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1. Introduction 

Hilger [1] first proposed the concept of time scales. The time-scale approach, used to model phenomena that 

manifest partly in discrete-time and continuous-time, unifies difference and differential equations. [2-5] 

provide heat transfer, stock market, economic, epidemic models and biological by utilising this concept. There 

has been an appreciable interest and research about boundary value problems on time scales in the past two 

decades. Moreover, there have been many results recently about the existence and multiplicity of symmetric 

positive solutions (SPSs) for nonlinear second-order and higher-order differential and dynamics equations with 

boundary conditions [6-14].  

In [6] Qu investigated existence of positive solutions for following second order differential equations  

−𝑢′′(𝑡) = 𝑓(𝑡, 𝑣),                         

−𝑣′′(𝑡) = 𝑔(𝑡, 𝑢), 𝑡 ∈ [0,1]
 

with following boundary conditions 

𝑢(𝑡) = 𝑢(1 − 𝑡), 𝑢′(0) − 𝑢′(1) = 𝑢(𝜉1) + 𝑢(𝜉2)

𝑣(𝑡) = 𝑣(1 − 𝑡), 𝑣′(0) − 𝑣′(1) = 𝑣(𝜉1) + 𝑣(𝜉2)
 

where  0 < 𝜉1 < 𝜉2 < 1. 

Inspired by the studies mentioned above, we will study the existence of SPSs for the following system of 

second-order boundary value problems (SSBVPs).  
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 {
−𝜗∆∇(𝑡) = 𝑓(𝑡, 𝜑), 𝑡 ∈ 𝕋𝜅

𝜅

−𝜑∆∇(𝑡) = 𝑔(𝑡, 𝜗), 𝑡 ∈ 𝕋𝜅
𝜅 (1) 

subject to the boundary conditions 

{
𝜗(𝑡) = 𝜗(𝑏 − 𝑡 + 𝑎), 𝛼[𝜗∆(𝑎) − 𝜗∆(𝜌(𝑏))] = 𝜗(𝜏1) + 𝜗(𝜏2)

 𝜑(𝑡) = 𝜔(𝑏 − 𝑡 + 𝑎), 𝛼[𝜑∆(𝑎) − 𝜑∆(𝜌(𝑏))] = 𝜑(𝜏1) + 𝜑(𝜏2)
(2) 

where 𝕋 is a bounded symmetric time-scale (with 𝑎 = min 𝕋 and 𝑏 = max 𝕋), 𝜏1, 𝜏2 ∈ 𝕋 such that 𝜏1 = 𝑏 −

𝜏2 + 𝑎, 𝛼 ≥ 𝑏 − 𝑎 and 𝑓, 𝑔: 𝕋 × ℝ+ → ℝ+ are 𝑙𝑑-continuous functions, both 𝑓(. , 𝑠) and 𝑔(. , 𝑠) are symmetric 

on 𝕋 time-scale such that 𝑓(𝑡, 0) ≡ 𝑔(𝑡, 0) ≡ 0.  

The second section of the present paper provides some of the basic definitions and lemmas needed for the 

next sections. Section 3 proves SPSs for the system (1)-(2) using the Krasnosel’skii fixed point theorem and 

presents two examples to illustrate the main results herein. Finally, we discuss the results and future studies. 

This study is a part of the first author’s master’s thesis. 

2. Preliminaries 

This section presents some basic definitions and results concerning about time scale theory which can be in 

[15-17]. Let 𝕋, a nonempty closed subset of ℝ, be a time scale such that 𝑎 = min 𝕋 and 𝑏 = max 𝕋. The jump 

operators 𝜎, 𝜌 ∶  𝕋 → 𝕋 are defined by 𝜎(𝑡) ≔ inf{𝑠 ∈ 𝕋 ∶  𝑠 > 𝑡}, 𝜌(𝑡) ≔ sup{𝑠 ∈ 𝕋 ∶  𝑠 < 𝑡} where 

inf ∅ =  𝑎 and sup ∅ =  𝑏 so that 𝜌(𝑎) = 𝑎 and 𝜎(𝑏) = 𝑏. A point 𝑡 ∈ 𝕋 is called right scattered, right dense, 

left scattered, and left dense if  𝜎(𝑡) > 𝑡,  𝜎(𝑡) = 𝑡, 𝜌(𝑡) < 𝑡 and  𝜌(𝑡) = 𝑡 respectively.  

If a function 𝑥 from 𝕋 to ℝ is continuous at all left dense points and has finite right-sided limits at all right 

dense points of 𝕋, then it is said to be 𝑙𝑑-continuous on 𝕋. Moreover, 𝒞𝑙𝑑(𝕋) denotes the set of 𝑙𝑑-continuous 

functions 𝑥: 𝕋 → ℝ. Here, 𝒞𝑙𝑑(𝕋) is a Banach space with below norm ∥ 𝑥 ∥≔ max𝑡∈𝕋|x(t)|, 𝑥 ∈ 𝒞𝑙𝑑(𝕋). 

Throughout this paper, let define the delta and nabla differentiability  sets 𝕋𝜅 ∶=  𝕋 − (𝜌(𝑏), 𝑏] , 𝕋𝜅: =

 𝕋 −  [𝑎, 𝜎 (𝑎)) and 𝕋𝜅
𝜅: =  𝕋 − ([𝑎, 𝜎 (𝑎))  ∪  (𝜌(𝑏), 𝑏]) which are closed. Therefore they are time scales 

too, and we are also able to define the above space and norm using 𝕋𝜅
𝜅 instead of 𝕋. 

Definition 2.1. [16] Let 𝑓 be a function from 𝕋 to ℝ. Then, 𝑓 is delta differentiable at 𝑡 ∈ 𝕋𝜅 if there exists a 

number 𝑓∆(𝑡) with the following property: for any 𝜀 > 0 there exists a 𝛿 > 0 such that 𝑠 ∈ 𝕋 and  

|𝑡 −  𝑠| < 𝛿 ⇒  |𝑓(𝜎 (𝑡)) − 𝑓(𝑠) − 𝑓∆ (𝑡)(𝜎 (𝑡) − 𝑠)|  ≤   𝜀|𝜎 (𝑡) − 𝑠| 

Here, 𝑓 is said to be delta differentiable, if 𝑓 is delta differentiable, for all 𝑡 ∈ 𝕋𝜅.  

Definition 2.2. [16] Let 𝑓 be a function from 𝕋 to ℝ. Then, 𝑓 is nabla differentiable at 𝑡 ∈ 𝕋𝜅 if there exists a 

number 𝑓∇(𝑡) with the following property: for any 𝜀 > 0 there exists a 𝛿 > 0 such that 𝑠 ∈ 𝕋 and 

|𝑡 −  𝑠| < 𝛿 ⇒  |𝑓(𝜌(𝑡)) − 𝑓(𝑠) − 𝑓∇(𝑡)(𝜌(𝑡) − 𝑠)| ≤  𝜀|𝜌(𝑡) − 𝑠| 

Here, 𝑓 is said to be nabla differentiable, if 𝑓 is nabla differentiable, for all 𝑡 ∈ 𝕋𝜅. 

