FORECASTING LIFE EXPECTANCIES FROM TIME SERIES FORMED BY USING POST-CHILDHOOD LIFE TABLES

Hatice FIDAN *
Şeref HOŞGÖR **

Abstract

Regarded as one of the indicators of the level of development for societies, life tables are those which schematically show the information about age-specific death rate and life expectancies of the individuals in a society. A life table, which is current and constructed with healthy data, could supply making of the realist planning on relevant population. Today, in many countries, mortality statistics used as basic data in constructing a life table are not recorded exactly and correctly. However, these countries could have data of censuses conducted in regular period of time, and the post-childhood life tables could be estimated from the data related to these censuses. In this study, using data related to two consecutive censuses, a method is briefly explained which estimate a post-childhood life table from an age distribution and intercensal growth rates and life expectancy forecasts are covered. Furthermore, during the application, the life expectancies at age of 5 and age of 10 up to 2015 for both genders of Eskisehir, which is one of the big cities of Turkey, have been forecasted.

INTRODUCTION

Life tables having a special place in demographic analyses are tables showing what the life expectancy is for individuals at birth and at other ages. In constructing life tables, both data on death and population are needed. However, in such countries as Turkey where mortality statistics can not be recorded exactly and correctly, it is possible to estimate post-childhood life table from the data of two censuses with age and sex distributions and intercensal growth rates. Moreover, when there are many regular censuses conducted in a long period of time, more than one postchildhood life tables can be produced for the related period. Then, an opinion can be formed about life expectancies of the relevant society for the future years by taking into account general trend of life expectancies in this life tables.

In this study, using the method which estimates a post-childhood life table from an age distribution and intercensal growth rates, life expectancy forecasts are covered. During the application, by using the post-childhood life tables constructed from the general census data for 1965-2000 period, the life expectancies at age of 5 and age of 10 up to 2015 for both genders of Eskisehir have been forecasted.

METHODOLOGY

Age specific growth rates for an intercensal period to convert a non-stable age distribution (typically an average of a first and second census age distribution) into the corresponding stationary of life table population, from which expectations of life at each age can be derived. This method can be applied regardless of the intercensal interval, since age-specific growth rates are as easy to calculate for non-integer as for integer intervals. In addition, it provides smoothing by cumulating values above each age a. The methodology is based on a discrete approximation of the general

[^0]equation for the age distribution of a population which is closed to migration and territorial coverage.
$$
{ }_{5} \boldsymbol{L}_{a} \approx{ }_{5} \boldsymbol{N}_{a} * \exp \left(2.5 *{ }_{5} \boldsymbol{r}_{a}+5 * \sum_{x=0}^{a-5}{ }_{5} r_{x}\right)
$$

Expectation of life at age a is then estimated by dividing the sum of ${ }_{5} L_{x}$ values above age a by an approximation of $l(a)$ based on one fifth of the average of ${ }_{5} L_{a-5}$ and ${ }_{5} L_{a}$ (Hill, 2002).

Once the life expectancy figures have been calculated, the levels they imply in a model life table system can be found, and a final estimate of mortality can be obtained by averaging the most reliable estimates of mortality level. The best estimate of overall mortality may therefore be an average of the levels associated with e_{a} for a ranging from 10 to 30 (UN, 1983).

If a country has census data with 5 -year intervals (with intervals as $t, t+5, t+10, \ldots \ldots, t+50$ years) through a long period of time (for example, between t and $t+50$ years), it is possible to apply the method stated above to the data obtained from the 5 -year censuses (that is the censuses as to t and $t+5, t+5$ and $t+10, \ldots \ldots . ., t+45$ and $t+50$ years). In addition, the same method can be also applied to the data obtained from the data 10 -year censuses (that is the censuses as to t and $t+10, t+5$ and $t+15, \ldots \ldots, t+40$ and $\mathrm{t}+50$ years). Besides, the best final estimates may be also obtained by calculating the arithmetic mean of the most reliable mortality levels got for each life table. Final estimates of mortality levels determined for each term in 5 -year and 10 -year intervals correspond to different time periods. Thus, when the final estimates of mortality levels determined for each term in 5-year and 10-year intervals are arranged in order according to time, a time series can be obtained about the mortality levels for the specific time intervals.

