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« A system of generators of affine invariant functions a vector field for the affine groups is given.
* Rigidity and uniqueness theorems for immersions in affine geometry were obtained.
* Rigidity and uniqueness theorems for immersions are given in terms of affine invariants of immersions.

Article Info Abstract

Main results: The system of Christoffel symbols of the connection of an immersion ¢:J — R™ of
Received: 18 Dec 2021 an n-dimensional manifold J in the n-dimensional linear space R™ is a system of generators of
Accepted: 03 Nov 2023 the differential field of all Aff (n)-invariant differential rational functions of &, where Aff (n) is

the group of all affine transformations of R™. A similar result have obtained for the subgroup
SAff(n) of Aff(n) generated by all unimodular linear transformations and parallel translations
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Connection Aff(n) and SAf f (n) were obtained. These theorems are given in terms of the affine connection
Riemannian curvature and the volume form of immersions.
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1. INTRODUCTION

Let GL(n) be the group of all non-degenerate linear transformations. Denote by SL(n) the subgroup of all
g € GL(n) such that det g = 1.

Let Af f (n) be a group of all affine transformations f: R™ —» R", f(x) = Ax + b, x € R™ with b € R™ and
forall A € GL(n).

Denote by SAff (n) the subgroup of Aff(n) suchthat f € Aff(n), f(x) = Ax + b, x € R" with b € R"
and for all A € SL(n).

The Bonnet's fundamental rigidity and uniqueness theorem for hypersurface immersions in the geometry
of the special Euclidean group SM(n) is known in [1, 2]. An analogue of Bonnet's fundamental rigidity and
uniqueness theorem for hypersurfaces in the geometry of the group SAff (n) was given in [2-4]. For
surfaces in the geometry of the group SL(3) it is given in [4] and for surfaces in the geometry of the group
SAff (3)itisgivenin [3].

Two analogues of the rigidity and uniqueness theorems for immersions of an n dimensional manifold in an
n-dimensional Euclidean space were obtained. The first analogue is given for the Euclidean group M (n) in
[5-7].

Another analogue of the rigidity and uniqueness theorem for vector fields in a Euclidean geometry is given
in [8]. Note that in this book and papers mentioned below in Introduction, the term "vector field" is used
forany map &:J — R™ of an open subset ] < R™. The vector field can be also named “n-parametric surface”.
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The theorem in the book [8] is essentially the rigidity and uniqueness theorem for a system of three
orthonormal vector fields in the geometry of the orthogonal group O(3). For the Euclidean group M(n)
and the special Euclidean group SM(n), other forms of rigidity theorems for vector fields have given in
[9]. In the paper, it is obtained also that the system of coefficients of the Riemannian metric of an parametric
surface is a system of generators of the differential field of all M (n)-invariant differential rational functions
of an n-parametric surface.

Therefore, for the geometry of the n-dimensional pseudo-Euclidean group of index p, (it will denoted by
M (n, p)), the rigidity and uniqueness theorems for immersions of an n-dimensional manifold were given
in [10].

Investigations of the problem of Aff(n)-equivalence and SAff(n)-equivalence of immersions (vector
fields), Aff (n)-invariant and SAff (n)-invariant immersions (vector fields) and Af f (n)-invariants and
SAff (n)-invariants of immersions (vector fields) play an important and critical role in science,
technology, engineering, mathematics, mathematical physics and computer vision and pattern recognition,
etc. (see some references [11-15]).

The problem of description of the general form of all invariant polynomial vector fields for a compact Lie
groups is intensively studied in the bifurcation theory [16-18]. The problem of equivalence of smooth vector
fields and the problem of a description of complete systems of invariants of polynomial vector fields are
investigated in the theory of differential equations [19,20].

The structure of the paper is organized as follows. In section 2, for a vector field & (u) on an open subset J
of R™, we describe a system of generators of the differential field of all G-invariant differential rational
functions of &(u) for groups G = Aff(n), SAff(n) (Theorems 1 and 2).

In section 3, for an n-dimensional connected manifold M, using results of Section 2, we obtain the following
results:

(1) The rigidity theorem for the connection on M induced by the immersion é&: M — R™ (Theorem 3) and
some consequences of this theorem (Corollaries 3 and 4). By Corollary 3, Theorem 2 means that the system
of Christoffel symbols of the connection on M induced by the immersion &: M — R™ is a system of
generators of the differential field of all Aff (n)-invariant differential rational functions of & (u).