Definition 2.3. [16] Let 𝐹 be a function from 𝕋 to ℝ. Then, 𝐹 is called a nabla antiderivative of 𝑓: 𝕋 → ℝ 

provided 𝐹∇(𝑡) = 𝑓(𝑡) holds for all 𝑡 ∈ 𝕋𝜅. Moreover, the nabla integral of 𝑓 is defined as follows: 

∫ 𝑓(𝑠)𝛻𝑠

𝑡

𝑎

= 𝐹(𝑡) − 𝐹(𝑎), for all 𝑡 ∈ 𝕋 

Definition 2.4. [12] Let 𝕋 be a time scale. Then, 𝕋 is called symmetric, if 𝑏 − 𝑡 + 𝑎 ∈ 𝕋, for all 𝑡 ∈ 𝕋.  

Definition 2.5. [12] Let 𝜗 be a function from 𝕋 to ℝ. If, for all 𝑡 ∈ 𝕋, 𝜗(𝑡)  = 𝜗(𝑏 −  𝑡 +  𝑎), then 𝜗 is called 

symmetric on 𝕋. 
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Definition 2.6. Let 𝜗, 𝜑 be functions from 𝕋 to ℝ. If a pair of (𝜗, 𝜑) is a solution of 𝑆𝑆𝐵𝑉𝑃 (1)– (2) and  𝜗, 𝜑 

are symmetric on 𝕋, then a pair of (𝜗, 𝜑) is called a symmetric solution of 𝑆𝑆𝐵𝑉𝑃 (1)– (2) on 𝕋. 

Definition 2.7. [19] Let 𝕏 be a real Banach space. A nonempty closed set 𝑃 ⊂ 𝕏 is called a cone of 𝕏 if it 

satisfies the following two conditions: 

i. 𝑦 ∈ 𝑃, 𝛾 > 0 implies 𝛾𝑦 ∈ 𝑃 

ii. 𝑦, −𝑦 ∈ 𝑃 implies 𝑦 = 0 

Theorem 2.8. [18,19] Let 𝔹 be a Banach space, and 𝑃 ⊂  𝔹 is a cone in 𝔹. Assume that 𝜔1 and 𝜔2 are open 

subsets of 𝔹 with 0 ∈ 𝜔1 and 𝜔1 ⊂ 𝜔2. Let 𝑇: 𝑃 ∩ (𝜔2 ∖ 𝜔1) → 𝑃 be a completely continuous operator such 

that either 

i. ∀𝑢 ∈ 𝑃 ∩ 𝜕𝜔1: ‖𝑇𝑢‖ ≤ ‖𝑢‖, ∀𝑢 ∈ 𝑃 ∩ 𝜕𝜔2: ‖𝑇𝑢‖ ≥ ‖𝑢‖ 

or 

ii. ∀𝑢 ∈ 𝑃 ∩ 𝜕𝜔1: ‖𝑇𝑢‖ ≥ ‖𝑢‖, ∀𝑢 ∈ 𝑃 ∩ 𝜕𝜔2: ‖𝑇𝑢‖ ≤ ‖𝑢‖ 

holds. Then, 𝑇 has a fixed point in 𝑃 ∩ (𝜔2 ∖ 𝜔1). 

Hereinafter, 𝕋 is a symmetric time scale with 𝑎 = min 𝕋 and 𝑏 = max 𝕋, and 𝜏1, 𝜏2 ∈ 𝕋 such that 𝜏1 = 𝑏 −

𝜏2 + 𝑎.  

Lemma 2.9. Let 𝑞 ∈ 𝒞𝑙𝑑(𝕋) and 𝑞(𝑡) ≢ 0. When 𝜏1, 𝜏2 ∈ 𝕋  such that 𝜏1 = 𝑏 − 𝜏2 + 𝑎 and 𝛼 ≥ 𝑏 − 𝑎, then 

the BVP 

𝜗∆∇(𝑡) = −𝑞(𝑡), 𝑡 ∈ 𝕋𝜅
𝜅 (3) 

𝜗(𝑡) = 𝜗(𝑏 − 𝑡 + 𝑎), 𝛼[𝜗∆(𝑎)−𝜗∆(𝜌(𝑏))] = 𝜗(𝜏1) + 𝜗(𝜏2) (4) 

has a unique solution 

𝜗(𝑡) = ∫ 𝐺(𝑡, 𝑠)𝑞(𝑠)∇𝑠

𝑏

𝑎

 

where 

𝐺(𝑡, 𝑠) = 𝐺1(𝑡, 𝑠) + 𝐺2(𝑠), (5) 

here 

 𝐺1(𝑡, 𝑠) =
1

𝑏 − 𝑎
{

(𝑏 − 𝑡)(𝑠 − 𝑎), 𝑠 ≤ 𝑡
 (𝑏 − 𝑠)(𝑡 − 𝑎), 𝑡 ≤ 𝑠

 

and 

 𝐺2(𝑠) =
1

2
{

 𝛼 + 𝑎 − 𝑠, 𝑎 ≤ 𝑠 ≤ 𝜏1

 𝛼 + 𝜏2 − 𝑏,  𝜏1 ≤ 𝑠 ≤ 𝜏2 
 𝛼 − 𝑏 + 𝑠, 𝜏2 ≤ 𝑠 ≤ 𝑏.

  

PROOF. Let assume that 𝜗 ∈ 𝒞𝑙𝑑(𝕋) is a solution of (3)– (4). By integration of both sides of (3) from 𝑎 to 𝑡, 

we get 

𝜗∆(𝑡) = 𝜗∆(𝑎) − ∫ 𝑞(𝑠)𝛻𝑠

𝑡

𝑎

(6) 

 

 



89 

 

Journal of New Theory 37 (2021) 86-98 / On Existence of Symmetric Positive Solutions for SSBVPs on Time Scales 

Integrating again, we have 

𝜗(𝑡) = 𝜗(𝑎) + (𝑡 − 𝑎)𝜗∆(𝑎) − ∫(𝑡 − 𝑠)𝑞(𝑠)∇𝑠

𝑡

𝑎

(7) 

Plug in 𝑡 =  𝑏 in (7), we find 

𝜗(𝑏) = 𝜗(𝑎) + (𝑏 − 𝑎)𝜗∆(𝑎) − ∫(𝑏 − 𝑠)𝑞(𝑠)∇𝑠

𝑏

𝑎

 

Using boundary conditions (4), we find  

𝜗∆(𝑎) =
1

𝑏 − 𝑎
∫(𝑏 − 𝑠)𝑞(𝑠)∇𝑠

𝑏

𝑎

(8) 