It is possible to forecast mortality levels by taking into account time series trend of mortality levels. But, it is possible that the time series formed may have been affected from some events occurring in the relevant country. By calculating the values at certain time points of the time series in question from census data with longer intervals, it may be possible to purify the effects of those events on the time series. For this purpose, a new time series are formed by the way stated above from the data of the censuses conducted in 15 -year and 20 -year intervals. The new time series are used to smooth certain points of the time series formed for the 5-year and 10-year terms.

Because the time series formed for the 5-year and 10-year terms are able to smooth, firstly, the type of function that will represent the trend of mortality levels in relevant series determine and trend equation is obtained using the Method of Least Squares (LS). Then, it can be decided whether to make any smooth for any of the time points (any year) of the relevant series. For this purpose, mortality level estimated for 15 -year or 20 -year intervals corresponding to an point in time series use in place of the original value of the series on that point, and, in a sense, time series is formed again. Trend equation for function type adopted for the new series determine and the determination of the equation (R^{2} value) is examined. If there is a significant increase in the determination of the trend equation in proportion to the one before mortality level as to the time point in question is used, then it may be decided to be used mortality level determined for the 15 years' or 20 years' interval instead of the value of the series at that point. This process is repeated for all the values in the series of mortality level. Thus, it may be possible to smooth time series of the mortality levels at the time points seemed as necessary.

For the smoothed time series, trend equation is obtained by adopting suitable function type determined before the smooth. Mortality levels are forecasted using the trend equation. Afterwards, life expectancies for model life tables in question determine from the forecasts of mortality levels.

APPLICATION

During the application of the study, the life expectancies at age of 5 and age of 10 up to 2015 for both genders of Eskisehir will be forecasted. For this purpose, the census data of Eskisehir, a city in the Middle-Anatolia region, obtained from the general censuses conducted between 1965 and 1990 with 5 -year intervals and in 2000 are used. However certain corrections on the data were made so that population would have a closed structure. Table 1 shows the corrected data to be used to calculate post-childhood tables and related mortality levels.

Table 1: Corrected Male and Female Populations in Eskisehir by Age Groups and Years for 1965-2000 Period

FEMALE								
$\begin{gathered} \text { Age } \\ \text { group } \end{gathered}$	$\begin{aligned} & 1965 \\ & \text { year } \end{aligned}$	$\begin{aligned} & 1970 \\ & \text { year } \end{aligned}$	$\begin{aligned} & 1975 \\ & \text { year } \end{aligned}$	$\begin{aligned} & 1980 \\ & \text { year } \\ & \hline \end{aligned}$	$\begin{aligned} & 1985 \\ & \text { year } \end{aligned}$	$\begin{aligned} & 1990 \\ & \text { year } \end{aligned}$	$\begin{aligned} & 1995 \\ & \text { year } \end{aligned}$	$\begin{aligned} & 2000 \\ & \text { year } \end{aligned}$
0-4	26612	31283	27190	28394	26970	25479	25081	24683
5-9	27759	28815	28991	29583	31624	30274	27180	26352
10-14	24496	27508	29854	30770	31948	33234	31987	28880
15-19	20577	24023	25843	29965	31655	32950	33778	33700
20-24	16062	18398	20821	24948	28736	29662	31160	34321
25-29	15536	15541	17561	21194	24667	28285	28729	29369
30-34	15490	14920	14990	17716	21464	24600	28409	27796
35-39	13772	15133	15152	15424	18637	22155	24509	28532
40-44	9432	12754	14137	15107	15626	18687	21708	24418
45-49	7246	8801	12134	13930	14539	15440	18299	21260
50-54	7904	6708	8827	12435	13795	14747	14844	17911
55-59	7459	7135	5927	8397	12146	13411	14186	14247
60-64	6183	7009	7358	5675	7919	11914	12517	13624
65-69	4113	5083	5515	6721	5161	7276	10509	11623
70-74	2635	3598	4129	4463	5108	4220	5859	9103
$75+$	3393	3296	4273	4915	5840	6795	7042	7926
Total	208669	230005	242702	269637	295835	319129	335797	353745
MALE								
Age	1965	1970	1975	1980	1985	1990	1995	2000
group	year							
0-4	27549	31495	28435	29345	28662	26518	26393	26268
5-9	28449	29151	29911	30755	32636	31843	28423	27443
10-14	26410	28894	32454	31608	33897	34571	33637	30328
15-19	22083	24678	27504	32160	32172	33618	33789	35430
20-24	15205	18347	21382	24983	27020	28076	31712	33007
25-29	15815	16130	20596	23327	25887	28693	27529	29805
30-34	15988	14697	16179	18924	23052	25900	28428	26982
35-39	14546	15329	15190	15517	19183	23469	25586	28163
40-44	11039	13536	15090	14758	15828	19190	22871	25272
45-49	7269	10104	13553	14607	14810	15761	18412	22272
50-54	9665	6514	10203	12936	14439	14276	14819	17634
55-59	7783	8478	6025	9177	12242	13583	13255	13877
60-64	6202	6721	8107	5241	8307	10950	11982	12234
65-69	3492	4906	4989	6331	4398	6975	9033	10381
70-74	1638	2849	3636	3909	4797	3328	5311	7116
$75+$	1910	1832	2617	3517	4232	5177	5276	6052
Total	215043	233661	255871	277095	301562	321928	336456	352264

