
 

173 
 

 

Naphthoquinones from Onosma: Molecular Mechanisms of Action in the 

Treatment and Prevention of COVID-19 

  

Namık KILINÇ1 

 

Makalenin alanı: Sağlık 

Makale Bilgileri  Öz 
Geliş Tarihi 
17.12.2021 
 
Kabul Tarihi 
29.12.2021 

 Şiddetli akut solunum sendromu koronavirüs 2'nin (SARS-CoV-2) neden olduğu COVID-
19, ilk olarak Aralık 2019'da Çin'in Vuhan kentinde tespit edildi. Şu anda virüs için etkili 
bir tedavi veya bağışıklama yok ve yüksek ölüm oranıyla hızla yayılıyor. Hem viral 
replikasyonun hem de transkripsiyonun başlatılmasında rol oynayan çok önemli bir 
CoV enzimi olan COVID-19 ana proteazı (Mpro), araştırmacılar için çekici bir hedeftir. 
SARS-CoV-2'nin neden olduğu COVID-19'un erken aşamalarını tedavi etmek için acilen 
yeni terapötiklere ihtiyaç vardır. Bu nedenle, potansiyel COVID-19 Mpro inhibitörlerini 
bulmak için Onosma cinsinden naftokinonlar, Mpro enzimi üzerindeki olası etkilerini 
bulmak için tarandı. Bu çalışmada, mevcut doğal ürün veritabanlarından SARS-CoV-2 
Mpro'nun potansiyel inhibitörlerini ortaya çıkarmak için moleküler yerleştirme ve 
MM-GBSA dahil olmak üzere bir dizi hesaplama yaklaşımı kullandık. Bulgularımıza göre 
deoksishikonin, 3-hidroksi-izovaleril shikonin, propionil shikonin ve asetil shikonin 
moleküllerinin Mpro enzimine yüksek bağlanma afiniteleri vardır. Ayrıca diğer shikonin 
bileşiklerinin anti-Mpro enzim aktivitesine sahip olduğu gözlendi. Yerleştirme 
simülasyonları ve moleküler mekanik, shikonin türevlerinin etkili anti-SARS-CoV-2 
bileşikleri olabileceğini düşündürmektedir. 
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 COVID-19, which is caused by the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), was first detected in December 2019 in Wuhan, China. There is currently 
no effective treatment or immunization for the virus, and it is spreading rapidly with a 
high mortality rate. As a crucial CoV enzyme involved in initiating both viral replication 
and transcription, the COVID-19 main protease (Mpro) is an appealing target for 
researchers. Novel therapeutics are urgently required to treat the early stages of COVID-
19 caused by SARS-CoV-2. Therefore, to find potential COVID-19 Mpro inhibitors, 
naphthoquinones from the Onosma genus were screened to find out their possible 
effects on the Mpro enzyme. In this study, we employed a range of computational 
approaches, including molecular docking and MM-GBSA, to uncover potential inhibitors 
of SARS-CoV-2 Mpro from existing natural product databases. According to our findings, 
the molecules deoxyshikonin, 3-hydroxy-isovaleryl shikonin, propionyl shikonin, and 
acetyl shikonin have high binding affinities for the Mpro enzyme. In addition, it was 
observed that the other shikonin compounds have anti-Mpro enzyme activity. Docking 
simulations and molecular mechanics suggest that shikonin derivatives might be 
effective anti-SARS-CoV-2 compounds. 
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1. Introduction 

The coronavirus disease, which was officially designated as Covid-19 by the World 

Health Organization on February 11, 2020, originated in Wuhan, China, in December 2019 and 

has rapidly spread around the world in an epidemic manner (Lillie et al., 2020). The new 

coronavirus was called SARS-CoV-2, according to the International Virus Classification 

Commission. COVID-19 is not the first virus to be linked to a coronavirus-related severe 

respiratory disease (Lai et al., 2020). Coronaviruses, on the other hand, have produced three 

pandemic infections in the last 20 years: SARS-CoV-2, MERS-CoV, and SARS CoV (De Wit et al., 

2016). COVID-19 cases have been recorded in many countries throughout the globe (Wu et 

al., 2020). 

Coronavirus is a member of the Coronaviridae family, which is part of the Nidovirales 

order. Coronaviruses are a wide family of positive-sense, single-stranded RNA viruses (Yan et 

al., 2020). Coronaviruses have been detected in mice, poultry, swine, cattle, rats, turkeys, 

dogs, rabbits, horses, cats, and humans, with genomic RNA measuring 26–32 kb and being 

capped and polyadenylated. Coronaviruses may cause a variety of severe ailments, including 

gastroenteritis and respiratory tract infections (Van Der Hoek et al., 2004). Pneumonia is the 

most common indication and symptom of SARS-CoV-2 infection. Other symptoms include 

headache, shortness of breath (dyspnea), cough, chest discomfort, tiredness, diarrhea, 

muscular soreness, fever, anorexia, sore throat, vomiting, disorientation, and nausea. At least 

four comprehensive investigations on clinical and epidemiological aspects of SARS-CoV-2 

infected individuals have been conducted. Fatigue, cough, and fever were reported by 96 

percent, 68 percent, and 90 percent of patients, respectively, in this study (Zheng, 2020).   