(2) The rigidity theorem for the connection and the volume form on M induced by an immersion &: M —
R™ (Theorem 4).

In section 4, for an n-dimensional connected, simply connected manifold M, we prove the existence
theorem for a connection on M (Theorem 5).

2. GENERATING SYSTEMS OF AFFINE INVARIANT DIFFERENTIAL RATIONAL
FUNCTIONS OF AVECTOR FIELD

Let / be an open subset of R™. Throughout this paper, we will take a vector field £ (u) such that é: ] — R
is a C*-mapping. Here a C*-mapping ¢ is called to be an n-parametric surface (J-vector field, for
shortness) in R™.

Denote the set of all non-negative integers by N,,. For a; € N, fori = 1,2, ..., n, we put

aa1+a2+---+an

f(al.az,....an) =
n
6u1 6u2 .0uy,

&(u). Itisclear that £(0,0, ...,0) = &(w).

Throughout this paper, we will take the real numbers R to be ground field. The ring of differential
polynomials of £ (&, 00 g©@L0) £(@az--an)) in g finite number of partial derivatives of £ with
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real coefficients is denoted R{¢}. This being case, we denote f (&, § 100, £(0L-0)  g(@raz.an)) py
f{&}. Therefore, R{¢} is a differential R-algebra and an integral domain. In this case, denote its quotient
field by R(&). Then R(¢§) is a differential field and its an element f is a differential rational function of ¢.
This being case, denote it by f().

This definitions can be generalized as follow: Let &, &, ..., & be k-tuple vector fields defined on the same
subset / in R™. In this case, denote a differential polynomial and a differential rational function of
&6, L& by fLEL &, L &y and f(&4, &, ..., &), resp. Their ring of all differential polynomials and field
of all differential rational functions is denoted by R{¢;,¢,, ..., &} and R(&;, &5, ..., &), resp.

Let G be one of the groups Af f(n) or SAff (n).

Definition 1. A differential G-invariant function is a real-valued function f:J* — R which satisfied
f(F&,F&,, ..., F&)) = f(&1,&,, ..., &) forall F € G and &4, &5, ..., & are ] - vector fields in R™.

It is easy to see that given a J - vector field &(u), then every affine transformation F transforms & (u) into
anew J - vector field F&(u).

In this paper, we are interested in the set

R(£1, &5, ., E)¢ = {f € R(&1, &5, ..., &) | f is a G-invariant function }

of all functions which are invariant under the action of G. This set is a differential subfield of
R(&1, &5, ..., &). We call R(&;,¢&,, ..., & )¢ the set of all G-invariant differential rational functions of

15625 w0 S

Now we will find a set of generators for R(&;,¢,, ..., & )¢ which is one of the fundamental problems of
invariant theory.

ar1

. . . a
We will consider element a,. € R™ in the form a, = .2 |forallr =1,2,...,n. For a, € R", denote the

determinant of the matrix (a;;) by [a;as ... a,].

Hence applying a; to elements a, = &§(@r1®r2--@m) for all r = 1,2,...,n, we obtain the determinant
[é’(“11‘0’12‘---'a1n)é’(azpazz'---ﬂzn) E(“mﬂnz»---»a’nn)].

In the case, we put
2
0 =[] andof = |5 H S X g] for all i, j, k =

du, du, Jduy ou, ' Oug—q 0u; 0uj Ougyq

1,2,..,n.
Theorem 1. The system
S={0,0f;ij,k=12,.,n} @)

is a set of generators of R(&)SAfF (W),

Proof. Firstly, we give some lemmas for the proof of the theorem.
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o€ o€ ¢ 08\ . e ) ) ) )
Let ]R{<—, —> and ]R{<—, —> be the differential field of all differential rational functions and
ouq ouy, ouy ouy,
the differential field of all G-invariant differential rational functions of g, ...,%, resp.
1 n

SAff(n) SL(n)
> =R <ﬁ ﬁ> _

ou,’ " ouy,

Lemma 1. R(&)S4T(V) = R(ﬁ 98

ou,’ " ouy,

Proof. The proof is similar to the proof of Lemma 1 in [9].