From each of the 5 -year growth rates with respect to the corrected census data given in Table 1, life tables of Eskisehir population for 7 periods (1965-1970, 1970-1975, 1995-2000) were estimated. Then from each of the 10 year growth rates with respect to the corrected census data given in Table 1, post-childhood life tables of Eskisehir population for 6 periods (1965-1975, 1970-1980,1990-2000) were estimated.

As stated above, for both of genders, total 14 tables with 5 -year intervals and total 12 tables with 10 year intervals were constructed. Besides, from life tables for each of the periods, levels indicating Coale and Demeny "West" region model life tables were calculated (for Coale and Demeny "West" model life tables, see (Coale and Demeny, 1966)). In order to realize the purpose of the study, it is appropriate to determine one mortality level to represent each period. For this purpose, the tables in question and levels indicating life tables related to them are not mentioned here. Those who would like to see these tables and related levels may find them in the study by Fidan (2002).

In order to determine one mortality level which will represent each of the 5 -year and 10year periods, the average of the levels indicating Coale and Demeny "West" region model life table related to the life expectancies for the $10-35$ age interval was calculated. Afterwards, the final estimates as to the mortality levels determined for each of the 5 -year and 10 -year periods were put in order with regard to time and mortality series having time series characteristic were formed. Table 2 gives time series obtained from mortality levels for the male and female populations in Eskisehir for 1965-2000 period.

Table 2: Time Series for Mortality Levels Obtained from 5 and 10 year Growth Rates for Male and Female Populations in Eskisehir for 1965-2000 Period

Years	Time series for Female	Time series for Male
1965	-	-
-	12.44	11.31
1970	13.63	16.89
-	14.20	21.81
1975	18.94	19.62
-	22.89	16.17
1980	21.98	19.67
-	22.65	21.22
1985	22.96	21.03
-	22.64	21.42
1990	21.85	20.86
-	20.63	18.99
1995	21.63	19.97
-	21.42	20.30
2000	-	-

From the table, it is shown that there is a sharp increase in mortality levels for women in 1975 and for men in 1970-1975. According to Shorter and Macura (1983), in 1960-1975 period, approximately one million persons left the country due to labour migration. On the other hand, some of the Turkish workers in Germany come to Turkey for holiday in 1975 didn't turn back due to the economic stagnation in Germany. The fact that mortality levels were high in that period may have been due to the fact that the workers migrated to Germany were counted in Turkey in 1975 census.

On the other hand, for both genders, relatively high mortality levels were obtained in the period between 1980 and 1990. The 1980 census were conducted in days following a military coup and thus may have had its effects. Further, after 1980, Turkey entered a new period of rapid economic progress and it had certain demographic consequences. The reason why high mortality levels were obtained in this period may have been this progress.

It is certain that the time series formed may have been affected from this events lived in Turkey. By calculating the values at certain time points of the time series in question from census data with longer intervals (15-year or 20-year intervals), it may be possible to purify the effects of those events on the time series. For this purpose, by using the growth rates as to the corrected census data with 15 -year and 20 -year intervals given in Table 1 , time series similar to those obtained from the mortality levels calculated for each of the 5 and 10 year periods were found. Table 3 was arranged to see together the times series for the mortality levels estimated from the growth rates in the intercensal period with 5 and 10 year intervals and 15 and 20 year intervals in 1965-2000 period for females and males.