Substituting (8) to (7), we get 

𝜗(𝑡) = 𝜗(𝑎) + (𝑡 − 𝑎)
1

𝑏 − 𝑎
∫(𝑏 − 𝑠)𝑞(𝑠)∇𝑠

𝑏

𝑎

− ∫(𝑡 − 𝑠)𝑞(𝑠)∇𝑠

𝑡

𝑎

(9) 

From (4), we have 

𝛼 ∫ 𝑞(𝑠)𝛻𝑠

ρ(b)

𝑎

 =  2𝜗(𝑎) + (𝜏1 − 𝑎)
1

𝑏 − 𝑎
∫(𝑏 − 𝑠)𝑞(𝑠)∇𝑠

𝑏

𝑎

− ∫ (𝜏1 − 𝑠)𝑞(𝑠)∇𝑠

𝜏1

𝑎

 

 +(𝜏2 − 𝑎)
1

𝑏 − 𝑎
∫(𝑏 − 𝑠)𝑞(𝑠)∇𝑠

𝑏

𝑎

− ∫ (𝜏2 − 𝑠)𝑞(𝑠)∇𝑠

𝜏2

𝑎

 

Therefore, 

𝜗(𝑎) =
1

2
[∫ [𝛼 +

(2𝑎 − 𝜏1−𝜏2)(𝑏 − 𝑠)

𝑏 − 𝑎
+ (𝜏1 − 𝑠) + (𝜏2 − 𝑠)]

𝜏1

𝑎

𝑞(𝑠)∇𝑠 

+ ∫ [𝛼 +
(2𝑎 − 𝜏1−𝜏2)(𝑏 − 𝑠)

𝑏 − 𝑎
+ (𝜏2 − 𝑠)]

𝜏2

𝜏1

𝑞(𝑠)∇s (10) 

+ ∫ [𝛼 +
(2𝑎 − 𝜏1−𝜏2)(𝑏 − 𝑠)

𝑏 − 𝑎
]

𝜌(𝑏)

𝜏2

 𝑞(𝑠)∇𝑠]  

 and from 𝜏1 = 𝑏 − 𝜏2 + 𝑎, 

𝜗(𝑎) =
1

2
[∫ (𝛼 + 𝑎 − 𝑠)

𝜏1

𝑎

𝑞(𝑠)∇𝑠 + ∫ (𝛼 + 𝜏2 − 𝑏)

𝜏2

𝜏1

𝑞(𝑠)∇𝑠 + ∫ (𝛼 + 𝑠 − 𝑏)

𝜌(𝑏)

𝜏2

 𝑞(𝑠)∇𝑠] (11) 
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Substituting (11) to (9), we have 

𝜗(𝑡) =
1

𝑏 − 𝑎
∫(𝑡 − 𝑎)(𝑏 − 𝑠)𝑞(𝑠)∇𝑠

𝑏

𝑎

− ∫(𝑡 − 𝑠)𝑞(𝑠)∇𝑠

𝑡

𝑎

+ ∫ 𝐺2(𝑠)𝑞(𝑠)∇𝑠

𝑏

𝑎

 

 = ∫ 𝐺(𝑡, 𝑠)𝑞(𝑠)∇𝑠

𝑏

𝑎

 

This proof is completed.                                                                                                                                                       ◻ 

Lemma 2.10. For 𝑡, 𝑠 ∈ 𝕋, we have 𝐺(𝑡, 𝑠) ≥ 0 and min𝑡∈𝕋𝐺2(𝑡) = 𝐺2(𝜏1) = 𝐺2(𝜏2). 

PROOF. It is evident from (5).                                                                                                                                                ◻ 

Lemma 2.11. For 𝑡, 𝑠 ∈ 𝕋, let 𝑚𝐺2
= min𝑡∈𝕋𝐺2(𝑡) = 𝐺2(𝜏1) = 𝐺2(𝜏2) and 𝐿 =

4𝑚𝐺2
4𝑚𝐺2

+(𝑏−𝑎)
, then the 

function 𝐺(𝑡, 𝑠) satisfies  

𝐿𝐺(𝑠, 𝑠) ≤ 𝐺(𝑡, 𝑠) ≤ 𝐺(𝑠, 𝑠) for 𝑡, 𝑠 ∈ 𝕋 (12) 

PROOF. For 𝑠 ≤ 𝑡, we get 

 
𝐺1(𝑡, 𝑠)

𝐺1(𝑠, 𝑠)
=

𝑏 − 𝑡

𝑏 − 𝑠
≤

𝑏 − 𝑠

𝑏 − 𝑠
= 1 

For 𝑡 ≤ 𝑠, we get 

𝐺1(𝑡, 𝑠)

𝐺1(𝑠, 𝑠)
=

𝑡 − 𝑎

𝑠 − 𝑎
≤

𝑠 − 𝑎

𝑠 − 𝑎
= 1 

Therefore, we have 𝐺1(𝑡, 𝑠) ≤ 𝐺1(𝑠, 𝑠). Thus, 

G(t, s) =  𝐺1(𝑡, 𝑠) + 𝐺2(𝑠) ≤ 𝐺1(𝑠, 𝑠) + 𝐺2(𝑠) = 𝐺(𝑠, 𝑠) 

We know 𝐺2(𝑠) ≥ 0 from Lemma 2.9. Therefore, it is evident that 𝑚𝐺2
≥ 0. By using 

(𝑏−𝑠)(𝑠−𝑎)

𝑏−𝑎
≤

𝑏−𝑎

4
, 

we have 

𝐺(𝑡, 𝑠) = 𝐺1(𝑡, 𝑠) + 𝐺2(𝑠) 

 ≥ 𝐺2(𝑠) 

 =
4𝑚𝐺2

+ 𝑏 − 𝑎

4𝑚𝐺2
+ 𝑏 − 𝑎

𝐺2(𝑠) 

 ≥ 𝐿𝐺2(𝑠) +  
4

4

(𝑏−𝑎).𝑚𝐺2

4𝑚𝐺2+𝑏−𝑎
  

 = 𝐿𝐺2(𝑠) +  𝐿
(𝑏 − 𝑎)

4
 

 ≥ 𝐿𝐺2(𝑠) +  𝐿
(𝑏 − 𝑠)(𝑠 − 𝑎)

𝑏 − 𝑎
 

 = 𝐿𝐺2(𝑠) + 𝐿𝐺1(𝑠, 𝑠) 

 = 𝐿𝐺(𝑠, 𝑠) 

It is evident that 𝐿𝐺(𝑠, 𝑠) ≤ 𝐺(𝑡, 𝑠) ≤ 𝐺(𝑠, 𝑠) for 𝑡, 𝑠 ∈ 𝕋. This proof is completed.                                              ◻ 



91 

 

