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Abstract. Given a real bounded sequence x = (xj) and an infinite matrix
A = (anj) the Knopp core theorem is equivalent to study the inequality

lim supAx ≤ lim supx. Recently Fridy and Orhan [6] have considered some

variants of this inequality by replacing lim supx with statistical limit superior
st− lim supx. In the present paper we examine similar type of inequalities by

employing a power series method P, a non-matrix sequence-to-function trans-

formation, in place of A = (anj) .

1. Introduction

In order to investigate the effect of matrix transformations upon the derived
set of a sequence x = (xj), Knopp [10] introduced the idea of the core of x and
proved the well-known Core Theorem. This is equivalent to study the inequality
lim supAx ≤ lim supx for the finite matrix and bounded sequences x = (xj) where

Ax :=
∞∑
j=0

anjxj ( [12,15]). Based on the recently introduced concept of a statistical

cluster point [6], a definition is given for the statistical core by Fridy and Orhan [7].
They have also determined a class of regular matrices for which the inequality
lim supAx ≤ st− lim supx holds for real bounded sequences.

In the present paper, we consider similar type of inequalities by replacing the
sequence to sequence transformation with a power series method which is a sequence
to function transformation.

Recall that the core of the sequence x = (xj) is the closed convex hull of the set
of limit points of the sequence x = (xj) .
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Let (pj) be a non-negative real sequence such that p0 > 0 and the corresponding
power series

p (t) :=

∞∑
j=0

pjt
j

has radius of convergence R with 0 < R ≤ ∞.
Let

CP :=

{
f : (−R,R) → R | lim

0<t→R−

f (t)

p (t)
exists

}
and

CPp
:=

x = (xj) : px (t) :=

∞∑
j=0

pjt
jxj has radius of convergence ≥ R and px ∈ Cp


The functional P − lim : CPp → R defined by

P − limx = lim
0<t→R−

1

p (t)

∞∑
j=0

pjt
jxj

is called a power series method and the sequences x = (xj) is said to be P −

convergent. The method P is regular if and only if lim
0<t→R−

pjt
j

p (t)
= 0 for every j

(see, e.g. [2]). We note that the Abel method is a particular case of a power series
method ( [17]).

From now on we assume that t ∈ (0, R) and 0 < R ≤ ∞.

In the subsequent sections we give some inequalities by relating lim sup
t→R−

px (t)

p (t)
to

lim supx and st-lim supx. These inequalities are motivated by those of Maddox [2],
Orhan [15], and, Fridy and Orhan [7].

2. An Inequaility Related to Limit Superior

Let Qx (t) :=
px (t)

p (t)
. In this section for real bounded sequences x = (xj) , we

consider the inequality

lim sup
t→R−

Qx (t) ≤ lim sup
j

xj

which may be interpreted as saying that

K−core {Qx (t)} ⊆ K−core {x}

where K−core {x} denotes the usual Knopp core of x (see,e.g., [8, p.55]). Let ℓ∞

denote the space of all real bounded sequences and let L (x) := lim sup
n

xn and

l (x) := lim inf
n

xn. Now we have the following
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Theorem 1. For every x = (xj) ∈ ℓ∞ we have

lim sup
t→R−

Qx (t) ≤ lim sup
j

xj (1)

if and only if P is regular.

Proof. Necessity. Let x ∈ c. Then by (1) , we immediately get

− lim sup (−x) ≤ − lim sup
t→R−

Q(−x) (t)

Combining this with (1) , one can have

lim inf x ≤ lim inf Qx (t) ≤ lim supQx (t) ≤ lim supx.

Since x ∈ c,

limx = lim
t→R−

Qx (t)

is obtained, i.e., P is regular.
Conversely, assume that P is regular. Let x ∈ ℓ∞ and ε > 0. Then choose an

index m so that xj < L (x) + ε whenever j ≥ m. Hence we have

∞∑
j=0

pjt
jxj =

∑
j<m

pjt
jxj +

∑
j≥m

pjt
jxj

≤ ∥x∥
∑
j<m

pjt
j + (L (x) + ε)

∞∑
j=0

pjt
j .

Multiplying both sides by
1

p (t)
we get

1

p (t)

∞∑
j=0

pjt
jxj ≤

∥x∥
p (t)

∑
j<m

pjt
j + (L (x) + ε)

Taking limit superior as t → R− and using the regularity of P one can observe
that

lim sup
t→R−

Qx (t) ≤ L (x) + ε.

Since ε > 0 is arbitrary we conclude that (1) holds, which proves the theorem. □

3. An Inequality Concerning Statistical Limit Superior

In this section, replacing limit superior by statistical limit superior of a real
bounded sequence we prove an inequality.

