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ABSTRACT
Article History: Accurate estimation of streamflow is crucial for water resources planning,
iigg;igj ig'ég'ggg design and management, determining of flood and drought management
Published online: 12.12.2022 strategies, and minimizing their adverse effects. In this study, the usability of

Artificial Neural Network (ANN) models to estimate of monthly streamflow

was investigated. For this purpose, monthly data of two stations located in

Antificial neural network the Seyhan Basin in the south of Turkey were used. The data of Sariz River-

Seyhan basin Sarkdy observation station (No: DI18A032) for the streamflow and Sariz

Streamflow meteorology station (No: 17840) for precipitation were used. The

Water resources precipitation and flow data used belong to the period 1990-2017. Nine input
combinations consisting of lags of streamflow and precipitation data were
obtained and used in ANN models. We used two ANN techniques, namely
Multilayer Perceptron (MLP) and Radial Basis Neural Networks (RBNN) to
estimate the monthly streamflow. In the MLP technique, three learning
algorithms with gradient descent with momentum and adaptive learning rule
backpropagation (GDX), Levenberg-Marquardt (LM) and resilient
backpropagation (RBP) were used. The parameters of each different ANN
model obtained by using nine input combinations were obtained by trial and
error. The success of the models used was evaluated using five different
performance metrics. Which of the input combinations used in the
streamflow estimation was more successful was decided according to the
combination with the highest Nash Sutcliffe efficiency coefficient (NSE)
value of the test period. Although similar results were obtained in MLP-
GDX, MLP-RBP, MLP-LM and RBNN models, MLP models (except MLP-
LM) were slightly more successful than RBNN models. The most successful
streamflow estimation model was the MLP-GDX-M6 model. In the MLP-
GDX-M6 model, MAE=1.148 m’s, RMSE=1.815 m%s, R°=0.724,
NSE=0.717, and CA=1.069 were obtained for the testing period. The novelty
of the study is that we have examined the credibility of ANN models,
including the MLP-GDX, MLP-RBP, MLP-LM and RBNN for predicting
the monthly streamflow in natural rivers.

Keywords:

Farkh Yapay Sinir Ag1 Modelleri Kullanarak Nehir Akimi Tahmini

Arastirma Makalesi 0z

Makale Tarihgesi: Su kaynaklarmin planlanmasi, tasarimi ve yonetimi, taskin ve kuraklik
SZESlt?;‘}ilﬁ.i'lf(l)lozézzoozgz yonetim stratejilerinin - belirlenmesi ve olumsuz etkilerinin minimize
Online yaymlanma: 12.12.2022 edilebilmesi nedeniyle nehir akimmin dogru bir sekilde tahmin edilmesi

hayati onem tasimaktadir. Bu caligmada, Yapay Sinir Aglar1 (YSA)
modellerinin aylik nehir akimi tahmininde kullanilabilirligi arastirilmistir. Bu

Anahtar Kelimeler:

Yapay sinir aglari amagla, Tiirkiye'nin giineyinde Seyhan Havzasinda yer alan iki istasyonun
Seyhan havzast aylik verileri kullanilmistir. Nehir akimi i¢in Sariz Nehri-Sarkdy gozlem
Nehir akim istasyonu (No: D18A032), yagis icin Sariz meteoroloji istasyonu (No:
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Su kaynaklar: 17840) verilerinden faydalamilmigtir. Kullanilan yagis ve akis verileri 1990-
2017 periyoduna aittir. Akim ve yagis verilerinin gecikmelerinden olusan
dokuz giris kombinasyonu elde edilmis ve YSA modellerinde kullanilmustir.
Aylik nehir akimini tahmin etmek i¢in Cok Katmanli Algilayict (MLP) ve
Radyal Temelli Sinir Aglart (RBNN) olmak iizere iki YSA teknigi
kullanilmigtir. MLP tekniginde adaptif 6grenmeli ve momentum 6zellikli en
dik inig (GDX), esnek geri yayilhim (RBP) ve Levenberg-Marquardt (LM)
olmak iizere {i¢ adet Ogrenme algoritmasi kullanilmigtir. Farkli giris
kombinasyonlar1 kullanilarak elde edilen her bir farkli YSA modelinin
parametreleri deneme yanilma yoluyla belirlenmistir. Kullanilan modellerin
basarisi bes farkli performans dl¢iitii kullanilarak degerlendirilmistir. Akarsu
tahmininde kullanilan giris kombinasyonlarindan hangisinin daha basarili
olduguna, test doneminin Nash Sutcliffe verimlilik katsayis1 (NSE) degeri en
yiiksek olan kombinasyona gore karar verilmistir. MLP-GDX, MLP-RBP,
MLP-LM ve RBNN modellerinde benzer sonuglar elde edilmis olmasina
ragmen MLP modelleri (LM hari¢) az da olsa RBNN modellerinden daha
basarili olmustur. En basarili akim tahmin modeli MLP-GDX-M6 modeli
olmustur. MLP-GDX-M6 modelinde test periyodu icin MAE=1.148 m/s,
RMSE=1.815 m%s, R’=0.724, NSE=0.717 ve CA=1.069 olarak elde
edilmistir. Caligmanin yeniligi, dogal nehirlerdeki aylik akis akigini tahmin
etmek i¢in MLP-GDX, MLP-RBP, MLP-LM ve RBNN dahil olmak iizere
Y SA modellerinin giivenilirligini incelemis olmamizdir.

