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Novel lanthanide metallophthalocyanines bearing iodine group and
their singlet oxygen generation ability

Baybars Köksoy 

Bursa Technical University, Department of Chemistry, 16310 Yıldırım-Bursa, Turkey

Abstract:  In this study, five novel mono rare earth metallo phthalocyanine derivatives (1a-e)
were synthesized by cyclotetramerization of 4-iodophthalonitrile and corresponding metal salts.
These novel compounds were characterized by FT-IR, elemental analyses, UV–Vis, and MALDI-
TOF spectral data. Moreover, the ability of singlet oxygen generation and aggregation behavior of
these  phthalocyanines  were  investigated  in  dimethyl  sulfoxide  using  UV-Vis  spectroscopy.
Gadolinium metallo phthalocyanine has the best singlet oxygen quantum yield and it can be a
potential candidate for the photodynamic therapy (PDT) of cancer. 
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INTRODUCTION

Phthalocyanine  compounds  (Pcs)  and  their
derivatives are a family of aromatic molecules
which  are  delocalized  with  an  18-π  electron
system  and  they  have  been  comprehensively
studied in many areas as  chemical sensors (1,
2), liquid crystals (3), solar cell applications (4,
5),  photodynamic  therapy  (PDT)  (6-8)  and
catalysts (9). In recent years, they have been
used  as  a  photosensitizer  in  photodynamic
therapy  (PDT)  because  of  their  high  singlet
oxygen  generation  ability  and  good
photostability  (10,  11).  The  main  problem of
phthalocyanines  is  poor  solubility  in  common
organic solvents. To overcome this problem, it
can  be  decorated  with  some  non-polar/polar
groups  on  the  Pc  core  (12,  13).  Another
disadvantage  of  these  compounds  is  called
“aggregation” which means they stack on each
other  in  the  solvent  and  affect  the
photochemical properties. Also, Pc aggregation

is another limitation in their applications which
drastically  decreases  their  fluorescence
quantum  yields,  shortens  their  triplet  state
lifetime,  and  reduces  their  photosensitizing
efficiency, especially in aqueous media. 

Peripheral  substitution  of  the  macrocyclic  ring
with  halogen  groups  leads  to  phthalocyanine
products which are soluble in common organic
solvents  (14).  Moreover,  it  is  anticipated that
the introduction of halogen/ester groups into a
moiety of phthalocyanine compound will induce
high solubility in organic solvents and improved
photosensitizer activity of Pcs for PDT (15-19).

For phthalocyanine photosensitizers, the metal
atom  is  very  important  to  singlet  oxygen
generation and PDT applications, incorporating
zinc(II),  indium(III),  aluminum(III),
gallium(III),  and  silicon(IV)  (20,  21).  On  the
other  hand,  the  number  of  phthalocyanines
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including lanthanide metals in the literature is
rare for PDT applications.

Phthalocyanines  containing  lanthanide  series
metal atoms have been studied by scientists for
a  long  time.  Double-decker  and  triple-decker
phthalocyanines  containing  lutetium  or
europium metals were synthesized and various
applications were studied (22-23). Additionally,
the  synthesis  of  homoleptic  and  heteroleptic
complexes  containing  rare  earth  elements  is
also available in the literature (24-25). It has
been  reported  that  rare  earth  element
phthalocyanine  complexes  are  used  in
electrochromic  materials  (22)  liquid  crystal
(26),  nonlinear  optics  (25)  and  optoelectronic
materials applications.

According to  this  information,  the aim of  this
study  is  to  synthesize  and  characterize  novel
phthalocyanines  containing  lanthanide  metal
atoms (Eu, Sm, Gd, Tb, Dy) and bearing iodine
groups that may have high production of singlet
oxygen. 

EXPERIMENTAL

General Information
1,3-diphenylisobenzofuran  (DPBF),  4-
iodophthalonitrile,  Ln(OAc)3 metal  salts,  and
other chemicals/reagents were purchased from
Aldrich.  All  reagents  and  solvents  were  of
reagent grade quality and were obtained from
commercial suppliers. 