0F ¢ \SLM . o . . .
—> . Then there exist SL(n)-invariant differential polynomials f3, f>

ou,’ " ou,

Lemma 2. Let f € R(

Proof. The proof is similar to the proof of lemma in [21].
Lemma 3. The system

n
W = [f(an.au,---,am)f(“21'a22.---.a2n) ".E(am.anzﬂ--'“nn)],z a;j=211<ign @)
¢ 2

=1

is a set of generators of R{&}54/7("M) as an R-algebra.

Proof. The proof is obtained from [22] and Lemmas 2 and 9.

Remark 1. Similar proofs of Lemma 3 are given in [9, 10].

Lemma 4. The system I in Lemma 3 is a set of generators of R{&}3A (™ as a field.

Proof. The proof is obvious from Lemmas 2,3 and 9.

SL(n)
> . From Lemmas 4 and 9 for a proof

Let R{S} and R{S, w1} be the R-subalgebras of R(%, ...,%
1 n

of the theorem, it is enough to prove that W € R{S, w~'}. Now, let

A= [f(“n:alzu-uam)f(“zp“zzu--ﬂZn) f(anljanb--vann)]. (3)

Let s(A) be the number of elements of the set

{f(“n,au'---'am)’ f(azbazz'--»a’zn), ) E(anlraan---rann)} \ {E R ﬁ}
Ju, duy,

We set 7(A) = max;<i<n Y. j=q @ij-

Lemma 5. Let A be a differential polynomial of the form (3), where s(A) > 2. Then A is a polynomial of
Q~1 and differential polynomials B of the form (3), where s(B) < s(A4) and r(B) < r(4).

Proof. By s(A) = 2, there exists k € {1,2, ..., n}, such that
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% ¢ {f(au'au:---:am), St(az1r“22:---,a2n)' . E(“nlranZI---r‘xnn)}'

In [23], we put
0

— #la11,a12,0a — z(a1,a22,0a — z(an1,anz,..a —
X, = f( 11%12 1n)'x2 = f( 21/@22,402n) o Xy = ‘f( n1%n2 nn)'xo =5
k

% % % %

Vo =g Vi = g Ve = g Yn = g

Then

[f(“n-au;--uam)E(azbazz'---'azn) E(am:anz:---ﬂnn)] X

[afﬁ 0§ 0% 65]_

Ouy 0uy  OUp_q Uy  OUy

9§

[_ é’(OfZl»aZZ»---»azn) f(a’m»a’nz:---:a’nn)] X

auk
[f(“n:an.---.am) ﬁ af af af — ...

Ouy  0Up_q OUpyq  OUp

(4)

0
— |&@naiz,m@in) | Fl@n-11.0n-12,-20n-1n) %
[E E auk]
Y S
aul auk_l 6uk+1 aun

Put

98 08 9 9 0¢
Oy, 0wy Owp_g Owgry  Ounl’
9 0 % af]

ouy B Oup_q 0Upyq du,

_ (Ap1, 0,
Ve = ,’f t1.0¢t2 tn)

ht = ,’f(an'“lz:'“.am) f(“t—11'“t—1zr“.at—1n)

f(al+11:at+12:"':at+1n) f(a’nl'anz:'“'a’nn)] .
auk

Then s(vy) = 0,7r(vy) < r(A) and s(vy) < 1,r(hy) <r(A) forallt = 1,2,...,n. Using Equation (4), we
get A = v hy(vy) ™t + -+ v, h, (vy) L. Since vy = (=1)%71Q, we have A = (-1D)* Q"1 (v,hy + -+
vphy). By s(A) = 2, the number of non-zero elements v;h; is s(A) = 2. For h; such that v;h; # 0, we
have s(h;) < s(A). Therefore 4 is a polynomial of the system Q~,v;, h;, with s(v;) = 1,7(v;) <
r(4),s(h;) < s(4),r(h;) <r(4).

Lemma 6. Let A be a differential polynomial of the form (3), where s(4) = 2. Then A is a polynomial of
Q, Q1 and differential polynomials B of the form

ﬁ...a—f ((Z e r“'ran) _65 ...6_%' n i
[Oul Tips §rovta F 6un]’ where ¥ a; < r(4).