Journal of New Theory 37 (2021) 86-98 / On Existence of Symmetric Positive Solutions for SSBVPs on Time Scales 

Lemma 2.12. 𝐺(𝑡, 𝑠) Green function is symmetric on 𝕋. i.e., for 𝑡, 𝑠 ∈ 𝕋, 

𝐺(𝑏 − 𝑡 + 𝑎, 𝑏 − 𝑠 + 𝑎) = 𝐺(𝑡, 𝑠) 

PROOF. Using 𝜏1 = 𝑏 − 𝜏2 + 𝑎 and Definition 2.5 and (5), we have 

𝐺1(𝑏 − 𝑡 + 𝑎, 𝑏 − 𝑠 + 𝑎) =
1

𝑏 − 𝑎
{
(𝑏 − 𝑏 + 𝑡 − 𝑎)(𝑏 − 𝑠 + 𝑎 − 𝑎), 𝑏 − 𝑠 + 𝑎 ≤ 𝑏 − 𝑡 + 𝑎
(𝑏 − 𝑏 + 𝑠 − 𝑎)(𝑏 − 𝑡 + 𝑎 − 𝑎), 𝑏 − 𝑡 + 𝑎 ≤ 𝑏 − 𝑠 + 𝑎

 

 =
1

𝑏 − 𝑎
 {

(𝑡 − 𝑎)(𝑏 − 𝑠), 𝑡 ≤ 𝑠
(𝑠 − 𝑎)(𝑏 − 𝑡), 𝑠 ≤ 𝑡

 

 = 𝐺1(𝑡, 𝑠) 

and  

𝐺2(𝑏 − 𝑠 + 𝑎) =
1

2
{

 𝛼 + 𝑎 − 𝑏 + 𝑠 − 𝑎, 𝑎 ≤ 𝑏 − 𝑠 + 𝑎 ≤ 𝜏1

 𝛼 + 𝜏2 − 𝑏, 𝜏1 ≤ 𝑏 − 𝑠 + 𝑎 ≤ 𝜏2

 𝛼 − 𝑏 + 𝑏 − 𝑠 + 𝑎, 𝜏2 ≤ 𝑏 − 𝑠 + 𝑎 ≤ 𝑏
  

 =
1

2
{

 𝛼 − 𝑏 + 𝑠, 𝑎 − 𝑏 − 𝑎 ≤ −𝑠 ≤ 𝜏1 − 𝑏 − 𝑎
 𝛼 + 𝜏2 − 𝑏, 𝜏1 − 𝑏 − 𝑎 ≤ −𝑠 ≤ 𝜏2 − 𝑏 − 𝑎

𝛼 + 𝑎 − 𝑠, 𝜏2 − 𝑏 − 𝑎 ≤ −𝑠 ≤ 𝑏 − 𝑏 − 𝑎
 

 =
1

2
{

𝛼 − 𝑏 + 𝑠, 𝜏2 ≤ 𝑠 ≤ 𝑏
𝛼 + 𝜏2 − 𝑏, 𝜏1 ≤ 𝑠 ≤ 𝜏2

𝛼 + 𝑎 − 𝑠 , 𝑎 ≤ 𝑠 ≤ 𝜏1

 

 = 𝐺2(𝑠) 

Therefore, 

𝐺(𝑏 − 𝑡 + 𝑎, 𝑏 − 𝑠 + 𝑎) = 𝐺1(𝑏 − 𝑡 + 𝑎, 𝑏 − 𝑠 + 𝑎) + 𝐺2(𝑏 − 𝑠 + 𝑎) = 𝐺1(𝑡, 𝑠) + 𝐺2(𝑠) 

Eventually, for 𝑡, 𝑠 ∈ 𝕋, 𝐺(𝑏 − 𝑡 + 𝑎, 𝑏 − 𝑠 + 𝑎) = 𝐺(𝑡, 𝑠). The proof is completed.                                            ◻ 

3. Main Results 

This section studies the existence of the SPSs of the SSBVP (1)-(2). First, we assume the following conditions: 

(𝐻1) 𝑓: 𝕋 × ℝ+ → ℝ+ is a 𝑙𝑑-continuous function such that 𝑓(. , 𝑠) is symmetric on 𝕋 and 𝑓(𝑡, 0) ≡ 0, 

(𝐻2) 𝑔: 𝕋 × ℝ+ → ℝ+ is a 𝑙𝑑-continuous function such that 𝑔(. , 𝑠) is symmetric on 𝕋 and 𝑔(𝑡, 0) ≡ 0. 

Second, we give the following assumptions: 

𝑓0̅ = lim
𝑥→0+
̅̅ ̅̅ ̅̅ max

𝑡∈𝕋

𝑓(𝑡, 𝑥)

𝑥
, 𝑔0̅̅ ̅ = lim

𝑥→0+
̅̅ ̅̅ ̅̅ max

𝑡∈𝕋

𝑔(𝑡, 𝑥)

𝑥
, 

𝑓0 = lim
𝑥→0+

min
𝑡∈𝕋

𝑓(𝑡, 𝑥)

𝑥
, 𝑔0 = lim

𝑥→0+
min
𝑡∈𝕋

𝑔(𝑡, 𝑥)

𝑥
, 

𝑓∞
̅̅ ̅ = lim

𝑥→∞
̅̅ ̅̅ ̅ max

𝑡∈𝕋

𝑓(𝑡, 𝑥)

𝑥
, 𝑔∞̅̅ ̅̅ = lim

𝑥→∞
̅̅ ̅̅ ̅ max

𝑡∈𝕋

𝑔(𝑡, 𝑥)

𝑥
, 

𝑓∞ = lim
𝑥→∞

min
𝑡∈𝕋

𝑓(𝑡, 𝑥)

𝑥
, 𝑔∞ = lim

𝑥→∞
min
𝑡∈𝕋

𝑔(𝑡, 𝑥)

𝑥
 

Now, let 𝔹 = 𝒞𝑙𝑑(𝕋) be a Banach space with ‖𝜗‖ = max
𝑡∈𝕋

|𝜗(𝑡)|, and determine cone 𝑃 ⊂ 𝔹 by  

𝑃 = {𝜗 ∈ 𝔹| 𝜗(𝑡) ≥ 0 for 𝑡 ∈ 𝕋, 𝜗(𝑡) is symmetric on 𝕋, min 𝜗(𝑡)
𝑡∈𝕋

≥ 𝐿‖𝜗‖ and  𝜗𝛥𝛻(𝑡) ≤ 0 for 𝑡 ∈ 𝕋𝜅
𝜅} 
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Besides, define the integral operator 𝑇 from 𝑃 to 𝔹  by 

 𝑇𝜗(𝑡) = ∫ 𝐺(𝑡, 𝑠)𝑓(𝑠, ∫ 𝐺(𝑠, 𝜁)𝑔(𝜁, 𝜗(𝜁))∇𝜁

𝑏

𝑎

)∇𝑠

𝑏

𝑎

 (13) 

Thus, 

𝑇𝜗(𝑡)∆𝛻 = −𝑓(𝑠, ∫ 𝐺(𝑠, 𝜁)𝑔(𝜁, 𝜗(𝜁))𝛻𝜁

𝑏

𝑎

)  

Hence, for 𝜗 ∈ 𝑃, 𝑇𝜗 ≥ 0 on 𝕋 and 𝑇𝜗∆∇ ≤ 0 on 𝕋𝜅
𝜅.  