Table 3: Time Series of the Mortality Levels Estimated from the Growth Rates in Various Periods for Male and Female Populations in Eskisehir for 1965-2000 Period

	Female		Male	
Years	5 and 10 year period	15 and 20 year period	5 and 10 year period	$\mathbf{1 5}$ and 20 year period
1965	-	-	-	-
-	12.44	-	11.31	-
1970	13.63	-	16.89	-
-	14.20	16.97	21.81	16.57
1975	18.94	18.73	19.62	18.50
-	22.89	20.62	16.17	20.94
1980	21.98	21.96	19.67	20.94
-	22.65	22.78	21.22	21.05
1985	22.96	22.51	21.03	21.52
-	22.64	22.22	21.42	21.31
1990	21.85	22.62	20.86	21.19
-	20.63	22.12	18.99	21.30
1995	21.63	-	19.97	-
-	21.42	-	20.30	-
2000	-		-	-

In order for the time series formed for both genders from the 5 -year growth rates to be smoothed, the type of function that represents the trend of mortality levels in relevant series is determined. First, the graphic of the related time series is drawn in order to determine the suitable type of function. Figure 1 and Figure 2 show the trend of the series obtained for male and female population.

Figure 1: Trend of the Mortality Level Series Formed for Female Population in Eskisehir

Figure 2: Trend of the Mortality Level Series Formed for Male Population in Eskisehir

As it can be seen from the graphics in Figure 1 and Figure 2, although it is thought that linear function, expressed as $Y=a+b t$, or multiplicative function, expressed as $Y=a t^{b}$, may be suitable for the trend of the time series obtained for both male and female population, it was also decided to try exponential, expressed as $Y=\exp (a+b t)$, and reciprocal function, expressed as $\frac{1}{Y}=a+b t$. The four different types of the functions were adopted, and by using LS method to the determined time series, the results obtained were shown in Table 4.

Table 4: Trend Equations Obtained by Adopting Various Trend Functions for Time Series of Mortality Levels Formed for Male and Female Populations in Eskisehir for 1965-2000 Period

Gender	Trend Function	Trend Equation	Correlation coefficient	$\boldsymbol{R}^{2} \mathbf{(\%)}$	Standard deviation
Female	Linear	$\hat{\mathrm{Y}}=14.8812+0.7077 \mathrm{t}$	0.7204	51.90	2.7715
	Multiplicative	$\hat{\mathrm{Y}}=12.5693+\mathrm{t}^{0.2512}$	0.8756	76.66	0.1108
	Exponential	$\hat{\mathrm{Y}}=\exp (2.6780+0.0413 \mathrm{t})$	0.7321	53.60	0.1562
	Reciprocal	$\hat{\mathrm{Y}}=(0.0699-0.0025 \mathrm{t})^{-1}$	-0.7395	54.68	0.0091
Male	Linear	$\hat{\mathrm{Y}}=16.3415+0.4046 \mathrm{t}$	0.5433	29.52	2.5430
	Multiplicative	$\hat{\mathrm{Y}}=14.0583+\mathrm{t}^{0.1713}$	0.7345	53.95	0.1265
	Exponential	$\hat{\mathrm{Y}}=\exp (2.7633+0.0253 \mathrm{t})$	0.5521	30.48	0.1555
	Reciprocal	$\hat{\mathrm{Y}}=(0.0651-0.0016 \mathrm{t})^{-1}$	-0.5527	30.55	0.0100

In table 4, it appears that the type of the function with the highest coefficient of determination and correlation coefficient for female population is the multiplicative function. Besides, the lowest standard deviation of the forecasts is calculated by reciprocal function. In literature, it is stated that selecting the type of function with low standard deviation is a solution to determine suitable type of function (Mendenhall and Reinmuth, 1978). However, when the case is evaluated from the point of its quality, it is concluded that multiplicative function is better in explaining the changes the in mortality levels.

When the results about the male population given in Table 4 are considered, it is noticed that the type of function with highest coefficient of determination and correlation coefficient is again multiplicative function. The standard deviations of the forecasts obtained by adopting the
multiplicative function also have relatively low values. Therefore, it may be concluded that multiplicative function is the best type of function for time series as to the male population.