Proof. Using Lemma 6 and induction on s(4), we obtain that every differential polynomial A of the form
(3), where s(A) = 2, is a polynomial of Q=1 and differential polynomials B of the form (3), where s(B) <
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1 and r(B) < r(A). Every non-zero differential polynomial B of the form (3), where s(B) = 0, is equal
to Q. Every differential polynomial B of the form (3), where s(B) = 1, has the following form

08 9 r(ajapa )ia_f] ng.
[aul 6uk_1f n I , Where ¥ a; > 1.

Lemma 7. Let A be a differential polynomial of the form

I:E ié’(apazn'“-an) i...ﬁ

ouy Oug—q Oug4, Oup

differential polynomials B of the form (3), where r(B) < r(4).

], where ™ ,a;>2. Then A is a differential polynomial of

Proof. Assume that A such that r(4) = Y, a; > 2. Then a; > 0 for some s. Consider the following
differential polynomial

B, = [ﬁ vee 6_f f(al'---.as—lnas_1'as+1"'nan) a—f ﬁ
0 ou; Oup_4 0upy,  Oupl

For By, we have r(B,) = r(A) — 1. Set

B; = [af 9 o (05) 0¢ ié’(051:---:a’s—lﬂs—1r“s+1"':“n)i...ﬁ

0wy duig Oug \dug) Oupry  Oug4 ks Oupy
fori < k and
g - [9% .. _9% g(al,...,as-l,as—l,asﬂ---,anJi...ii(ﬁ)i...ﬁ]
Yo lou;  Ouy_g Oy Ouj_q Oug \Ou;/ 0u;yq  Ouy,

for k < i. We have the following equation

d
_BO - Bl + ce + Bk—l +A + Bk+1 + ee + BTL'
dug

Hence

A=£Bo_(Bl+"'+Bk—1+Bk+1+"'+Bn)' ©
S

Sincer(B;) =r(A)—1foralli=0,1,..,k k+1,...,n, the Equation (5) implies that A is a differential
polynomial of differential polynomials B of the form (3), where r(B) = r(4) — 1.

Lemma 8. Let A be a differential polynomial of the form (3), where s(A) = 2. Then A is a differential
polynomial of Q™1 and elements of the system (1).

Proof. It follows from Lemmas 5-7 by induction on s(A4) and r(4).
The proof of Theorem 1 is completed by Lemmas 1-4 and Lemma 8 .

Definition 2. A differential rational Af f (n)-relative invariant function is a real-valued function f: /¥ - R
which satisfied f(F&;,Fé,, ..., Fé,)) = (det F)™f(&1,&,, ..., &) forall F € G,&,,&,, ..., & are J - vector
fields in R™ and m € N,,. The number m is called weight of f and it is denoted by W (f).

Theorem 2.The system
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Qs. .
{#:i,j.5=1,2,...,n} (6)

is a set of generators of R(&)A/7 (),

Proof. Firstly, we give the following lemmas for the proof of the theorem.

SAff(n) SL(n)

SAff(n) — R (95 0_f> - <a_f ﬁ)
Lemma 9. R(¢) = R<6u1' T =R s T .
Proof. The proof is similar to the proof of Lemma 1 in [9].

The following lemma is similar to Lemma 1.

Affm) GL(n)
Lemma 10. R(&)A/F(W = R(ﬁ ﬁ> - R(ﬁ ﬁ) _

ou,’ " ou, ou,’ " ouy

GL(n)
0§ 0§
Lemma 11. Let f€R<_au1""'_6un>

polynomials f;, f; such that f = f;/f, and W(f;) = W(f,).

. Then there exist GL(n)-relative invariant differential

GL(n)
03 a_§> . By Lemma 11,

Proof. The proof is similar to the proof of lemma in [21]. Let f € R(H' o

1 n
there exist GL(n)-relative invariant differential polynomials f;,f, of &(u) such that f = f;/f, and
W(f,) = W(f;). Since differential polynomials f;,f, are GL(n)-relative invariant, they are SL(n)-
invariant. Then, by Lemma 3 and 8, there exist polynomials

{0, 0

Gk =12,..,n}h{0,Q51),k = 12,..,n}

of elements of the system (1) such that

ha{Q,Q8;0,j,k =1.2,...,n} ho{Q,Q8;0,j,k = 1,2,...,n}
1= an o= ar

for some 7y, 7, € Ny. Since f;, f>, Q are GL(n)-relative invariant differential polynomials, W (£2) = 1 and
W (f1) = W(f2), we have