To Cite: Koycegiz C, Buyulyildiz M. Estimation of Streamflow Using Different Artificial Neural Network Models.

Osmaniye Korkut Ata Universitesi Fen Bilimleri Enstitiisii Dergisi 2022; 5(3): 1141-1154.

1. Introduction

Accurate estimation of streamflow, which is one of the major components controlling the hydrological
behavior of basin areas, plays a very important role in making flood warnings, operating reservoirs for
flood control, determining the water potential of the river, hydroelectric production in dry periods,
distribution of drinking water and irrigation water, and river transportation planning (Mohammadi et
al., 2021). Streamflow in a watershed is affected by the physical features of the watershed, such as
land use, vegetation, soil types and properties, topography, elevation, size and shape of the basin. In
addition to these physical factors, streamflow exhibits a non-linear behavior that is affected by many
meteorological factors such as precipitation type, duration of precipitation, intensity of precipitation,
distribution of precipitation in the basin, temperature, evapotranspiration, and this complicates its
monitoring (Liu et al. 2016).

Physically based models based on the physical process of streamflow formation, which can be
revealed through analysis and simulation of hydrological cycles, and data driven models (Latt and
Wittenberg, 2014; Cui et al., 2020; Xu et al., 2020) that can apprehend the mathematical relationship
(non-linear or linear) between streamflow and its explanatory variables are widely used in flow
estimation. Physically based models have the advantage of comprehending the hydrological process as
they use the physical properties of the watershed, but require reliable data of the watershed
parameters. Due to the limited physical information of most river basins around the world, the
inability to comprehend the hydrological behavior of the basin correctly makes it difficult to use
physically-based models for flow estimation (Zhang et al., 2015). Data-driven models such as Support
Vector Machine (SVM), Artificial Neural Network (ANN) which do not need information about the

1142



physical properties of the watershed and are completely based on the characterization of input-output
data, are widely used in flow forecasting due to the minimum information requirement, real-time
implementation and ease of development (Cui et al., 2020). Adamowski et al. (2012) used
Multivariable Adaptive Regression Splines (MARS), wavelet transform-ANN and ANN methods for
flow estimation in the Sainji mountain basin where there is not enough data in the Himalayas and
compared the results. Hadi and Tombul (2018) used Auto-Regressive (AR), ANN, ANFIS and SVM
models to predict streamflow in three basins in Turkey. Consequently, it was obtained that both ANN
and ANFIS performed well in streamflow estimation, although ANN outperformed ANFIS for peak
values. Liu et al. (2020) used the LSTM network connected Empirical Mode Decomposition (EMD)
model for river flow estimation. The performance of the model was evaluated with the Willmott Index
(W1) and Legates-McCabe's Index (LMI). The results demonstrated the reliability of this method in
flood years and long-term continuous forecasts. Inputs created with monthly flow data yielded close
results between forecast and observed values. Latt and Wittenberg (2014) used ANN and multiple
linear regression (MLR) methods to estimate of Chindwin River floods using the rainfall and water
level data of 1990-2011 periods. In the study by Latifoglu and Nuralan (2020), monthly river flow data
were estimated using Long Short Term Memory (LSTM) networks, which is a Deep Neural Network.
The effect of pretreatment applied with Single Spectrum Analysis (SSA) to monthly river flow data on
forecast performance was investigated. As a consequence, it was seen that the performance of the
SSA-LSTM model was quite good, and the pre-processing of the SSA data significantly increased the
model performance. As a result, it has been determined that the SSA-LSTM model can be used as a
high-performance tool in river flow estimation studies. ANN, M5 and hybrid wavelet-M5 to model on
both daily and monthly scales the rainfall-runoff process at two different basins were used by Nourani
et al. (2019). For this purpose, three different data splitting strategies were implemented for the
training and testing phases. Firstly, rainfall and runoff time series were decomposed into various sub-
time series by applying wavelet transform. The sub-series determined later were used as input to the
M5 model. According to the results obtained from the implemented models, the Hybrid Wavelet-M5
model performed better than the original M5 and ANN models.