FT-IR spectra were recorded on a Perkin Elmer
Spectrum 100 FT-IR spectrometer. Positive ion
and  linear  mode  MALDI-TOF-MS  of  Pcs  were
obtained  in  1,8,9-anthracenetriol  (DIT)  as  a
MALDI matrix using nitrogen laser accumulating
50 laser shots using Bruker Microflex LT MALDI-
TOF mass spectrometer. Absorption spectra in
the  UV-visible  region  were  recorded  with  a
Shimadzu  2101  UV-Vis  spectrophotometer.
Fluorescence  excitation  and  emission  spectra
were  recorded  on  a  Varian  Eclipse
spectrofluorometer  using  1  cm  path  length
cuvettes at room temperature.  

Photo-irradiations  were  done  using  a  General
Electric  quartz  line  lamp (300 W).  A 600 nm
glass cut-off filter (Schott) was used to filter off
ultraviolet and low wavelength visible parts of
the spectrum. A water filter was also used to
filter  off  infrared  radiations.  An  interference
filter  (Intor,  670 nm with  a  bandwidth  of  40
nm) was  additionally  placed  in  the  light  path
before  the  sample.  Light  intensities  were

measured with a POWER MAX5100 (Molelectron
detector incorporated) power meter

Synthesis
All  lanthanide  series  metallo-phthalocyanines
were synthesized from 4-iodophthalonitrile and
Ln(OAc)3 metal  salts  in  n-pentanol/DBU
solvent-base  system at  reflux.  Phthalocyanine
compounds (1a-e) including iodine groups were
recovered  in  pure  form  with  column
chromatography using dichloromethane-ethanol
as eluent. All these phthalocyanine derivatives
were  fully  characterized  by  spectroscopic
methods  such  as  FT-IR,  UV-Vis,  fluorescence,
MALDI-TOF, and elemental analyses as well.

General  synthesis  of  mono-phthalocyanine
derivatives (1a-e) 
4‐Iodophthalonitrile  (0.1  g,  0.393  mmol)  and
lanthanide  metal  salt  (50  mg,  0.075  mmol
samarium(III) acetate monohydrate for SmPc;
50  mg  0.076  mmol  europium  (III)  acetate
monohydrate  for  EuPc;  50  mg,  0.074  mmol
gadolinium(III) acetate monohydrate for GdPc:
50  mg,  0.074  mmol  terbium  (III)  acetate
monohydrate for TbPc; and 50 mg, 0.073 mmol
dysprosium(III) acetate monohydrate for DyPc)
were  stirred  and  heated  in  sealed  tubes  at
reflux temperature in 24 h. After one day, the
greenish solutions were poured into 50 mL of
hot  methanol.  The  greenish  precipitates  were
centrifuged and washed several times with hot
water,  ethyl  acetate,  and  diethyl  ether,  and
then  all  mono-Pcs  were  separated  by column
chromatography  on  silica  gel  using
dichloromethane-ethanol  as  eluent,  and  final
products were dried in the vacuum.

2(3),9(10),16(17),23(24)-
Tetra(iodo)phthalocyaninatosamarium  (III)
acetate (1a)
Yield:  35  mg  (29%),  Chemical  Formula:
C34H15N8O2I4Sm,  FT-IR(ATR),  vmax/cm-1:  3090-
3059 (Aromatic-CH), 2949-2854 (Aliphatic-CH),
1716  (C=O,  acetate),  1583-1491  (C=C),  818
(Ar-I), UV-Vis  (DMSO):  λmax nm (log  ε): 356
(4.93), 616 (4.36), 684 (5.08), Anal. Calc. for
C34H15N8O2I4Sm, C: 33.32, H: 1.23, N: 9.14%,
Found:   C:  33.28;  H:  1.19,  N:  9.11%;
MS(MALDI-TOF)  (DHB):  1166.13  (M-OAc)+,
1320.61 (M-OAc+DHB)+.