There is currently no treatment available for COVID-19. As a result, medicines that may 

suppress SARS-CoV-2 are required. The Main Protease (Mpro) is one of the main therapeutic 

targets for combating coronaviruses (Figure 1). Polyproteins produced by viral RNA 

transcription are processed by the Mpro, which is responsible for this processing in the cell 

(Hilgenfeld, 2014). From humans to other animals, the amino acid sequences of the Mpro of 

all SARS-like CoVs are substantially conserved (Ortega et al., 2020). The Mpro has a proclivity 

towards forming dimers (protomer A and B). Three domains can be found in protomers. An 

antiparallel β-barrel structure is formed by domain I (residues 8–101) and domain II (residues 

102–184). A cleft between these two domains contains the substrate-binding pocket. Domain 

III (residues 201-303) forms an antiparallel globular cluster with five α-helices (Jin et al., 2020).  
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Figure 1. Crystal structure of COVID-19 Main Protease in complex with the inhibitor N3 (PDB 

ID: 7BQY) 

 

More than 150 species are known to exist in the genus Onosma (Boraginaceae) (El -

Shazly et al. 2003 ). In the flora of Turkey, the genus Onosma is represented by 97 species, 4 

variations, and 1 hybrid species (102 taxa), 50 species and 1 variety of which are endemic, with 

a 50% incidence of endemism (Binzet and Orcan, 2009). Naphthoquinones (alkannin, shikonin, 

and alkannin/shikonin derivatives) are found in the roots of several Onosma species (Ozgen 

et al., 2011; Kagramanyan and Mnatsakanyan, 1985; Sut et al., 2017; Ozgen et al., 2006). In 

this study, the possible inhibitory effects of naphthoquinones in the Onosma genus on the 

Main Protease (Mpro) enzyme, which is responsible for the replication of the coronavirus in 

the cell, were investigated. 

 

2. MATERIALS AND METHOD  

Online bibliographic sources such as Science Direct, PubMed, Web of Science, and 

Google Scholar were used to acquire data on Onosma naphthoquinones. 

 

Protein Preparation 

The RCSB Protein Data Bank (PDB) was used to get the X-ray crystal structure of COVID-

19 Main Protease (PDB code: 7BQY). The Protein Preparation Wizard of Schrödinger Molecular 

Modelling Suite was used to pre-process and prepare the X-ray crystal structure. Converting 
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selenomethionines to methionines, assigning bond orders, filling in missing side chains and 

loops (if any) (using Prime), adding hydrogens to protein structures, generating het states at 

pH 7.0 ± 2.0 (using Epik), creating zero-order bonds to metals and disulfide bonds, and deleting 

water molecules beyond 5 from het groups are all processes performed by Protein Preparation 

Wizard. PROPKA was used to improve H-bond assignment at pH 7.0 with several water sample 

orientations. The OPLS3e force field was used to minimize the energy of protein structures 

under physiological parameters. 

 

Ligand Preparation 

A ligand library including 13 shikonin derivatives from Onosma species was generated 

as a starting point using PubChem's 2D structures. The 2D structures of the medications 

favipiravir, remdesivir, and hydroxychloroquine used in covid therapy were retrieved from 

PubChem for comparison. Maestro's LigPrep module was used to create 2D structure 

drawings of all ligands to be docked into the Mpro protein, as well as 3D transformations of 

these structures. With the OPLS3e force field, the LigPrep module was also utilized to create 

potential ionization and optical isomers of ligands at physiological pH. 

 

Possible Binding Site Identification And Grid Generation 

The main protease protein's ligand-binding sites were predicted using the Schrödinger 

suite's SiteMap tool. SiteMap looks for all probable binding sites on the protein surface and 

ranks them using the Dscore scoring function. Five potential binding sites for the main 

protease protein were discovered as a consequence of SiteMap. Using Maestro's Receptor 

Grid Generation module, a grid box of 20 Å x 20 Å x 20 Å was formed on the best-scored 

binding site predicted by SiteMap. 

 

Extra Precision (XP) Docking 

Schrödinger Maestro software was used to conduct all docking simulations and 

visualizations of shikonin derivatives against the Mpro receptor (Schrödinger, 2020). The Glide 

Extra Precision (XP) docking approach was used to the top-scoring binding site previously 

discovered by SiteMap for a total of 13 compounds collected from Onosma species. The 

receptor sites are maintained rigid throughout the XP docking technique, but the ligands are 

permitted to move freely (Kılınç, 2021). 
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Binding Free Energy Calculation Using Molecular Mechanics/Generalized Born 

Surface Area (MM/GBSA) 

The free binding energies of the protein and ligand complexes were investigated using 

the MM-GBSA (Molecular Mechanics, the Generalized Born model, and Solvent Accessibility) 

approach. The optimum binding energy of the chosen complexes with the lowest docking 

score was calculated using the Prime module of Schrödinger program. The VSGB 2.0 model 

was used for the investigation, using an OPLS3e force field that included an implicit solvent 

model as well as physics-based modifications for hydrophobic interactions, π-π interactions, 

and hydrogen bonding self-contact interactions (Genheden and Ryde, 2015). 