As the most suitable type of function which explains the changes in time series of the mortality levels for both genders is multiplicative function, it was adopted to smooth the time series formed for the 5 and 10 year periods in Table 3 and the determination of the equation obtained was taken into consideration. Instead of the value (14.20) corresponding to 1970-1975 period for time series of mortality levels formed from 5 and 10 year growth rates for female population, the first value (16.97) of time series of mortality levels formed from 15 and 20 year growth rates is used. For the related time series, multiplicative function is adopted, and using LS method, trend equation is determined. If the determination of this trend equation is higher than the first, it is decided that the value obtained from the mortality levels determined for the 15 and 20 year intervals should stay in the related time series. If not, the value of time series formed from 5 and 10 year growth rates is maintained. The process is repeated for all of the values of the related time series. Thus, only one time series is obtained to calculate the trend equation with highest determination from the combination of time series of mortality levels formed from the 5 and 10 year intervals and 15 and 20 year intervals. The same processes are carried out for male population. Thus, the smoothed time series shown in Table 5 is obtained.

Table 5: Smoothed Time Series of the Mortality Levels for Male and Female Populations in Eskisehir for 1965-2000 Period

Years	Smoothed time series for Female	Smoothed time series for Male
1965	-	-
-	12.44	11.31
1970	13.63	16.89
-	16.97	16.57
1975	18.73	18.50
-	20.62	20.94
1980	21.96	19.67
-	22.65	21.05
1985	22.51	21.03
-	22.22	21.31
1990	21.85	20.86
-	20.63	21.30
1995	21.63	19.97
2000	21.42	20.30

The results as to the trend equations obtained by adopting multiplicative function in the smoothed time series formed by using the growth rates of Eskisehir population for both genders are given in Table 6.

Table 6: Trend Equations Obtained by Adopting Multiplicative Function in the Smoothed Time Series for Male and Female Populations in Eskisehir for 1965-2000 Period

Gender	Trend Equation	Correlation coefficient	$\boldsymbol{R}^{\mathbf{2}(\%)}$	Standard deviation
Female	$\hat{Y}=14.9444 t^{0.2353}$	0.9156	83.84	0.0826
Male	$\hat{Y}=13.2937 t^{0.2047}$	0.8858	78.46	0.0857

By using the trend equations given in Table 6, mortality levels for male and female populations in Eskisehir for 1965-2015 period were determined. Table 7 displays the smoothed time series formed for female and male populations in Eskisehir and the forecasts calculated with using of trend equation obtained by adopting multiplicative function in these series.

Table 7: Smoothed Time Series and Forecasts for the Mortality Rates Formed for Female and Male Populations in 1965-2015 Period in Eskisehir

Years	Smoothed time series for the mortality levels	Forecasts for the mortality levels	Smoothed time series for the mortality levels	Forecasts for the mortality levels
1965	-	-	-	-
-	12.44	12.94	11.31	13.29
1970	13.63	15.24	16.89	15.32
-	16.97	16.76	16.57	16.65
1975	18.73	17.94	18.50	17.66
-	20.62	18.90	20.94	18.48
1980	21.96	19.73	19.67	19.18
-	22.65	20.46	21.05	19.80
1985	22.51	21.11	21.03	20.35
-	22.22	21.71	21.31	20.84
1990	21.85	22.25	20.86	21.30
-	20.63	22.76	21.30	21.72
1995	21.63	23.23	19.97	21.11
-	21.42	23.67	20.30	22.47
2000		24.09		22.82
-	24.48		23.14	
2005		24.85		23.45
-	25.21		23.74	
2010		25.55		24.02
-	25.88	24.29		
2015		26.19		24.55

As seen in Table 7, the forecasts of mortality levels for female population are higher, except for the first two forecasts of the mortality levels obtained by using trend equation for male population. Accordingly, it might be said that the average life expectancy of females is longer than that of males. Moreover, the fact that the forecasts both for males and for females get increasingly higher shows that the average life expectancy for both genders gets higher with each year. Furthermore, although regional model life tables associated with life expectancies are composed of 24 separate tables (24 different levels), in this study, it is forecasted values higher than the $24^{\text {th }}$ level, which casts certain doubts in mind. However, the improvements in the standards of healthcare and better nutrition have resulted in higher life expectancies in many countries and, consequently, average life expectancies exceeding the $24^{\text {th }}$ level of the model life tables. By 2015, it
wouldn't be wrong to forecast that average life expectancies will be higher for Turkey and also for Eskisehir.