W(f,) = W(hy) —r, W(f,) = W(h,) — r,. These imply the following equations

Qk.
Qwhdp, {Lﬁ;i,j,k =12, n} k.
fi= o = _QW(h1)_T1h1 {1,#; iL,j,k=12, ...,n},
Qk. ’
QW(hz)hz {Lﬁ;i,]’,k = 1,2,...,7’1} QF.
f, = e - _QW(hz)—Tzh1 {1,#; i,j,k=12, ...,Tl}.
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k
h1{1,%;i,j,k=1,2,...,n}
Hence we have f = f;/f, =

ak. '
hZ{L#;i, j,k=1,2,...,n}

So, the proof of the theorem is completed.

Corollary 1. The system

Qo (7
Q,?;l,],k =12,..,n

is a set of generators of R(&)S4//(M),
Proof. It follows from Theorem 1.

3. GENERATING SYSTEMS OF AFFINE INVARIANT DIFFERENTIAL RATIONAL
FUNCTIONS FOR IMMERSIONS OF A MANIFOLD AND AFFINE EQUIVALENCE
PROBLEMS FOR TWO AFFINE IMMERSIONS

Now we give some basic definitions.

Let M be a connected C*-manifold of dimension dim M =n, and é&: M — R™ a C*-immersion, i.e. a
differentiable mapping of rank n. For simplicity, we use the term "M-immersion".

A chart on M is a pair (¢, U) where U is an open subset of M and ¢ is a homeomorphism of U with an
open subset ¢ (U) of R™. U is called a coordinate neighbourhood and ¢ (U) its coordinate space.

Let A = {(¢q, Uy, ), @ € A} a collection of charts of M. Then we can be given an n-form on M by
EW g g
ou, Ou, 7 duy

] du, A -+ A duy,, where E® is a representation of € in the local coordinates of U,,.

Then, n-form on M is called the volume form induced by an M-immersion and denoted it by w(¢).
Proposition 1. Let & be an M-immersion. Then w(¢) # 0 forall p € M.
Proof. For a similar proof, see [10].

Corollary 2. Let M be a C*-manifold of dim M = n. If an M-immersion of manifold M exists, then M is
an orientable € *-manifold.

Proof. Using [24] and Proposition 1, the proof is completed.

Remark 2. There is an orientable C*-manifold M of dim M = n without M-immersions in R™. (See [24]).

2

Let & and uq, uy, ..., u, be an M-immersion in R™ and a coordinate system, resp. Let us write 9; = o for
the corresponding vector fields. Then,
Ou; 0upEM = YTR_) TE{E 0w ™, i,j = 1,2,...,m (8)

where the functions Fi’}{f} is called the Christoffel symbols of the M-immersion & on a chart of M and u is

an element of a chart of M.
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Let G(§) = {T/{¢}; i, j, k = 1,2,...,n} be the system of Christoffel symbols of a connection on M and
denote this connection by V(¢).

Proposition 2. Let & be an M-immersion in R™. Then

[0:6% .. 01§% 9,(3,8®) 42§ .. 0, ©)
0,809 9,80 .0,

e} =
forall i,j,k = 1,2, ...,n. Proof The proof is obtained from the system (8).

Corollary 3. Let ¢ be an M-immersion in R™. Then the system G (&) = {Tf(¢);i,j,k = 1,2,...,n} is a set
of generators of R(&)A/7 (M),

Proof. The proof is obtained from Theorem 2 and Proposition 2.

It is easy to see that given an M - immersion & (u), then every affine transformation F transforms &(w) into
anew M-immersion Fé(u).

Definition 3. Let ¢ and n be two M-immersions. Then these immersions are called Af f (n)-equivalent if

thereis F € Af f(n) such that n(p) = F&(p) for all p € M, and denote it by & AT n.

A
Theorem 3. Let ¢ and n be two M-immersions. Then & 7 nifand only if V(&) = V().

A
Proof. =: ¢ T7m n. Then, by Proposition 2, since coefficients Fi’j{f} of V(&) is Aff (n)-invariant, we

have V(§) = V().