2(3),9(10),16(17),23(24)-
Tetra(iodo)phthalocyaninatoeuropium  (III)
acetate (1b)
Yield:  30  mg  (24.8%),  Chemical  Formula:
C34H15N8O2I4Eu,  FT-IR(ATR),  vmax/cm-1:  3088-
3057 (Aromatic-CH), 2949-2851 (Aliphatic-CH),
1718  (C=O,  acetate),  1585-1490  (C=C),  819
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(Ar-I),  UV-Vis  (DMSO):  λmax nm (log  ε): 346
(4.86), 617 (4.35), 684 (5.11) Anal.  Calc. for
C34H15N8O2I4Eu, C: 33.28, H: 1.23, N: 9.13%,
Found:   C:  33.22;  H:  1.21,  N:  9.12%,
MS(MALDI-TOF)  (DHB):  1168.23  (M-OAc)+,
1322.55 (M-OAc+DHB)+.

2(3),9(10),16(17),23(24)-
Tetra(iodo)phthalocyaninatogadolinium  (III)
acetate (1c)
Yield:  42  mg  (34.6%),  Chemical  Formula:
C34H15N8O2I4Gd,  FT-IR(ATR),  vmax/cm-1:  3089-
3058 (Aromatic-CH), 2948-2854 (Aliphatic-CH),
1719  (C=O,  acetate),  1581-1488  (C=C),  820
(Ar-I),  UV-vis  (DMSO):  λmax nm (log  ε): 356
(4.80), 617 (4.36), 685 (5.11), Anal. Calc. for
C34H15N8O2I4Gd, C: 33.14, H: 1.23, N: 9.09%,
Found:   C:  33.12;  H:  1.20,  N:  9.05%,
MS(MALDI-TOF)  (DHB):  1173.44  (M-OAc)+,
1327.33 (M-OAc+DHB)+.

2(3),9(10),16(17),23(24)-
Tetra(iodo)phthalocyaninatoterbium  (III)
acetate (1d)
Yield:  39  mg  (32.1%),  Chemical  Formula:
C34H15N8O2I4Tb,  FT-IR(ATR),  vmax/cm-1:  3088-
3059 (Aromatic-CH), 2947-2852 (Aliphatic-CH),
1719  (C=O,  acetate),  1580-1491  (C=C),  821
(Ar-I),   UV-Vis (DMSO): λmax nm (log ε): 352
(4.95), 619 (4.42), 686 (5.11), Anal. Calc. for
C34H15N8O2I4Tb, C: 33.09, H: 1.23, N: 9.08%,
Found:   C:  33.01;  H:  1.17,  N:  9.04%,
MS(MALDI-TOF)  (DHB):  1175.22 (M+H-OAc)+,
1329.19 (M+H-OAc+DHB)+.

2(3),9(10),16(17),23(24)-
Tetra(iodo)phthalocyaninatodysprosium  (III)
acetate (1e)
Yield:  33  mg  (27.1%),  Chemical  Formula:
C34H15N8O2I4Dy,  FT-IR(ATR),  vmax/cm-1:  3089-
3061 (Aromatic-CH), 2949-2853 (Aliphatic-CH),
1720  (C=O,  acetate),  1584-1488  (C=C),  820
(Ar-I),  UV-Vis  (DMSO):  λmax nm (log  ε): 356
(4.79), 617 (4.38), 686 (5.10). Anal. Calc. for
C34H15N8O2I4Dy, C: 33.00, H: 1.22, N: 9.05%,
Found:   C:  32.98;  H:  1.18,  N:  9.03%,
MS(MALDI-TOF)  (DHB):  1178.45  (M-OAc)+,
1332.67 (M-OAc+DHB)+.