Following the concepts of statistical convergence and statistical cluster points
of a sequence x = (xj) , Fridy and Orhan [7] have introduced the definition of
statistical limit superior and inferior.
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We first recall some terminology and notation. IfK ⊆ N0 andKn := {k ≤ n : k ∈ K}
then |Kn| denotes the cardinality of Kn. If the limit δ (K) := lim

n

1

n+ 1
|Kn| ex-

ists, then we say that K has a natural (asymptotic) density. A sequence x =
(xj) is statistically convergent to L, denoted st − limx = L, if for every ε > 0,
δ ({j : |xj − L| ≥ ε}) = 0, (see, e.g., [3, 5, 14,16]).

The number γ is called a statistical cluster point of x = (xj) if for every ε > 0
the set {j : |xj − γ| < ε} does not have density zero ( [6]).

Note that throughout the paper the statement δ (K) ̸= 0 means that either
δ (K) > 0 or K does not have natural density.

Following [7] we recall the following definitions and results. For a real number
sequence x = (xj) let Bx denote the set:

Bx := {b ∈ R : δ {j : xj > b} ≠ 0} ;

similarly

Ax := {a ∈ R : δ {j : xj < a} ≠ 0} .
Then the statistical limit superior of x is given by

st− lim supx :=

{
supBx , if Bx ̸= ∅
−∞ , if Bx = ∅.

Also, the statistical limit inferior of x is given by

st− lim inf x :=

{
inf Ax , if Ax ̸= ∅
∞ , if Ax = ∅.

If β := st − lim supx is finite, then for every ε > 0, δ {j : xj > β − ε} ̸= 0 and
δ {j : xj > β + ε} = 0. We also have that st− lim supx ≤ lim supx.

Recall that, by Wq (q > 0) , we denote the space of all x = (xj) such that for
some L,

1

n+ 1

n∑
j=0

|xj − L|q → 0 , (n → ∞)

If x ∈ Wq then we say that x is strongly Cesàro convergent with index q. When
q = 1 this space is denoted by W and it is called the space of strong Cesàro
convergent sequences ( [13]). It is well-known that strong Cesàro convergence and
statistical convergence are equivalent on bounded sequences ( [1, 3, 9]).

In order to prove an inequality relating Qx (t) to st − lim supx we need the
following result which is an analog of Theorem 1 of Maddox [13] (see also [4, 11]).

Note that P−density of E ⊆ N is defined by

δP (E) := lim
t→R−

1

p (t)

∑
j∈E

pjt
j

whenever the limit exists (see, [18]).
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Theorem 2. The power series method P transforms bounded strongly convergent
sequences, leaving the strong limit invariant, into the space of convergent sequences
if and only if P is regular and for any subset E ⊆ N with δ (E) = 0 implies that

δP (E) = 0. (2)

Proof. Sufficiency. Let x ∈ ℓ∞ and strongly convergent to L. In order to prove the
sufficiency it is enough to show that

lim
t→R−

1

p (t)

∞∑
j=0

pjt
j |xj − L| = 0. (3)

Let ε > 0 and let Eε := {j ∈ N : |xj − L| ≥ ε} .
Since x = (xj) bounded and strongly convergent to L, it is statistically con-

vergent to L (see [3, 9]). Hence δ (Eε) = 0. This implies, by the hypothesis that,
δP (Eε) = 0. From

1

p (t)

∞∑
j=0

pjt
j |xj − L| =

1

p (t)

∑
j∈Eε

pjt
j |xj − L|+ 1

p (t)

∑
j∈Ec

ε

pjt
j |xj − L|

≤ sup
j

|xj − L| 1

p (t)

∑
j∈Eε

pjt
j + ε,

we have

lim
t→R−

1

p (t)

∞∑
j=0

pjt
j |xj − L| ≤ ∥x− Le∥∞

1

p (t)

∑
j∈Eε

pjt
j + ε

≤ ε

because

δP (Eε)) := lim
t→R−

1

p (t)

∑
j∈Eε

pjt
j = 0.

We obtain that (3) is true.
Necessity. Note that any convergent sequence is statistically convergent to the same
value. Since statistical convergence and strong Cesàro convergence are equivalent
on the space of bounded sequences, we observe that P is regular. Assume now that
there is a subset E ⊆ N with δ (E) = 0 such that (2) fails. This implies that E is
an infinite set.

So we may write E = {kj : j ∈ N} = {k1, k2, ...} . Since the continuous method
is regular the corresponding matrix method is also regular. Hence by the Schur
theorem there exists a bounded sequences z =

(
zk1 , zk2 , ...zkj , ...