Since 𝜗, 𝑓 and 𝑔  are symmetric on 𝕋, then 

𝑇𝜗(𝑏 − 𝑡 + 𝑎) = ∫ 𝐺(𝑏 − 𝑡 + 𝑎, 𝑏 − 𝑠 + 𝑎)𝑓(𝑏 − 𝑠 + 𝑎, ∫ 𝐺(𝑏 − 𝑠 + 𝑎, 𝜁)𝑔(𝜁, 𝜗(𝜁))𝛻𝜁

𝑏

𝑎

)𝛻(𝑏 − 𝑠 + 𝑎)

𝑎

𝑏

 

 = ∫ 𝐺(𝑡, 𝑠)𝑓(𝑏 − 𝑠 + 𝑎, ∫ 𝐺(𝑏 − 𝑠 + 𝑎, 𝑏 − 𝜁 + 𝑎)𝑔(𝑏 − 𝜁 + 𝑎, 𝜗(𝑏 − 𝜁 + 𝑎))𝛻(𝑏 − 𝜁 + 𝑎)

𝑎

𝑏

)𝛻𝑠

𝑏

𝑎

 

 = ∫ 𝐺(𝑡, 𝑠)𝑓(𝑠, ∫ 𝐺(𝑠, 𝜁)𝑔(𝜁, 𝜗(𝜁))𝛻𝜁

𝑏

𝑎

)𝛻𝑠

𝑏

𝑎

 

 = 𝑇𝜗(𝑡) 

for all 𝑡 ∈ 𝕋. This implies that 𝑇𝜗(𝑡) is symmetric on 𝕋. It is easy to verify that min
𝑡∈𝕋

𝑇𝜗(𝑡) ≥ 𝐿‖𝑇𝜗‖. 

Consequently 𝑇: 𝑃 → 𝑃.  

Lemma 3.1. Suppose that (𝐻1) and (𝐻2) hold. Then, for 𝜗, 𝜑 ∈ 𝔹, a pair of ( 𝜗, 𝜑) is a solution of SSBVP 

(1)-(2) iff 𝜗 is a fixed point of the operator 𝑇 and 𝜑(t)=∫ 𝐺(𝑡, 𝜁)𝑔(𝜁, 𝜗(𝜁))∇𝜁
𝑏

𝑎
 

PROOF. The proof is clear from Lemma 2.9.                                                                                                                       ◻ 

Lemma 3.2. Suppose that (𝐻1) and (𝐻2) hold. Then, the operator 𝑇: 𝑃 → 𝑃 is completely continuous. 

PROOF. Suppose that 𝐾 ⊂ 𝑃 is a bounded set. Let 𝑁 ≥ 0 be such that ‖𝜗‖ ≤ 𝑁 for 𝜗 ∈ 𝐾, we have 

|𝑇𝜗(𝑡)| ≤ ∫ 𝐺(𝑠, 𝑠)𝑓(𝑠, ∫ 𝐺(𝑠, 𝜁)𝑔(𝜁, 𝜗(𝜁))𝛻𝜁)

𝑏

𝑎

𝛻𝑠

𝑏

𝑎

 

 ≤ ∫ 𝐺(𝑠, 𝑠) sup
𝑎<𝑠<𝑏

  |𝑓(𝑠, ∫ 𝐺(𝑠, 𝜁)𝑔(𝜁, 𝜗(𝜁))𝛻𝜁)

𝑏

𝑎

| 𝛻𝑠

𝑏

𝑎

 

 = sup
𝑎<𝑠<𝑏

  |𝑓(𝑠, ∫ 𝐺(𝑠, 𝜁)𝑔(𝜁, 𝜗(𝜁))𝛻𝜁)

𝑏

𝑎

| ∫ 𝐺(𝑠, 𝑠)𝛻𝑠 

𝑏

𝑎

 

for every 𝑡 ∈ 𝕋. This implies that 𝑇(𝐾) is bounded. By the Arzela-Ascoli theorem, we can easily see that 𝑇 is 

a completely continuous operator. Thus, the proof is completed.                                                                                 ◻ 

For convenience, we denote 

 𝑚 ≔ ∫ 𝐺(𝑧, 𝑧)𝛻𝑧

𝑏

𝑎

 (14) 
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Theorem 3.3. Suppose that (𝐻1) and (𝐻2) are satisfied. If 𝑓0 = 𝑔0 = 0 and 𝑓∞ = 𝑔∞ = ∞ hold, then SSBVP 

(1)-(2) has a symmetric positive solution (𝜗, 𝜑). 

PROOF. Because of 𝑓0 = 𝑔0 = 0 uniformly on 𝕋, we may choose a 𝑐1 > 0 such that  

 𝑓(𝑡, 𝜗) ≤ 𝛾1𝜗, 𝑔(𝑡, 𝜗) ≤ 𝛾1𝜗, 0 < 𝜗 ≤ 𝑐1, 𝑡 ∈ 𝕋  

where 𝛾1 ≤
1

𝑚
. Note that 

∫ 𝐺(𝑠, 𝜁)𝑔(𝜁, 𝜗(𝜁))∇𝜁

𝑏

𝑎

≤ ∫ 𝐺(𝜁, 𝜁)𝛾1𝜗(𝜁)∇𝜁

𝑏

𝑎

≤ 𝛾1 ∫ 𝐺(𝜁, 𝜁)‖𝜗‖∇𝜁

𝑏

𝑎

≤ ‖𝜗‖ ≤ 𝑐1 

If ω1 is a ball in 𝔹 centred at the origin with a radius 𝑐1 and if 𝜗 ∈ 𝑃 ∩ 𝜕𝜔1, then we have  

‖𝑇𝜗(𝑡)‖ = max
𝑡∈𝕋

∫ 𝐺(𝑡, 𝑠)𝑓(𝑠, ∫ 𝐺(𝑠, 𝜁)𝑔(𝜁, 𝜗(𝜁))∇𝜁

𝑏

𝑎

)∇𝑠

𝑏

𝑎

 

 ≤ ∫ 𝐺(𝑠, 𝑠)𝛾1 ∫ 𝐺(𝑠, 𝜁)𝑔(𝜁, 𝜗(𝜁))∇𝜁

𝑏

𝑎

∇𝑠

𝑏

𝑎

 

 ≤ 𝛾1 ∫ 𝐺(𝑠, 𝑠)∇𝑠 ∫ 𝐺(𝜁, 𝜁)𝛾1𝜗(𝜁)∇𝜁

𝑏

𝑎

𝑏

𝑎

 

 ≤ 𝛾1
2 ∫ 𝐺(𝑠, 𝑠)∇𝑠 ∫ 𝐺(𝜁, 𝜁)‖𝜗‖∇𝜁

𝑏

𝑎

𝑏

𝑎

 

 = 𝛾1
2𝑚2‖𝜗‖ ≤ ‖𝜗‖ 

and so ‖𝑇𝜗(𝑡)‖ ≤ ‖𝜗‖ for all 𝜗 ∈ 𝑃 ∩ 𝜕𝜔1. 