Xu et al. (2020) used the LSTM network targeting the time series data area for the flow prediction of
rivers. The predictions of LSTM are compared with Support Vector Regression (SVR) and Multilayer
Perception Models (MLP). In addition, the effect factors of its performance were investigated by
carrying out extended experiments on the LSTM model. It was seen that LSTM gave better results in
performance results. Cheng et al. (2015) used ANN and SVR models to estimate the monthly flow of
the Xinfengjiang Reservoir in China, and found that SVR outperformed ANN, but both models were
suitable for the estimation process. Abdullahi et al. (2017) used artificial intelligence (Al) techniques
such as ANN, wavelet-ANN (W-ANN), genetic programming (GP) and wavelet-genetic programming
(W-GP) to estimate the flow in Iran. For this aim, precipitation data of seventeen meteorological

gauge stations for the period 1999-2008 were used. According to the results obtained from the models,
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the W-ANN model was more performed than the other models. However, it has been determined that
the GP model has higher accuracy in estimating peak flow.

In this study, it is aimed to estimate monthly streamflow with two different ANN techniques, Multi-
Layer Perceptron (MLP) and Radial Basis Neural Networks (RBNN), using different input
combinations created by utilizing the lags of monthly streamflow and monthly precipitation data. The
novelty of the study is that we have examined the credibility of ANN models, including the MLP-
GDX, MLP-RBP, MLP-LM and RBNN for predicting the monthly streamflow in natural rivers.

2. Material and Methods
2.1. Multi-Layer Perceptron (MLP)

ANN, which was developed for the mathematical modeling of the learning process, inspired by the
working system of the human brain, is known as the most powerful and flexible machine learning
methods. ANNSs are models with many important features such as learning by using the available data,
establishing relationships, classifying, generalizing, and working with an unlimited number of
variables (Sen, 2004). Multilayer Perceptron (MLP), which is the most common area of use due to its
simple structure and used in our study, can be used in the prediction of nonlinear events (Haykin,
2009). MLP can solve estimation and classification problems with the widely used back propagation
algorithm. In MLP networks, neurons are organized in layers. In order for MLP networks to be used in
time series estimation, the structure of the network must be determined. The process of determining
the network structure includes the number of layers of the network, the number of neurons in the
layers, the number of iterations, the learning rate, the momentum coefficient, the activation function,
and the determination of the normalization method. By changing parameters such as initial weights,
the training of the network can be achieved, and the performance of the network can be measured by
testing the trained network. The learning rule of the multilayer network is the generalization of the
"Delta Learning Rule" based on the least squares method. For this reason, it is also called the
"Generalized Delta Rule". More information on MLP is available in Haykin (2009). In this study,
gradient descent with momentum and adaptive learning rule backpropagation (GDX), resilient
backpropagation (RBP), and Levenberg-Marquardt (LM) are used as the training algorithm in the MLP
technique. GDX is a network training function that updates weight and bias values according to
gradient descent momentum and adaptive learning rate. The function traingdx combines adaptive
learning rate with momentum training. GDX can train any network as long as its weight, net input, and
transfer functions have derivative functions. Backpropagation is used to calculate derivatives of
performance based on weight and bias variables (URL-1). MLP-RBP is a network training function
that updates weight and bias values. The purpose of the MLP-RBP algorithm is to neutralize the
negative conditions of the derivatives of the weights in the iterations. It can train any network as long

as its weight, net input, and transfer functions have derivative functions. In RBP, which is a successful
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training algorithm that manages the direct adaptation of the weight step with local slope information,
there is a separate update value (Aij) for each weight. The update value determines the size of the
weight update (URL-2). MLP-LM is generally the fastest backpropagation algorithm in the toolbox
and is a hybrid of Gauss-Newton and steepest descent approaches to achieve optimal results. This
training algorithm generally shows unlimited variations of the correction vector Ap in the inversion of
nonlinear problems. Although LM requires more memory than other algorithms, it is highly
recommended as a first choice supervised algorithm (URL-3). Detailed information about the GDX,
RBP and LM training algorithms are available in literature (URL-1; URL-2; URL-3; Tezel and
Buyukyildiz 2016).