By using life expectancies on Coale and Demeny "West" model life tables, it is possible to make a transition from forecasts of mortality levels given in Table 7 to life expectancies. Table 8 shows life expectancy forecasts at age of 5 and 10 in 1965-2015 period for male and female populations.

Table 8: Life Expectancy Forecasts at Age of 5 and 10 Determined by Using Growth Rates for Female and Male Populations

Female			Male	
Years	\boldsymbol{e}_{5} values	\boldsymbol{e}_{10} values	\boldsymbol{e}_{5} values	\boldsymbol{e}_{10} values
1965	-	-	-	-
-	55.78	51.94	54.07	50.11
1970	59.05	54.93	56.71	52.55
-	61.32	57.01	58.46	54.17
1975	63.08	58.63	59.83	55.44
-	64.54	59.98	60.96	56.49
1980	65.81	61.16	61.93	57.39
-	66.94	62.21	62.79	58.20
1985	67.97	63.19	63.56	58.92
-	69.03	64.20	64.26	59.57
1990	70.00	65.14	65.00	60.27
-	70.90	66.00	65.74	60.98
1995	71.73	66.81	66.43	61.63
-	72.52	67.57	67.07	62.24
2000	73.26	68.28	67.67	62.82
-	73.97	68.90	68.24	63.37
2005	74.63	69.60	68.78	63.88
-	75.27	70.21	69.29	64.38
2010	75.88	70.80	69.78	64.85
-	76.46	71.36	70.25	65.30
2015	77.02	71.90	70.70	65.73

When the table in analyzed, it is noticed that life expectancy forecasts at age of 5 and 10 for females are higher than those of men. Life expectancy forecasts at age of 5 and 10 for female in 2000-2005 period is found to be 73.97 years and 63.37 years, respectively. Consequently, it is forecasted that 5 years old female children in Eskisehir today have an average of 73.97 years' life expectancies, while it is 68.90 years for male children. As for 10 years old female children, the average life expectancy is 68.90 and for male children, it is 63.37 . On the other hand, in 2015, life expectancies at age of 5 and 10 for females forecast to be 77.02 years and 71.90 years, respectively. As for males, while life expectancy at age of 5 forecasts to be 70.70 years, life expectancy at age of 10 forecasts to be 65.73 years.

RESULT AND DISCUSSION

Thinking that comparing the findings we obtained in our study to those obtained by other researchers would be suitable, certain comparison have been made here. For this purpose, comparisons of the forecasts as to e_{5} values have been given in Table 9 and Table 10. Further, in order to be able to see the comparison better, Figure 3 and Figure 4 have been drawn, which show our findings and those obtained by other researchers in the same coordinate axis.

Table 9: Comparing the Findings for e_{5} Values for Female Population

$\begin{gathered} \text { YEAR } \\ \text { S } \end{gathered}$	e_{5} VALUES OF				e_{5} VALUES OF TURKEY				
	ESKIS e_{5} values in our study	HIR Dincer ${ }^{1}$ (1988)	Shorter $\text { Spo }^{2}$	$\begin{aligned} & \text { Hancioglu } \\ & (1991) \end{aligned}$	Hosgor (1991)	Hosgor (1992)	$\begin{gathered} \text { SIS } \\ (\mathbf{1 9 9 5}) \end{gathered}$	Hosgor (1997)	Toros (2000)
1965									
-	55.78		65.5			62.78-64.53	62.9		
1970	59.05				64.38-64.54	63.34-65.20			
-	61.32		66.2	64.9		63.88-65.99	63.1		
1975	63.08				65.25-65.92	64.39-66.66			
-	65.54		66.9	66.6		64.90-67.29	63.5		
1980	65.81				65.84-67.34	65.39-67.90			
-	66.94		67.7	66.7		65.87-68.55	64.2		
1985	67.97	68.97			66.36-68.84	66.33-69.18			
-	69.03					66.78-69.78	67.6	68.0	
1990	70.00				66.83-70.33	67.21-70.35			69.98
-	70.90					67.63-70.90			
1995	71.73				67.24-71.78				70.33
-	72.52								
2000	73.26				67.23-73.28				70.88
-	73.97								
2005	74.63								
-	75.27								
2010	75.88								
-	76.46								
2015	77.02								