<: Conversely, assume that V(¢) = V(). Then Fi’j{f(u)} = Fi’j{n(u)} holds for all i,j,s = 1,2, ...,n and
for all elements u of a chart of M. We put the matrices

A(&) = l0uq € ... ouyéll, ou;A(E) = llou;(0u ) ... 0u; (0w, &)Il, where duq € is a column-vector and for
all elements u of a chart of M. The Equation (9) implies

A owAE) = |ITELEY.

i,j,k=1,.,n

Since I {€(w)} = Tfm(w)} forall i, j, k = 1,2, ..., n, we get

AG W)t owAG (W) = A(n(w)) ™t dw; A(n(w))
foralli = 1,2,...,n and for all elements u of a chart of M.
The equation A(&) ™1 ou;A(§) = A(n) ™1 du;A(n) implies

oui (A W)AGE W)™ = (Qu;AMWNAE W)™ + A(mw)) du (A ) ™) =
OuAMWNAE W)™ = A@)AE @)™ QuACMWNAEW) ™ =
AM)A@M@) ™ owAmw)) — AG W) 0w AEWNACEW) ™ =0

for all elements u of a chart of M. From the last equality, we get A(n(w))A(E(uw))~? is not depend on the
element u of a chart of M. Since M is a connected immersion, it is obvious that A(n(p))A(&(p))~* does
not depend onp € M.
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Let F = A(n(u))A(§(w))™t. Since det A(&(w)) # 0 and det A(n(u)) # 0 for all u € M, we have
det F # 0and A(n(p)) = FA(&(p)) forall p € M. The equality A(n(u)) = FA(¢(w)) implies du;n(u) =
Fou;é(u) for all i =1,2,...,n and for all elements u of a chart of M. Then there is b € R™ such that
n(u) = F&(u) + b for all for all elements u of a chart of M. Since M is connected immersion, we see that
b does not depend on a € A. Remark 3 By the definition of the complete systems of invariants [9], this
theorem means that G (&) is a complete systems of affine invariants of the immersion &. Moreover, every
Aff (n)-invariant of an immersion ¢ is a function of elements of G (£).

Theorem 4. Let ¢ and n be two M-immersions. Then

SAff(n) . .
& '~ "npifandonlyif V(&) =V(n) and w(¢) = w(®).

Proof. =:¢ AL n. Since coefficients Fl-’j{f} and w(¢) are SAf f (n)-invariant, we have V(§) = V()
and w(§) = w(n).

«<: Conversely, assume that V(&) = V(n) and w(§) = w(n). From the equality V(&) = V(n), we obtain

AfF@) AFF) n
& "~ "n.Sinceé¢ "~ "n,thereare F € GL(n) and b € R™ such that n(p) = Fé(p) + b forall p € M.

Using this equality and w(&) = w(n) in local coordinates, we get
[0uin 0uy n... Ou,n] = [0u FE OuyFé ... 0u, FE] = detF [0u & 0uyé ... 0uyé|

SA
Since [0u, & 0u,€ ... 0u,é] + 0 for all p € M, we obtain det F = 1. That is & ST n

Remark 4. This theorem means that every SAf f (n)-invariant of an immersion £ is a function of elements
of G (&) and the function [du, & du,¢€ ... 0u, €.
4. RELATIONS BETWEEN THE TORSION-FREE TENSOR AND RIEMANNIAN
CURVATURE TENSOR OF AN IMMERSION

Let M be a connected C*-manifold of dimension dim M =n, and &: M — R™ a C* immersion, i.e. a
differentiable mapping of rank n.

Let A = {(¢,, Uy, ), a € A} a collection of charts of M.

Then we can be given an (n x n)-matrix C*®-function ¢ (p) by ||§1(")(p) ...E,S“)(p)||, where £ is a
representation of ¢ in the local coordinates u = (uy, ..., u,) of U, and fi(”) foralli =1,2,...,nisacolumn
matrix form of £,

The following definition is taken from [25]:

Definition 4. A collection of an (n X n)-matrix C*-function
£ = 5" @& @) - & @)
on M will be called a covariant tensor field of rank 1 if it is transformed according to law

n
9us .y

avi s
s=1

Ei(v) —
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when passing from one chart to another; here v, ..., v, and ug, ..., u, are, respectively, "old" and "new"
coordinates in the intersection of the charts. Let R(y) and T (y) be the Riemannian curvature tensor and the
torsion tensor of a connection y on M, resp.