2.2. Radial Basis Neural Network (RBNN)
RBNN is an artificial neural network model based on local action and response behaviours seen in

neurons in the human nervous system (Broomhead and Lowe, 1988). The training performance of the
RBNN model turns into a problem of finding the most suitable surface for the data in the output vector
space and thus an interpolation problem. Similar to the general ANN architecture, RBFN models are
defined in 3 layers: input layer, hidden layer and output layer. In the RBNN model, radial basis
activation functions and nonlinear clustering analysis are used in the transition from the input layer to
the hidden layer. There is no parameter learning in RBNN as in MLP and linear adjustment of weights
is made for radial bases. This feature provides the advantage of a very fast convergence time without

local minimums. Detailed information about the RBNN model is available in Haykin (2009).

2.3. Description of Data
Seyhan Basin, located in the southern part of Turkey, is located in the north of Adana Province in the

Eastern Mediterranean Region of Turkey, between 36° 30' and 39° 15' north latitudes and 34° 45' and
37° 00' east longitudes. The Seyhan Basin, with an area of 22035 km?, extends to the Ceyhan Basin in
the east, Konya and the Eastern Mediterranean Basins in the west, Develi Basin and Kulmag
Mountains in the north, and the Mediterranean Sea in the south. Seyhan Basin has a frequent river
network. The Seyhan River is formed by the merging of the Zamant1 River and the Goksu River. In
this study, monthly average streamflow data of Sariz River-Sarkéy Station (No: D18A032) and
monthly total precipitation data of Sariz Meteorological Station (No: 17840) on the Seyhan Basin were
used. The data used belong to the period 1990-2017. The precipitation area of station D18A032 is
752.40 km? and is located at an altitude of 1400 m and at 36°19' E - 38°19' N. Sariz meteorological
station is located at 36°29' E - 38°29' N and is altitude 1500 m. The location of the used streamflow

and precipitation stations in the Seyhan Basin is given in Figure 1.
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Figure 1. Location of the Seyhan Basin in Turkey, showing the location of the precipitation gauge station
(17840) and of the streamflow gauge station (D18A032) in Seyhan Basin.

The monthly data of streamflow and precipitation of both stations belong to the duration of 1990-2017
(336 months). Before models’ implementation, the data were divided into two phases: approximately
70% (228 months) of the datasets was used for model development (training) phase while the rest 30%
(108 months) of the datasets was divided for model evaluation (testing) purposes. The statistical
parameters of the streamflow and precipitation data used in the ANN models for training, testing and
the whole period are given in Table 1. Figure 2 shows the time series of runoff and precipitation data
used in this study for the period 1990-2017.

Table 1. Descriptive statistics for monthly mean streamflow and monthly total precipitation

Parameter Data set Minimum Maximum  Mean Staqda}rd Skewness
Deviation
Streamflow Traiqing 0.932 18.700 3.960 2.140 1.933
(mgls) Testing 0.677 18.600 3.676 3.411 2.219
All 0.677 18.700 4,019 3.437 1.997
Precipitation Training 0 21.350 4.181 2.788 1.687
(mm) Testing 0 16.700 3.984 2.639 1.461
All 0 21.350 4117 2.730 1.618
- 32 Monthly Q Mont_l;l_iP 0
% 28 E - 5 E
N i 105
T '. s 2
£ | TraminG, | ! Testing B
ol
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Figure 2. The time series of streamflow and precipitation during 1990-2017 periods
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2.4. Model Performance Metrics

The accuracy of the implemented ANN models' was interpreted using Nash Sutcliffe Efficiency
Coefficient (NSE), coefficient of determination (R?), combined accuracy (CA), root mean square error
(RMSE) and mean absolute error (MAE) performance metrics. The equations of the performance

metrics used are given below.