Next, we use the assumption 𝑓∞ = 𝑔∞ = ∞ uniformly on 𝕋. There exists a 𝑐2 > 0 large enough such that 

𝑓(𝑡, 𝜗) ≥ 𝜇𝜗, 𝑔(𝑡, 𝜗) ≥ 𝜇𝜗, 𝜗 > 𝑐2, for 𝑡 ∈ 𝕋 where μ ≥
1

𝐿
3
2𝑚

. If we define 𝜔2 = {𝜗 ∈ 𝔹 | ‖𝜗‖ <
2𝑐2

√𝐿
}, for 

𝑡 ∈ 𝕋, 𝜗 ∈ 𝑃 and ‖𝜗‖ =
2𝑐2

√𝐿
, we have 

∫ 𝐺(𝑠, 𝜁)𝑔(𝜁, 𝜗(𝜁))∇𝜁

𝑏

𝑎

≥ 𝐿 ∫ 𝐺(𝜁, 𝜁)𝜇𝜗(𝜁)∇𝜁

𝑏

𝑎

≥ 𝐿𝜇 ∫ 𝐺(𝜁, 𝜁)∇𝜁𝐿‖𝜗‖

𝑏

𝑎

= 𝐿2𝜇𝑚‖𝜗‖ ≥ √𝐿‖𝜗‖ = 2𝑐2 > 𝑐2 

For 𝜗 ∈ 𝑃 ∩ 𝜕𝜔2, we have 

‖𝑇𝜗(𝑡)‖ ≥ 𝐿 ∫ 𝐺(𝑠, 𝑠)𝜇 ∫ 𝐺(𝑠, 𝜁)𝑔(𝜁, 𝜗(𝜁))∇𝜁

𝑏

𝑎

∇𝑠

𝑏

𝑎

 

 ≥ 𝐿2𝜇 ∫ 𝐺(𝑠, 𝑠)∇𝑠 ∫ 𝐺(𝜁, 𝜁)𝜇𝜗(𝜁)∇𝜁

𝑏

𝑎

𝑏

𝑎

 

 ≥ 𝐿2𝜇2 ∫ 𝐺(𝑠, 𝑠)∇𝑠 ∫ 𝐺(𝜁, 𝜁)𝐿‖𝜗‖∇𝜁

𝑏

𝑎

𝑏

𝑎

 

 = 𝜇2𝐿3𝑚2‖𝜗‖  ≥ ‖𝜗‖ 
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and so ‖𝑇𝜗(𝑡)‖ ≥ ‖𝜗‖ for all 𝜗 ∈ 𝑃 ∩ 𝜕𝜔2. As a conclusion, from (i) of Theorem 2.8,  𝑇 has a fixed point in 

𝑃 ∩ (𝜔2 ∖ 𝜔1) and so the SSBVP (1)-(2) has a symmetric positive solution (𝜗, 𝜑).                                               ◻ 

Theorem 3.4. Assume (𝐻1) and (𝐻2) are satisfied. If 𝑓0 = 𝑔0 = ∞ and 𝑓∞ = 𝑔∞ = 0 hold, then SSBVP (1)-

(2) has a symmetric positive solution (𝜗, 𝜑). 

PROOF. Firstly, let 𝑓0 = 𝑔0 = ∞ hold. For 𝑡 ∈ 𝕋, there exists a 𝑐3̅ > 0 such that  

𝑓(𝑡, 𝜗) ≥ 𝜇𝜗, 𝑔(𝑡, 𝜗) ≥ 𝜇𝜗, 0 < 𝜗 < 𝑐3̅ 

where 𝜇 ≥
1

𝐿
3
2𝑚

. Now from 𝑔(𝑡, 0) ≡ 0 and 𝑔(𝑡, 𝑠) is continuous, we know that there exists a number 𝑐3 ∈

(0, 𝑐3̅) such that 𝑔(𝑡, 𝜗) ≤
𝑐3̅̅ ̅

𝑚
 for each 𝜗 ∈ (0, 𝑐3̅] and 𝑡 ∈ 𝕋. Then, for all 𝜗 ∈ 𝑃 and ‖𝜗‖ = 𝑐3̅, note that 

∫ 𝐺(𝑠, 𝜁)𝑔(𝜁, 𝜗(𝜁))∇𝜁

𝑏

𝑎

≤ ∫ 𝐺(𝜁, 𝜁)
𝑐3̅

𝑚
∇𝜁

𝑏

𝑎

= 𝑐3̅ 

Let 𝜔3 = {𝜗 ∈ 𝔹 | ‖𝜗‖ < 𝑐3}. For 𝜗 ∈ 𝑃 ∩ 𝜕𝜔3, then we have  

‖𝑇𝜗(𝑡)‖ ≥ 𝐿 ∫ 𝐺(𝑠, 𝑠)𝜇 ∫ 𝐺(𝑠, 𝜁)𝑔(𝜁, 𝜗(𝜁))∇𝜁

𝑏

𝑎

∇𝑠

𝑏

𝑎

 

 ≥ 𝐿2𝜇 ∫ 𝐺(𝑠, 𝑠)∇𝑠 ∫ 𝐺(𝜁, 𝜁)𝜇𝜗(𝜁)∇𝜁

𝑏

𝑎

𝑏

𝑎

 

 ≥ 𝐿2𝜇2 ∫ 𝐺(𝑠, 𝑠)∇𝑠 ∫ 𝐺(𝜁, 𝜁)𝐿‖𝜗‖∇𝜁

𝑏

𝑎

𝑏

𝑎

≥ ‖𝜗‖ 

For 𝜗 ∈ 𝑃 ∩ 𝜕𝜔3, we have ‖𝑇𝜗(𝑡)‖ ≥ ‖𝜗‖.  Next, since 𝑓∞ = 𝑔∞ = 0, there exists a 𝑐4 > 0 such that 

𝑓(𝑡, 𝜗) ≤ 𝛾4𝜗, 𝑔(𝑡, 𝜗) ≤ 𝛾4𝜗, 𝜗 > 𝑐4, 𝑡 ∈ 𝕋 (15) 

where 𝛾4 ≤
1

𝑚
. We consider two cases.  