Theorem 5. Let M be a simply connected € *-manifold and y be a connection on M such that R(y) = 0
and T (y) = 0. Then there is an M-immersion  in R™ such that V(n) =y

Proof. Lety® = {yl’j (w),i,j,k = 1,2,...,n} be the expressing of the Christoffel symbols of y in the local
coordinatesu = (uy, ..., uy,) of U,. Set Qi {y(w)} = ||Vl-"j(u)||l,j=12 fork = 1,2, ..., n. For the following

system of equations

9w = g0, () (10)

auk
where k = 1,2, ...,n, for an (n x n)-matrix C*-function £ (p) = [[€™ @)l (p) .. €8 ()| on M,

where £ s a covariant tensor field of the 1st-rank on M. It is obvious that the form of the system (10) of
equations is the same in 'old™ and 'new' coordinates in the intersection of the charts. Since the Riemannian
curvature tensor of y is equal to zero, the following system of equations

ad d
o QU 0} =~ 5 Quly (D) = [y @), Quly )] (1)

for [,k = 1,2,...,n holds, where [Q;{y}, Qi {y}] denotes Q;{y}Qi{r} — Qi{r}Qx{y}. Letpo € Uy. By (11)
and according to the theory of linear differential equations, there exist a neighborhood V < U, of the point

Po and an (n X n)-matrix C *-function £ (p) on V such that det (§(p)) = 0 forall p € V, and £ (p)
is a solution of (10) on V. Using connectedness and simply connectedness of the manifold M, according
to the theory of linear differential equations on manifolds [26], we see that the unique an (n X n)-matrix
C>-function £(p) = 1€, (p)é2(p) ... &, (P)Il on M exists such that £ (p) is a covariant tensor field of the 1st-
rank on M and,&(p) is a solution of (10) on U, for every a € A,det ({(p)) = O forall p € M and &(p) =
E@ (p) for all p € V. Now we consider the solution &(p).

By Qr{yr(w)} = ”Vz]( ]| and (10), we obtain

Lj=1,2,.

(12
ROR Z V@ ), e(“)(p) - z rEE @

in each chart of M with local coordinates u = (uq, u,, ..., uy). Since the torsion tensor of the connection y
is equal to zero, we have yl-kj(u) = yﬁ(u) for aII L,j,k=12,..,nandall u € U,. Equation (12) and the

equality y/5(w) = v/ (u) imply — - E(u)(p) = E(u)(p) for all i,j = 1,2, ...,n in each chart of M with

local coordinates u = (uq, Uy, ..., un). Since the (n X n)-matrix C*-function

&) = 1&E.(p)é2(p) ... & (p)Il on M is a covariant tensor field of the 1 st-rank on M and det (¢(p)) # 0

forall p € M, the last equality implies an existence of a M immersion n(p) such that%f(“) (p) = f}u) »
J

forall j = 1,2, ...,n in each chart of M with local coordinates u, where n (p) is the expressing of n(p)
in a local coordinates u. Hence we obtain the following system of equations
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9 ™ Z”: an®
ou; du; ”( ) ouy,
k=1

fori,j =1,2,...,n. Thismeansthat V(n) =y

Between the volume form w(n) and the connection V(n) of the M-immersion n in R™ there is the following
system of equations

8 [an® oy op® ; :
_[’7 n .’7] iy T (™), i=1,2,..n. (13)

ou; L ou,; OJu, oun

Corollary 4. Let M be an open connected, simply connected subset of R™. Let B(u) du, A ---Adu, be a
non-zero volume form on M and y be a connection on M such that R(y) = 0 and T(y) = 0. Assume that
the equation hold:

) SN (14)
Fu B0 = le v

for all i =1,2,...,n, where {y5(w)} is the system of Christoffel symbols of y. Then there is an M-
immersion n in R™ and a € R such that V(n) = y and

on(w) on(w) 5n(u)
du, OJu, du,

B(u) = [

forallu € M.

Proof. By Theorem 5, there exists an M-immersion of n in R™ such that V(n) = y. Using this equation,
Equation (13) and Equation (14), we get

—B(u)‘Z o =i r; (n )_aul agiu)agiu)]

foralli = 1,2,...,n. Hence

a () = [an(u) an(w) dn(w)
du; aul Ju, OJdu, Ju,

forall i = 1,2, ...,n. These equations imply an existence of a € R such that

on(w) (W) an(u)] a
du, OJu, du,

B(u) = [

forallu e M.
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