N - -
Z |Q|0 _Q|e| (1)
MAE =1=1
N )
Z(Qip —Qig) (2)
RMSE = |[1=1
N
N B 2
> (Qig —Qp)(Qie —Qp)
R2: i=1 (3)
N  — N
> (Qiy —Qg)“ X (Qig —Qg)
=1 =1
N2
. zl(Qlo _Qle)
_1_1=
NSE=1-1Sl — — 4
Z(QIO_QO)
i—1
CA =0.33 (RMSE + MAE + (1-R?)) ®)

where Q, and Q,, are the observed and estimated value of the flow, Q, and Q., are the average of

observed and estimated flow data.

3. Results and Discussion

In this study, the usability of two ANN methods, MLP and RBNN, was assessed in estimation of
monthly streamflow of Sariz River-Sarkdy station using hydro-meteorological inputs. ANN models
were created using streamflow and precipitation lags. Nine input combinations were selected based on
current time and antecedent precipitation and streamflow values. The input combinations used are
given in Table 2. Let us assume that Q./ P, represents the streamflow/precipitation at current time (t),
in this situation Qy.,/ Py, denotes the streamflow/precipitation two month prior to time t.
Before implementation the ANN models to estimate the monthly streamflow, the streamflow and
precipitation data were normalized between 0 and 1 using Equation 6.
Kuorm = g in ©)
max min
where Xiorm, Xi, Xmin and Xiax represent normalized, observed, minimum and maximum data

values, respectively.
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Table 2. Input combinations used in models

Model Names Input Output
M1 Q1
M2 Qu1, Qr2
M3 Qt1, Qr2, Qs
M4 Qt1, Qt2, Qts, Qua
M5 Qt—lv Qt—Za Qt—31 Qt—41 Ptu Pt—la PI—Z! Pt—3a Pt—4 Qt
M6 Qt—la Qt—21 Qt—Ss Ptv Pt—ly Pt—21 Pt—3
M7 Qt-l: Qt-2a Pt: Pt-lv Pt-2
M8 Qt1, Py Pra
M9 Qr1, Pt

Two different ANN techniques, MLP and RBNN, were used to estimate the monthly average
streamflow. Two hidden layers are used in the ANN structures trained with the GDX, RBP and LM
training algorithms. Tangent sigmoid activation functions are used in the hidden layers and
logarithmic sigmoid activation functions are used in the output layer. Momentum coefficient and
learning rate were determined in 0.1 increments between 0.1 and 1 in MLP-GDX models. In the
application of both MLP and RBNN models, the number of neurons in the hidden layers was
identified in increments of 1 between 1 and 10, and the number of iterations was taken as 1000. In
RBNN models, the spread number was obtained in increments of 0.01 between 0.01 and 2. As a result
of all these assumptions, the most successful input combination in the streamflow estimation was
decided according to the maximum NSE value of the testing period.

The model parameters of the most successful network structures obtained for each input combination
in the MLP-GDX, MLP-RBP, MLP-LM and RBNN models are given in Table 3. In Table 3; nand |
represent the number of neurons in the first and second hidden layers, while Ir and mc represent the
learning rate and momentum coefficient, respectively. In the RBNN model, n and o represent the

number of neurons in the hidden layer and the spread number, respectively.

Table 3. Most successful network structures according to NSE

Input MLP-GDX MLP-RBP MLP-LM RBNN
Combination n | Ir mc n | n | n c

M1 1 6 0.9 0.1 2 1 1 2 3 0.58
M2 3 1 0.6 0.9 2 10 2 1 6 0.43
M3 3 2 0.1 0.2 2 4 2 1 9 1.15
M4 7 4 0.2 0.8 2 4 2 1 9 1.08
M5 5 3 0.8 0.1 1 2 1 2 9 0.55
M6 6 3 0.1 0.5 2 6 1 1 10 0.63
M7 10 7 1 0.7 2 2 1 3 9 0.51
M8 4 10 0.6 0.8 4 1 4 1 8 0.20
M9 4 6 0.5 0.2 4 4 2 9 6 0.27

The training and testing statistics of the MLP-GDX, MLP-RBP, MLP-LM and RBNN models are

given in Table 4 for the Sariz River-Sarkdy station.
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Table 4. Comparison of statistical errors for MLP-GDX, MLP-RBP, MLP-LM and RBNN models