RESULT AND DISCUSSION

The  synthetic  pathway  of  novel  lanthanide
series  phthalocyanines  was  figured  out  in
Scheme 1. The final products were obtained by
4-iodophthalonitrile and corresponding Ln(OAc)3

metal  salts  with  catalytic  amount  DBU in  the
solvent  of  n-pentanol.  All  synthesized
phthalocyanines  were  characterized  by  using
various  spectroscopic  characterization
techniques  such  as  ground  state  electronic
spectra,  FT-IR,  MALDI-TOF,  and  elemental
analysis.  The  obtained  results  from  these
techniques  are  compatible  with  the  proposed
structures  for  all  the  newly  prepared
compounds.

CHARACTERIZATION

The vibrational peak appeared at 2230 cm-1 for
4-iodophthalonitrile was disappeared in the FT-
IR spectra  of  metallophthalocyanines  1a-e  as
expected. This is an important clue concerning
the formation of the phthalocyanine macrocycle
from  the  corresponding  phthalonitriles.  The
typical  carbonyl (acetate group) vibration was
observed in the range of 1720-1716 cm-1 for all
metallophthalocyanines  (1a-e).  The  aromatic-
CH  and  aliphatic-CH  stretching  peaks  for  all
synthesized  phthalocyanines  were  appeared
between 3090-3057 cm-1 and 2949-2852 cm-1

regions, respectively. Also, other typical bands
Ar-C=C and Ar-I were monitored at 1585-1488
cm-1,  821-818  for  novel  lanthanide(III)
phthalocyanines. The MALDI-TOF spectra of 1a-
e were recorded using a 2,5-dihydroxybenzoic
acid  matrix  and  given  in  Figure-1.  All  the
lanthanide(III)  phthalocyanine  compounds
showed  (M+-OAc)  and  (M+-OAc+DHB)  peaks.
The values of molecular ion peaks (m/z) were
monitored at 1166.13 and 1320.61 Da for  1a,
1168.23, and 1322.55 Da for 1b, 1173.44 and
1327.33 Da for 1c, 1175.22 and 1329.19 Da for
1d, 1178.45 and 1332.67 Da for 1e.
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i) Sm(OAc)3, 1-pentanol, DBU, reflux, 12 h ii) Eu(OAc)3, 1-pentanol, DBU, reflux, 14 h, iii)
Gd(OAc)3, 1-pentanol, DBU, reflux, 10 h, iv) Tb(OAc)3, 1-pentanol, DBU, reflux, 12 h, v) Dy(OAc)3,

1-pentanol, DBU, reflux, 14 h.

Scheme 1: Synthetic route of mono lanthanide metallophthalocyanines (1a-e).

UV-Vis and Aggregation 
For the phthalocyanine macrocycles, there are
two main transitions known as π-π* in the UV-
Vis  spectrum.  These  transitions  named  as  Q
and B band are generally found at 300-450 nm
and  650-850  nm,  respectively.  In  this  work,
synthesized metallo-phthalocyanine derivatives
exhibited a sharp-single Q band at the range of
684-686 nm in the DMSO solvent. Also, B bands
of these phthalocyanines were observed within
the  range  of  346-356  nm.  Aggregation  is  a
phenomenon  that  occurs  when  two  or  more
compounds  stack  on  top  of  each  other,
encountered in macrocyclic structures or planar
compounds  with  π  electrons.  Whereas  this

phenomenon  is  an  advantage  in  applications
such as energy transfer, it is a disadvantage in
healthcare  applications  such  as  PDT.  For  this
reason,  it  is  important  data  that  the
photosensitizer to be used in PDT applications
does not show aggregation.

In  this  study,  the aggregation attitudes of  all
lanthanide  phthalocyanines  including  iodine
atom  (1a-e)  were  examined  at  2-12  μM  in
DMSO  (Figure-2).  The  Beer-Lambert  law  was
fitted for studied phthalocyanines (1a-e) at 12
to 2 μM concentration range and there was no
aggregation  behavior  of  these  lanthanide
metallophthalocyanines in DMSO.
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A B

C D

E

 
Figure 1: Maldi-TOF mass spectra of synthesized lanthanide metallophthalocyanines using DHB as 
a matrix (A: compound 1a, B: compound 1b, C: compound 1c, D: compound 1d, E: compound 
1e).
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A B

C D

E

Figure 2: UV–Vis spectra of lanthanide metallophthalocyanines (1a-e) in DMSO at different
concentration (2-12 ppm) (A: compound 1a, B: compound 1b, C: compound 1c, D: compound 1d,

E: compound 1e).

