =
1

2 (1 + 4κ)
√
n

and θ = 0.05) are given in Table 3 : 7.

Example 1 : Let be a P∗(0)− LCP or

M =



4 −1 0 0 . . . 0
−1 4 −1 0 . . . 0

0 −1 4 −1
. . .

...

0 0 −1 4
. . . 0

...
...

. . .
. . .

. . . −1
0 0 . . . 0 −1 4


, q =



−1
−1
−1
−1
...
−1


and

x0 =



0.65
0.65
0.65
0.65

...
0.65
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Table 1. θ = 0.01, n = 7

‘

pv Iter gap time

v−1 − v 1112 1.0004 × 10−4 0.660534

2(e− v) 1112 1.0004 × 10−4 0.659813

e− v2 1112 1.0003 × 10−4 0.795040

‘
Table 2. θ = 0.05, n = 7

‘

pv Iter gap time

v−1 − v 219 1.0259 × 10−4 0.211269

2(e− v) 219 1.0253 × 10−4 0.184771

e− v2 219 1.0246 × 10−4 0.720793

Table 3. θ = θ1

‘

n Iter gap time

10 141 1.0639 × 10−4 0.330995

20 214 1.0092 × 10−4 0.583387

30 271 1.0443 × 10−4 1.264589

40 321 1.0334 × 10−4 2.587953

50 366 1.0196 × 10 − 4 4.544553

100 547 1.0171 × 10−4 27.322898

200 815 1.008 × 10−4 164.913919

300 926 1.0117 × 10−4 544.87272

500 1373 1.0104 × 10−4 2572.057799

‘
Table 4. θ = θ2

‘

n Iter gap time

10 68 1.1497 × 10−4 0.938725

20 104 1.1117 × 10−4 0.400232

30 133 1.0692 × 10−4 0.659304

40 158 1.0494 × 10−4 1.259045

50 180 1.0683 × 10 − 4 2.329963

100 271 1.0164 × 10 − 4 10.943022

200 405 1.0184 × 10−4 251.86287

300 511 1.0039 × 10−4 277.172326

500 684 1.0016 × 10−4 1342.633206

Example2: Consider a PCL with P∗(κ)−matrix such that κ ≥ 0.

M =


Q2

Q3

. . .

Q2

Q3


or Q2 =

(
0 1 + 4κ1
1 0

)
, Q3

0 1 + 4κ2 0
1 0 0
0 0 1
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We choose the starting point x0 = s0 = e and q = s0 − Mx0. In this
example, we take M ∈ R50×50 and κ = κ1 = κ2 ∈ {1, 2, 3, 10, 100, 1000} The
results obtained are summarized in the three tables below

‘
Table 5. P∗(κ) − LCP (θ = θ1)

‘

κ Iter gap time

1 1016 1.001284409536842 × 10−4 22.419961

2 1665 1.004988263694473 × 10−4 34.141740

3 2315 1.000897276312732 × 10−4 47.832904

10 6861 1.01590604004929 × 10−4 116.245207

100 65318 1.000196883795912 × 10−4 892.014489

1000 649890 1.000008971770453 × 10−4 9061.023120

‘
Table 6. P∗(κ) − LCP (θ = θ2)

‘

κ Iter gap Time

1 923 1.004310 × 10−4 20.212444

2 1665 1.00499 × 10−4 36.185753

3 2407 1.00518 × 10−4 42.901943

10 7604 1.00025 × 10−4 90.887090

100 74412 1.00006 × 10−4 843.481973

1000 742493 1.00002 × 10−4 8137.608236

‘
Table 7. P∗(κ) − LCP (θ = 0.05)

‘

κ Iter gap Time

1 257 1.04227 × 10−4 12.439228

10 257 1.04227 × 10−4 13.807880

100 257 1.04227 × 10−4 14.901724

1000 257 1.04227 × 10−4 16.691180

Remark:Through the numerical examples, we notice that:

– The number of iterations and the computation time recorded when the choice
of θ = 0.05 are much better results

– It is clear from Tables that the iteration number of the algorithm depends
on the update parameter θ and the dimension of the problem. It is quite
surprising that the larger θ gives the lowest iteration count in all cases. The
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iteration number of the algorithm increases as the dimension of the problem
is increased.

– The algorithms based on the three functions are the same results
– In the last table: the number of iterations and the computation time are

almost the same.

Therefore, this numerical results show that our algorithm is competitive and
reliable.

5 Conclusion

In this paper, we have proposed an implementation of interior point algorithm
for solving P∗(κ)−linear based on a new search direction given by ψ(t). Some
preliminary numerical results are provided to reveal the influence of the update
parameters θ and the dimension of the problem on the number of iterations.

The determination of a new Newton class is done either by introducing a
new functionality which satisfies the above hypotheses, or by introducing other
functions based on the properties of the kernel functions. These algorithms can
be extended for other semidefinite and semidefinite quadratic programs.
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