)
which is not

summable by the regular matrix method. Now define a bounded sequence, x = (xk)
as follows: xk = zk if k = kj (j = 0, 1, 2, ...) and xk = 0 otherwise. Since δ (E) = 0,
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it follows from the fact that

1

n+ 1

n∑
k=0

|xk − 0| =
1

n+ 1

n∑
k=0

|xk|

≤ sup
k

|xk|
1

n+ 1

n∑
k=0

χE (k) → 0, (n → ∞)

i.e., the sequence x = (xk) is a bounded statistically convergent sequence which
is not summable by the regular discrete method. So it is not summable by the
continuous method either. This contradicts the hypothesis. □

In the rest of the paper we use the following notation:

α (x) := st− lim inf x and β (x) := st− lim supx

Theorem 3. For every x = (xk) ∈ ℓ∞ we have

lim sup
t→R−

Qx (t) ≤ st− lim supx (4)

if and only if P is regular and that (2) holds.

Proof. Let x ∈ ℓ∞. Suppose that (4) holds. Since β (x) ≤ lim supx it follows from
(4) and Theorem 1 that P is regular. On the other hand (4) implies that

− β (−x) ≤ lim inf
t→R−

Qx (t) ≤ lim sup
t→R−

Qx (t) ≤ β (x) . (5)

If x = (xk) is a bounded statistically convergent sequence, (5) implies that

P − limx = st− limx.

Hence by Theorem 2, we observe that (2) holds.
Conversely, assume P is regular and (2) holds. Let x be bounded. Then β (x) is

finite. Given ε > 0 let E := {k ∈ N : xj > β (x) + ε} . Hence δ (E) = 0 and if k /∈ E
then xj ≤ β (x) + ε.

For a fixed positive integer m we write

Qx (t) =
1

p (t)

∑
j<m

pjt
jxj +

1

p (t)

∑
j≥m

pjt
jxj

≤ ∥x∥ 1

p (t)

∑
j<m

pjt
j +

1

p (t)

∑
j≥m
j/∈E

pjt
jxj +

1

p (t)

∑
j≥m
j∈E

pjt
jxj

≤ ∥x∥ 1

p (t)

∑
j<m

pjt
j + (β (x) + ε)

1

p (t)

∞∑
j=0

pjt
j + ∥x∥ 1

p (t)

∑
j∈E

pjt
j

Taking the limit superior as t → R− and using the regularity of P we get that

lim sup
t→R−

Qx (t) ≤ (β (x) + ε) + ∥x∥ δP (E) .
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Recall that δP (E) = 0 by (2) . Since ε is arbitrary we conclude that (4) holds.
This proves the theorem. □
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[1] Belen, C., Yildirim, M., Sümbül, C., On statistical and strong convergence with respect

to a modulus function and a power series method, Filomat, 34(12) (2020), 3981-3993.
https://doi.org/10.2298/FIL2012981B

[2] Boos, J., Classical and Modern Methods in Summability, Oxford University Press, 2000.

[3] Connor, J., The statistical and strong p−Cesàro convergence of sequences, Analysis, 8 (1988),
47-63. https://doi.org/10.1524/anly.1988.8.12.47

[4] Demirci, K., Khan, M. K., Orhan, C., Strong and A-statistical comparisons for sequences, J.

Math. Anal. Appl., 278 (2003) , 27-33. https://doi.org/10.1016/S0022-247X(02)00456-0
[5] Fridy, J. A., On statistical convergence, Analysis, 5 (1985), 301-313.

https://doi.org/10.1524/anly.1985.5.4.301
[6] Fridy, J. A., Statistical limit points, Proc. Amer. Math. Soc., 118 (1993) , 1187-1192.

[7] Fridy, J. A., Orhan, C., Statistical limit superior and limit inferior, Proc. Amer. Math. Soc.,

125 (1997) , 3625-3631. Doi: S 0002-9939(97)04000-8.
[8] Hardy, G. H., Divergent Series, Oxford Univ. Press, London, 1949.

[9] Khan, M. K., Orhan, C., Matrix characterization of A-statistical convergence, J. Math. Anal.

Appl., 335 (2007) , 406-417. https://doi.org/10.1016/j.jmaa.2007.01.084
[10] Knopp, K., Zur Theorie der Limitierungsverfahren (Erste Mittilung), Math. Zeit., 31 (1930),

97-127.

[11] Kolk, E., Matrix summability of statistically convergent sequences, Analysis, 1993.
[12] Maddox, I. J., Some analogues of Knopp’s core theorem, Inter. J. Math. and Math. Sci., 2

(1979) , 605-614. https://doi.org/10.1155/S0161171279000454

[13] Maddox, I. J., Steinhaus type theorems for summability matrices, Proc. Amer. Math. Soc.,
45 (1974), 209-213.

[14] Miller, H. I., A measure theoretical subsequence characterization of statistical convergence,

Trans. Amer. Math. Soc., 347 (1995) , 1881-1819.
[15] Orhan, C., Sublinear functionals and Knopp’s core theorem, Internat. J. Math. and Math.

Sci., 2 (1979) , 605-614. https://doi.org/10.1155/S0161171290000680
[16] Salat, T., On statistically convergent sequences of real numbers, Math Slovaca, 30(2) (1980),

139-140.
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