[^1]e_{5} values forecasted for female population in 1975-1980 period are lower than those found by Shorter-SPO and Hancioglu (1991), and higher than those found by SIS (1995). e_{5} interval obtained for the same period in a study by Hosgor (1992) almost is the same as the ones values we have forecasted.
e_{5} value forecasted for female population in the study for 1985 is lower than the one Dincer (1988) obtained in Eskisehir context from the data in 1976-1986. However, the study conducted by Dincer (1988) involves only Eskisehir city centre and town centres, excluding villages and other small countryside settlements. Average life span in countryside regions is shorter than city centres, and if they had been included in the study by Dincer (1988), e_{5} values would
certainly have been lower. Besides, the value we have forecasted in our study as to 1985 is also included in the e_{5} interval in the studies by Hosgor (1991) and Hosgor (1992).

Figure 3: e_{5} Values for Female Population

In 1985-1990 period, e_{5} value forecasted in this study is very close to the values obtained in the studies by SIS (1995) and Hosgor (1997), and included in the e_{5} interval in the study by Hosgor (1992).

The e_{5} value we have forecasted for 1990 is the same as the one determined in a study by Toros (2000). As for the period after 1990, the values determined by Toros (2000) are a little lower than ours, but values forecasted in our study are included in the e_{5} interval obtained by Hosgor (1991). Moreover, the fact that e_{5} values we have forecasted found in the context of our study are closer to top limit of the e_{5} values interval determined by Hosgor (1991) may have been due to the facts that Eskisehir is a developed city and average life span there is higher than the average in Turkey.

Figure 4: e_{5} Values for Male Population

Table 10: Comparing the Findings for e_{5} Values for Male Population

YEARS	e_{5} VALUES OF				e_{5} VALUES OF TURKEY				
	ESKIS e_{5} values in our study	HIR Dincer ${ }^{1}$ (1988)	Shorter Spo ${ }^{2}$	$\begin{gathered} \text { Hancioglu } \\ (1991) \end{gathered}$	Hosgor (1991)	Hosgor (1992)	$\begin{gathered} \text { SIS } \\ (1995) \end{gathered}$	Hosgor (1997)	Toros (2000)
1965									
	54.07		63.5			59.82-61.89	59.9		
1970	56.71				60.96-61.46	60.19-62.06			
-	58.46		63.6	61.6		60.53-62.60	60.01		
1975	59.83				61.84-62.06	60.86-63.10			
-	60.96		63.9	62.6		61.19-63.57	60.4		
1980	61.93				62.16-63.12	61.49-64.02			
-	62.79		64.0	63.0		61.78-64.45	61.0		
1985	63.56	63.36			62.44-64.19	62.08-64.94			
-	64.26					62.36-65.43	63.7	63.9	
1990	65.00				62.70-65.31	62.63-65.88			66.84
-	65.74					62.89-66.34			
1995	66.43				62.92-66.34				67.23
-	67.07								
2000	67.67				63.12-67.31				67.83
-	68.24								
2005	68.78								
-	69.29								
2010	69.78								
-	70.25								
2015	70.70								

[^2]When Table 10 and Figure 4 are analyzed, e_{5} values we have forecasted for males in 19651970 period are a little lower than the ones obtained in other studies, and in the period after 1970, this dif ference almost disappears. In the period after 1975, the values obtained are very similar to the ones in other studies.

In our study, expanding the comparison made for e_{5} values to e_{10} values is possible, but because similar explanations would be given, comparisons for e_{10} values will not be made.

As a result, in the context of the study, e_{5} and e_{10} values we have forecasted for 19802000 period for both genders are very similar to the values obtained by other researchers. This proves the accuracy of the forecasts made for the period after 2000.

REFERENCES

Coale, A.J. and Demeny P. (1966), Regional Model Life Tables and Stable Populations. New Jersey: Princeton University Press.

Dincer, S. (1988), Eskişehir ve Türkiye'de 1970-1976 Yılları Yasam Ümidi Değişiminin İncelenmesi. Eskişehir: Anadolu Üniversitesi, Basılmamış Bilim Uzmanlıgı Tezi.

Fidan, H. (2002), Nüfus Sayımlari Verileri Kullanılarak Eskişehir Nüfusunun 1930-2002 Dönemi Yaşam Ümidi Değerlerinin Belirlenmesi ve Gelecek Yıllara İlişkin Öngörüsü, Eskişehir: Osmangazi Üniversitesi, Basılmamış Doktora Tezi.