Case 1. Assume 𝑓(𝑡, 𝑠) is bounded on 𝕋 × [0, ∞). Therefore, there is an 𝑀 > 0 such that 𝑓(𝑡, 𝑠) ≤ 𝑀, for 𝑡 ∈

𝕋 and 𝑠 ∈ [0, ∞). Let 𝑐4
∗ ≥ max{2𝑐4, 𝑀𝑚}. Then, for 𝜗 ∈ 𝑃 with ‖𝜗‖ = 𝑐4

∗,  

‖𝑇𝜗(𝑡)‖ ≤ ∫ 𝐺(𝑠, 𝑠)𝑀∇𝑠

𝑏

𝑎

= 𝑀𝑚 ≤ max{2𝑐4, 𝑀𝑚} ≤ 𝑐4
∗ = ‖𝜗‖ 

Case 2. Assume 𝑓(𝑡, 𝑠) is unbounded on 𝕋 × [0, ∞). Then, 

ℎ(𝑐) ≔ max{𝑓(𝑡, 𝑠)|𝑡 ∈ 𝕋, 0 ≤ 𝑠 ≤ 𝑐} (16) 

such that lim
𝑐→∞

ℎ(𝑐) = ∞. Therefore, we can choose 𝑐4
∗ ≥ max{2𝑐, 𝑐4} such that ℎ(𝑐) ≤ ℎ(𝑐4

∗) for 0 ≤ 𝑐 ≤

𝑐4
∗. Since 𝑐4 ≤ 𝑐4

∗, (15) and (16), then we get 𝑓(𝑡, 𝑠) ≤ ℎ(𝑐4
∗) ≤ 𝛾4𝑐4

∗, for 𝑡 ∈ 𝕋 and 𝑠 ∈ [0, 𝑐4
∗]. For 𝜗 ∈

𝑃 and ‖𝜗‖ = 𝑐4
∗, we have 

‖𝑇𝜗(𝑡)‖ ≤ ∫ 𝐺(𝑠, 𝑠)𝛾4𝑐4
∗∇𝑠 = 𝛾4𝑐4

∗𝑚 ≤ 𝑐4
∗

𝑏

𝑎

= ‖𝜗‖ 
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So, we obtain ‖𝑇𝜗(𝑡)‖ ≤ ‖𝜗‖ for all 𝜗 ∈ 𝑃 ∩ 𝜕𝜔4, where 𝜔4 = {𝜗 ∈ 𝔹|‖𝜗‖ ≤ 𝑐4
∗ } in both cases. By (ii) of 

Theorem 2.8 that 𝑇 has a fixed point in 𝑃 ∩ (𝜔4 ∖ 𝜔3) and so the SSBVP (1)-(2) has a symmetric positive 

solution (𝜗, 𝜑).                                                                                                                                                                       ◻ 

We will provide sufficient conditions for two SPSs for SSBVP (1)-(2). 

(𝐻3) There exists a constant 𝑅1 > 0 such that 𝑓(𝑡, 𝑠) ≤
𝑅1

𝑚
 and 𝑔(𝑡, 𝑠) ≤

𝑅1

𝑚
, for 𝑡 ∈ 𝕋, 𝑠 ∈ [0, 𝑅1]. 

(𝐻4) There exists a constant 𝑅2 > 0 such that 𝑓(𝑡, 𝑠) ≥
𝑅2

𝐿𝑚
and 𝑔(𝑡, 𝑠) ≤

𝑅2

𝑚
, for 𝑡 ∈ 𝕋, 𝑠 ∈ [0, 𝑅2].  

Theorem 3.5. Assume that (𝐻1), (𝐻2) and (𝐻3) are satisfied. If 𝑓∞ = 𝑔∞ = ∞ and 𝑓0 = 𝑔0 = ∞ hold, then the 

SSBVP (1)-(2) has two SPSs (𝜗1, 𝜑1) and (𝜗2, 𝜑2).  

PROOF. At first, from Lemma 2.11 and (𝐻3), we can obtain ∫ 𝐺(𝑠, 𝜁)𝑔(𝜁, 𝜗(𝜁)∇𝜁
𝑏

𝑎
∈ [0, 𝑅1]. Thus ‖𝑇𝜗(𝑡)‖ ≤

𝑅1

𝑚
∫ 𝐺(𝑠, 𝑠)∇𝑠

𝑏

𝑎
= 𝑅1 = ‖𝜗‖. Then ‖𝑇𝜗(𝑡)‖ ≤ ‖𝜗‖ for ∀𝜗 ∈ 𝑃 ∩ 𝜕𝜔5, where 𝜔5 = {𝜗 ∈ 𝔹 | ‖𝜗‖ < 𝑅1}. For 

another hand, from Theorem 3.3 and Theorem 3.4, we have ‖𝑇𝜗(𝑡)‖ ≥ ‖𝜗‖ for ∀𝜗 ∈ 𝑃 ∩ 𝜕𝜔2 where 𝑐2 >

𝑅1and ‖𝑇𝜗(𝑡)‖ ≥ ‖𝜗‖ for ∀𝜗 ∈ 𝑃 ∩ 𝜕𝜔3 where 𝑅1 > 𝑐3. 

It follows from Theorem 2.8 that 𝑇 has a fixed point 𝜗1 in 𝑃 ∩ (𝜔5 ∖  𝜔3) and a fixed point 𝜗2 in 𝑃 ∩

(𝜔2 ∖  𝜔5).  (𝜗1, 𝜑1) and (𝜗2, 𝜑2) are SPSs of the SSBVP (1)-(2).                                                                          ◻ 

Theorem 3.6. Assume that (𝐻1), (𝐻2) and (𝐻4) are satisfied. If 𝑓0 = 𝑔0 = 0 and 𝑓∞ = 𝑔∞ = 0 hold, then the 

SSBVP (1)-(2) has two SPSs.  