Rlﬂaorggl Permtr:iince M1 M2 M3 M4 M5 M6 M7 M8 M9
MAE (m%/s)  1.683 1416 1371 1295 1254 1354 1241 1486 1512

© RMSE (m¥/s) 2.644 2282 2271 2196 1996 2093 1997 2314 2400

% R? 0416 0565 0569 0597 0.668 0635 0667 0553 0519

5 r NSE 0416 0565 0569 0597  0.667 0634 0667 0553 0519
S CA (m¥fs) 1621 1364 1344 1285 1182 1258 1178 1402  1.450
5' MAE (m%s) 1508 1.187 1127 1163 1183  1.148 1108 1245  1.256
= 2 RMSE (m%s) 2348 1881 1873 1888 1950 1815 1.846 2118  2.093
5 R? 0532 0710 0711 0703 0.689 0724 0719 0628  0.631

,”_J NSE 0526 0696 0699 0694 0673 0717 0707 0614  0.624

CA (m%fs) 1.427 1108 1085 1105 1137 1069 1067 1233 1227

MAE (m%s) 1701 1350 1.338 1404 1490 1246 1432 1587  1.465

2 RMSE (m¥s) 2.668 2195 2247 2277 2308 1962 2189 2316  2.262

% R? 0.405 0598 0578 0567 0555 0679 0600 0553 0573

o o NSE 0405 0598 0578 0567 0555 0678 0600 0552 0573
§ CA (m%/s) 1638 1303 1322 1358 1400 1165 1327 1436 1371
Y MAE (m%s) 1528 1.184 1197 1209 1343 1315 1191 1327  1.278
= 9 RMSE (m¥/s) 2373 1925 1897 1925 2075 2017 1880 2192  2.072
= R? 0520 0691 0700 0694 0645 0661 0712 0589  0.634

e NSE 0516 0682 0691 0682 0630 0650 0696 0587  0.631

CA (m®/s) 1.446 1128 1120 1135 1245 1211 1109 1297  1.226
MAE (m%/s) 1724 1330 1307 1353 1479 1512 1483 1416  1.041
% RMSE (m¥/s) 2.689 2244 2235 2252 2302 2343 2339 2255 1660
<Z( R? 0396 0579 0583 0577 0557 0541 0543 0575  0.770
s & NSE 0396 0579 0583 0577 0557 0541 0543 0575  0.770
4 CA (m¥fs) 1656 1318 1307 1329 1394 1423 1412 1352  0.967
2 MAE (m%/s) 1548 1200 1179 1277 1345 1370 1318 1420 1.320
Q RMSE (m¥s) 2416 1946 1933 2,007 2.088 2063 2025 2210 2162
5 R? 0507 0.686 0689 0689 0639 0651  0.662 0590  0.599
e NSE 0498 0674 0679 0654 0625 0634 0647 0580  0.598
CA (m¥fs) 1471 1142 1136 1186  1.252 1248 1215 1333  1.282

MAE (m%s) 1719 1409 1454 1435 1401 1418 1300 1550  1.587

2 RMSE (m¥s) 2.698 2261 2300 2292 2127 2201 2121 2477 2522

g R? 0392 0573 0558 0561 0622 0595 0624 0488  0.469

o NSE 0392 0573 0558 0561 0.622 0595 0.624 0488  0.469

Z CA (m%fs) 1658 1352 1.385 1375 1289 1328 1253 1498 1531
o MAE (m%s) 1516 1.165 1184 1192 1248 1181 1170 1322  1.317
Q RMSE (m%/s) 2355 1909 1923 1926 2038 1933 1914 2142  2.180

= R? 0528 0697 0691 0688 0646 0684 0691 0609  0.605

e NSE 0523 0687 0682 0681l 0643 0679 0685 0606  0.592

CA (m®/s) 1.433 1114 1128 1132 1201 1132 1120 1272 1284
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According to the values given in Table 4, the lowest successful input combination in MLP-GDX,
MLP-RBP, MLP-LM and RBNN models was the M1 model, in which Qt-1 data were used in both the
training and test periods. Higher MAE, RMSE and CA, lower R? and NSE values were obtained in M1
input combination compared to other input combinations.