Hancioglu, A. (1991), Estimation of Levels and Trends in Mortality from Information on the Survival Status of a Close Relative: Turkey 1970-1985. Ankara: Hacettepe University, Unpublished Ph.D. Dissertation.

Hill K. (2002), Methods for Measuring Adult Mortality in Developing Countries: a Comparative Review. Baltimore: Johns Hopkins University.

Hosgor, S. (1991), Türkiye'de Nüfus Sayımlarından Hesaplanan Ölum Seviyeleri Trendi (1930-2005). Ankara: D.I.E. Basılmamış Uzmanlık Tezi.

Hosgor, S. (1992), Estimation of Post Childhood Life Tables Using Age and Sex Distributions and Intercensal Growth Rates, Turkey (1930-1990). Ankara: Hacettepe University, Unpublished Master Thesis.

Hosgor, S. (1997), Estimation of Post Childhood Life Tables of Provinces and Regions in Turkey, by Using Age and Sex Distributions and Intercensal Growth Rates, (19851990). Ankara: Hacettepe University, Unpublished Ph.D. Dissertation.

Mendenhall, W. and Reinmuth, J.E. (1978), Statistics for Management and Economics. California: Duxbury Press.

Shorter, F.C. and Macura, M. (1983), Türkiye'de Nüfus Artışı, Doğurganlık ve Ölümlülük Eğilimleri (1935-1975). Ankara: Yurt Yayınevi.

SIS (State Institute of Statistics) (1995), The Population of Turkey, 1923-1994: Demographic Structure and Development, with Projections to the Mid-21 ${ }^{\text {st }}$ Century. Ankara: State Institute of Statistics.

Toros, A. (2000), "Life Tables for the Last Decade of XX. Century in Turkey", The Turkish Journal of Population Studies. 22, 57-110, Ankara: Hacettepe University.

United Nations (1983), "Indirect Techniques for Demographic Estimation", Population Studies, 81, New York

ÖZET

ÇOCUKLUK SONRASI YAŞAM TABLOLARI KULLANILARAK ELDE EDİLEN ZAMAN SERİLERİNDEN YAŞAM ÜMİDİ ÖNGÖRÜLERİNİN YAPILMASI

Toplumlarin gelişmişlik düzeyinin bir göstergesi olarak değerlendirilen yaşam tabloları bir toplumdaki bireylerin yaşa özel ölüm hızlarına ve yaşam ümitlerine ilişkin bilgileri şematik olarak gösteren tablolardır. Güncelliğini koruyan ve sağlıklı veriler kullanılarak hazırlanan bir yaşam tablosu ilgili olduğu nüfus üzerinde gerçekçi planlamaların yapılmasını sağlayabilir. Günümüzde pek çok ülkede, bir yaşam tablosunun hazırlanmasında temel veri olarak kullanılan ölüm istatistikleri doğru ve eksiksiz olarak tutulamamaktadır. Buna karșın, bu ülkeler düzenli olarak yapılan nüfus sayımı verilerine sahip olabilirler ve bu nüfus sayımı verilerinden çocukluk sonrası yaşam tabloları kestirilebilir. Bu çalışmada, ard arda yapılan iki nüfus sayımında elde edilen veriler kullanılarak sayımlar arası büyüme hızları ve yaş dağılımından çocukluk sonrası yaşam tablosunu kestiren metot kısaca tanıtılmakta ve yaşam ümidi öngörülerinin yapılması üzerinde durulmaktadır. Ayrıca uygulama aşamasında, Türkiyenin büyük illerinden biri olan Eskişehir için cinsiyet ayırımında 2015 yılına kadar 5 ve 10 yaşındaki yaşam ümidi öngörüleri yapılmaktadır.

[^0]: * Ph.D. Osmangazi University, Department of Statistics, Eskisehir/Turkey
 ** Ph. D. Başkent Univ. Department of Insurance and Management

[^1]: ${ }^{1}$ The findings for Dincer (1988) are based on data related 1975-1986 period.
 ${ }^{2}$ The findings for Shorter-Spo are taken Hancioglu (1991).

[^2]: ${ }^{1}$ The findings for Dincer (1988)] are based on data related 1975-1986 period.
 ${ }^{2}$ The findings for Shorter-Spo are taken Hancioglu (1991).