PROOF. It could be proved in a similar way to Theorems 3.5.                                                                                          ◻ 

Example 3.7. On a bounded symmetric time scale 𝕋 = {1,2,3,4,5,6,7,8,9,10} we consider following SSBVP 

𝜗∆∇(𝑡) = −𝜑2(𝑡) (
11

2
− 𝑡)

2

, 𝑡 ∈ 𝕋𝜅
𝜅 = {2, 3, 4, 5, 6, 7, 8, 9}

𝜑∆∇(𝑡) = −𝜗4(𝑡) (
11

2
− 𝑡)

2

, 𝑡 ∈ 𝕋𝜅
𝜅 = {2, 3, 4, 5, 6, 7, 8, 9}

(17) 

and boundary conditions 

𝜗(𝑡) = 𝜗(11 − 𝑡), 9(𝜗∆(1) − 𝜗∆(9)) = 𝜗(3) + 𝜗(8)

𝜑(𝑡) = 𝜑(11 − 𝑡), 9(𝜑∆(1) − 𝜑∆(9)) = 𝜑(3) + 𝜑(8)
(18) 

In this problem, [1,10]𝕋 is symmetric, 𝑎 = 1, 𝑏 = 10, 𝜎(𝑎) = 2, 𝜌(𝑏) = 9,  𝜏1 = 3 and 𝜏2 = 8. We see that 

easily 𝑓(𝑡, 𝜑) = (
11

2
− 𝑡)

2
𝜑2 and 𝑔(𝑡, 𝜗) = (

11

2
− 𝑡)

2
𝜗4 are satisfies the conditions (𝐻1) and (𝐻2) and also  

𝑓0 = lim
𝜑→0+
̅̅ ̅̅ ̅̅ max

𝑡∈𝕋

𝑓(𝑡, 𝜑)

𝜑
= lim

𝜑→0+
̅̅ ̅̅ ̅̅ max

𝑡∈𝕋
(
11

2
− 𝑡)2𝜑 = 0 

𝑔0 = lim
𝜗→0+
̅̅ ̅̅ ̅̅ max

𝑡∈𝕋

𝑔(𝑡, 𝜗)

𝜗
= lim

𝜗→0+
̅̅ ̅̅ ̅̅ max

𝑡∈𝕋
(
11

2
− 𝑡)2𝜗3 = 0 

𝑓∞  = lim
𝜑→∞

min
𝑡∈𝕋

𝑓(𝑡, 𝜑)

𝜑
=  lim

𝜑→∞
min
𝑡∈𝕋

(
11

2
− 𝑡)2𝜑 = ∞ 

𝑔∞  = lim
𝜗→∞

min
𝑡∈𝕋

𝑔(𝑡, 𝜗)

𝜗
=  lim

𝜗→∞
min
𝑡∈𝕋

(
11

2
− 𝑡)2𝜗3 = ∞ 

As a result, all conditions of Theorem 3.3 are satisfied. From Theorem 3.3, SSBVP (17)-(18) has one SPS. 

Example 3.8. On a bounded symmetric time scale 𝕋 = {0} ⋃[1,2] ⋃{3} we consider the following system  
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{
𝜗∆𝛻(𝑡) = −𝑓(𝑡, 𝜑(𝑡)), 𝑡 ∈ 𝕋𝜅

𝜅 = [1,2]

𝜑∆𝛻(𝑡) = −𝑔(𝑡, 𝜗(𝑡)), 𝑡 ∈ 𝕋𝜅
𝜅 = [1,2]

(19) 

with boundary conditions 

{
𝜗(𝑡) = 𝜗(3 − 𝑡), 3(𝜗∆(0) − 𝜗∆(2)) = 𝜗(1) + 𝜗(2)

𝜑(𝑡) = 𝜑(3 − 𝑡), 3(𝜑∆(0) − 𝜑∆(2)) = 𝜑(1) + 𝜑(2)
(20) 

where 𝑓(𝑡, 𝜑) =
(|𝑡−

3

2
|+1)(√𝜑+𝜑2)

440
  and 𝑔(𝑡, 𝜗) =

(|𝑡−
3

2
|+1)(2√𝜗+𝜗2)

880
. Here 𝑎 = 0, 𝑏 = 3, 𝜎(𝑎) = 1, 𝜌(𝑏) = 2, 

𝜏1 = 1, 𝜏2 = 2 and [0,3]𝕋 is symmetric. We see that easily 𝑓(𝑡, 𝜑) and 𝑔(𝑡, 𝜗) are satisfies the conditions 

(𝐻1) and (𝐻2). Furthermore, we find 

𝑓0 = lim
𝜑→0+

min
𝑡∈𝕋

𝑓(𝑡, 𝜑)

𝜑
= lim

𝜑→0+
min
𝑡∈𝕋

(|𝑡 −
3
2| + 1) (√𝜑 + 𝜑2)

440𝜑
= ∞ 

𝑔0 = lim
𝜗→0+

min
𝑡∈𝕋

𝑔(𝑡, 𝜗)

𝜗
= lim

𝜗→0+
min
𝑡∈𝕋

(|𝑡 −
3
2| + 1) (2√𝜗 + 𝜗2)

880𝜗
= ∞ 

𝑓∞  = lim
𝜑→∞

min
𝑡∈𝕋

𝑓(𝑡, 𝜑)

𝜑
=  lim

𝜑→∞
min
𝑡∈𝕋

(|𝑡 −
3
2| + 1) (√𝜑 + 𝜑2)

440𝜔
= ∞ 

𝑔∞ = lim
𝜗→∞

min
𝑡∈𝕋

𝑔(𝑡, 𝜗)

𝜗
=  lim

𝜗→∞
min
𝑡∈𝕋

(|𝑡 −
3
2| + 1) (2√𝜗 + 𝜗2)

880𝜗
= ∞ 

We calculate  

𝑚 = ∫ 𝐺(𝑠, 𝑠)𝛻𝑠

3

0

=
44

9
 

If we choose 𝑅1 = 2, then we have 
𝑅1

𝑚
 = 0.409 and 𝑓(𝑡, 𝑠) ≤

𝑅1

𝑚
 and 𝑔(𝑡, 𝑠) ≤

𝑅1

𝑚
 for 𝑡 ∈ 𝕋, 𝑠 ∈ [0, 𝑅1]. So, 

𝑓 and 𝑔 satisfy the condition (𝐻3). Consequently, all conditions of Theorem 3.5 are satisfied. From Theorem 

3.5, SSBVP (19)-(20) has at least two SPSs. 

4. Conclusion 

In this study, we obtain sufficient conditions that guarantee at least one and two SPSs of the system (1)-(2) on 

a symmetric time scale. This paper generalizes Qu’s study in 2009 [6], which is the existence of SPSs of 

second-order differential equation systems with four-point boundary conditions to dynamic equation systems 

on symmetric time scales. To investigate the symmetric solutions of dynamic equations on time scales, 

researchers use Definition 2.4. A time scale that is symmetric in the sense of Definition 2.4 must satisfy 𝑏 −

𝑡 + 𝑎 ∈ 𝕋, for all 𝑡 ∈ 𝕋. Because of this 𝑞ℤ̅̅ ̅ is not symmetric where 𝑞 > 1. Therefore, this definition does not 

generalize all time scales. If a new symmetric definition can be found, including the q-difference time scales, 

it will be more general. Also, in the future someone can work on this problem for existence of one, two and 

three symmetric positive solutions by using Schauder fixed point theorem, Avery–Anderson–Henderson fixed 

point theorem, Legget–Williams fixed point theorem. Furthermore, this boundary values problem can be 

considered with impulsive boundary conditions. 
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