Singlet Oxygen Generation
Photodynamic therapy (PDT) which is based on
the  destruction  of  cancer  cells  by  singlet
oxygen, is a new treatment for cancer disease.
This process consists of three important  basic
stones, “light, oxygen, and photosensitizer”. It
is  believed that  during photosensitization,  the
electrons of the photosensitizer are excited by
the  light  and  pass  to  the  triplet  state  (inter-
crossing systems) and transfer their energy to
molecular  oxygen  for  occurring  the  singlet

oxygen. These reactive types of oxygen which
are called “singlet oxygen” kill the cancer cells. 

The  ΦΔ  for compound (1a-e) were studied and
calculated in DMSO by a chemical method using
1,3-diphenylisobenzofuran  (DPBF)  as  a
quencher. The decreasing of DPBF at 417 nm
was  observed  using  a  UV-Vis
spectrophotometer. The  ΦΔ value of compound
1a-e  was found lower than standard zinc (II)
(StdZnPc)  except  compound  1c in  DMSO  as
given in Figure 3.
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A B

C D

E F

Figure 3: The absorption spectral changes during the determination of singlet oxygen quantum
yields. This determination was for all compounds (1a-e) in DMSO at a concentration of 1x10-5 M
(A: compound 1a, B: compound 1b, C: compound 1c, D: compound 1d, E: compound 1e) and bar
graphic of singlet oxygen quantum yields of synthesized mono lanthanide metallophthalocyanines
(F).

Normally,  singlet  oxygen  quantum  yields  of
photosensitizers  containing  heavy  atoms  such
as  bromine  or  iodine  are  higher  than  other
types. However, the metal atom in the center of
the phthalocyanine nucleus has a great effect

on the electrons that pass into the triplet level.
As seen in this study, the singlet oxygen values
of  compounds  1a,  1b,  1d,  and  1e,  which
contain  metals  from  the  lanthanide  series  in
their  center,  were  measured  low  despite  the
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presence  of  iodine  in  their  structure.  The
tetraiodophthalocyanine  derivative  containing
only  gadolinium  metal  in  its  center  produced
singlet oxygen much better than both its own
species  and  the  standard  zinc(II)
phthalocyanine derivative.  The reason for  this
can be related  to  the  spherically  symmetrical
property of gadolinium metal, which has similar
examples in the literature (27, 28).
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CONCLUSION

As  a  result,  the  singlet  oxygen  generation
properties of five phthalocyanine building block
compounds with lanthanide series metal atom
in its  center  and iodine as  heavy  atom in its
peripheral  position  were  investigated  in  this
study.  It  was determined that  the gadolinium
phthalocyanine derivative produced the highest
singlet  oxygen  obtained  from the  macrocyclic
phthalocyanine compounds. The singlet oxygen
quantum yields of the other four phthalocyanine
derivatives  were  quite  low.  It  has  also  been
observed that these compounds did not produce
fluorescence due to both the heavy atom effect
and the effect of the metal atoms in the center.

The  important  part  of  the  study  in  terms  of
literature is that these compounds can easily be
modified  with  important  reactions  using
different  catalysts.  Important  and  useful
reactions  such  as  Sonogashira,  Suzuki,  and
Heck cross-coupling reactions can be performed
over the iodine atom in the peripheral position,
and  the  physical  and  chemical  properties  of
these  phthalocyanines  can  be  changed  as
desired. In addition, gadolinium phthalocyanine
compound,  which  has  the  highest  singlet
oxygen  quantum yield,  can  be  made  a  more
effective photosensitizer candidate by attaching
it with water-soluble groups, which is especially
important for PDT, and a potential PDT agent.
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