In MLP-GDX models for testing period, the MAE (=1.108 m®/s) and CA (=1.067 m*/s) values of the
M7 input combination are lower than the MAE and CA values of all input combinations. However, the
input combination with the lowest RMSE (=1.815 m?/s), the highest R? (=0.724) and NSE (=0.717)
values in MLP-GDX technique was obtained as M6. For this reason, the most successful input
combination in MLP-GDX technique was accepted as the M6 model, in which the parameters Q.,
Qt2, Qus, Py, Py, P, Pz were used. In the MLP-RBP models for testing period, the most successful
input combination was the M7 model, in which the Q1, Qt2, Py, Pi1, Pio parameters were used. The
MLP-RBP-M7 model has lower MAE (=1.191 m?/s), RMSE (=1.880 m®/s), CA (=1.109 m*/s) values
and higher R? (=0.712) and NSE (=0.696) values than the other MLP-RBP models.

In the MLP-LM models for testing period, the most successful input combination was the M3 model,
in which the Qy1, Quo, Qw3 parameters were used. The MLP-LM-M3 model has lower MAE (=1.179
m®s), RMSE (=1.933 m%/s), CA (=1.136 m®s) values and higher R? (=0.689) and NSE (=0.679)
values than the other MLP-RBP models.

In the RBNN maodels for testing period, the most successful input combination was the M2 model, in
which the Qq; and Q, parameters were used. The RBNN-M2 model has lower MAE (=1.165 m3/s),
RMSE (=1.909 m?/s), CA (=1.114 m®/s) values and higher R? (=0.697) and NSE (=0.687) values than
the other RBNN models. On the other hand, according to the performance criteria, the results of the
M7 input combination in RBNN models are very similar to the results of the M2 input combination.
When comparing the MLP-GDX, MLP-RBP, MLP-LM and RBNN models, the MLP-GDX models
with the lowest MAE, RMSE, CA and highest R2, NSE values outperformed the RBNN, MLP-LM

and MLP-RBP models for flow prediction at all input combinations.

Qobserved —GDX-M6 RBNN-M2
RBP-M7 —LM-M3

Monthly mean streamflow
(m’/s)
S

|1 il 2|1 3|1 41 5|1 6Il 7& Sll §1 161
Testing period monthly observed (2009-2017)
Figure 3. Optimal models and observed monthly mean streamflow for the testing period (2009-2017)
using GDX-M6, RBP-M7, LM-M3 and RBNN-M2
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Figure 4. ANN architecture of the selected models, and scatter-diagrams of observed and estimated
monthly mean streamflow GDX-M6, b) RBP-M7, c) LM-M3 and d) RBNN-M2 model
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The time series for the testing period of the MLP-GDX-M6, MLP-RBP-M7, MLP-LM-M3 and
RBNN-M2 models, in which the most successful results were obtained in the streamflow estimation,
are shown in Figure 3. ANN architecture of the selected models and the scatter diagrams are shown in

Figure 4.

4. Conclusions
In this study, monthly streamflow estimation was made using ANN-based modeling approach. Nine

different input combinations consisting of the lags of precipitation and streamflow data of the study
area were used in the ANN models. MLP and RBNN models were used for streamflow estimation. In
the MLP technique, models were created with GDX, RBP and LM training algorithms. While MLP
models showed the highest success in almost every input combination, LM models were the model
that showed the lowest prediction success. All four models used were also found to significantly
overestimate/underestimate low/high streamflow values in some times of the test period.

There are some limitations that affect the success of the used models in this study. These limitations
include the small size of the training and test data, the input variables used, the structure of the models
used, and the selection of model parameters. Although the results obtained from the ANN models used
in this study are promising, it may be possible to achieve higher streamflow prediction success with
different applications. Because, obtaining streamflow forecasting models with high forecasting success
will contribute to missing data completion, flood modeling studies, and modeling of other
hydrological variables. Streamflow data is under the influence of many meteorological parameters
such as temperature, evaporation, snowmelt, humidity as well as precipitation and has a stochastic and
non-linear structure. Therefore, the performance of streamflow prediction models can be improved by
using more meteorological variables. In addition, using decomposition techniques such as wavelet and
empirical mode decomposition, weakening the non-stationary and non-linearity of the streamflow
data, using longer-term data, and improving the convergence rate by using more robust algorithms can
increase the success of the models. These mentioned points will shed light on future streamflow

estimation and similar hydrological studies.
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