 

3. RESULTS 

Molecular docking studies using two distinct approaches were used to investigate the 

possible effects of 13 shikonin derivatives in Onosma species on the Mpro enzyme. To begin, 

the SiteMap module of Maestro was used to find the probable ligand binding sites for the 

Mpro enzyme (Table 1).  

 

Table 1. Five top-scored ligand binding sites of main protease enzyme 

 

Using the extra precision (XP) docking methodology, thirteen naphtoquinones 

identified in onosma and three positive control compounds were docked to the ligand binding 

site defined for the target protein. All naphtoquinones were docked flexibly to the Mpro 

enzyme binding site. Additionally, we used the Prime MM/GBSA module to calculate the free 

binding energies of naphtoquinones and positive control medicines to the Mpro receptor, 

Name Dscore volume phobic philic residues 

Site 1 1,04 264,8 0,93 0,89 
Chain A: 25,26,27,41,44,49,52,54,140, 141,142, 
143, 144,145, 163,164,165,166,167,168, 172, 
187,188,189, 190,191,192 

Site 2 0,81 249,4 0,40 1,01 
Chain A:8,107,108,109,110,111,127,151,153, 
200,201,202,203,240,242,246,249,292,293, 
294, 295,298 

Site 4 0,49 73,40 0,44 1,14 
Chain A: 218,219,220,221,267,270, 271,274, 
275,279 

Site 3 0,53 107,7 0,16 1,04 Chain A: 15,17,18,19,31,69,70,71,97,119,120 

Site 5 0,34 53,20 0,25 1,47 Chain A: 3,4,5,207,282,284,288,291 
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allowing us to get a better understanding of the thermodynamic factors governing their 

binding activities. Table 2 shows the XP docking findings and Prime MM/GBSA free binding 

energy results of naphtoquinones against the Mpro receptor. 

 

Table 2. XP docking and MM-GBSA results of naphtoquinones and reference compounds 

against Mpro receptor 

Name 
Docking 

score 
XP GScore 

Glide 
emodel 

MM-
GBSA 

Deoxyshikonin -7,49 -7,50 -38,98 -44.37 

3-hydroxy-isovaleryl shikonin -6,51 -6,53 -55,59 -59.02 

Propionyl shikonin -5,95 -5,96 -48,05 -48.19 

Acetyl shikonin -5,85 -5,87 -46,91 -45.98 

Shikonin -5,65 -5,66 -37,94 -34.85 

1-(5,8-dimethoxy-1,4-dioxo-1,4-
dihydronaphthalen-2-yl)-4-
methylpent-3-en-1-yl 2-
methylbutanoate 

-5,62 -5,62 -43,80 -39.53 

β,β–Dimethylacryl shikonin -5,58 -5,59 -49,36 -46.93 

Isobutyryl shikonin -5,51 -5,52 -47,83 -45.92 

Isovaleryl shikonin -5,38 -5,39 -58,85 -44.52 

(E)-2-(4-hydroxy-4-methylpent-2-en-
1-yl)-5,8-dimethoxynaphthalene-1,4-
dione 

-5,07 -5,07 -43,03 -38.00 

5,8-O-dimethyl deoxyshikonin -4,85 -4,85 -46,31 -44.95 

5,8-O-dimethylacetyl shikonin -4,59 -4,60 -50,34 -46.21 

5,8-dimethoxyisobutyryl shikonin -4,31 -4,31 -45,94 -41.34 

Remdesivir -8,48 -8,48 -75,77 -68.45 

Hydroxychloroquine -5,19 -5,19 -36,23 -24.86 

Favipiravir  -3,77 -3,77 -24,11 -18.31 

 

DISCUSSION AND CONCLUSION 

The use of plants to cure diseases is a widely used practice across the globe. 

Ethnobotanical research forms a large part of the practice of scientists. Health care for 80 

percent of the world's population still heavily depends on herbal treatments (Oladele et al., 

2020). Numerous studies are showing that herbs have antibacterial, antifungal, and antiviral 
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effects. Plants show these effects through phenolic compounds, secondary metabolites, and 

other chemicals in their content (Tada et al., 1994; Koch et al., 2008; Mukhtar et al., 2008; Tan 

et al., 2013; Mikaili et al., 2013). SARS, MERS, dengue, and influenza virus symptoms have 

been treated using plant-derived antiviral medications (Theisen and Muller, 2012; Yu et al., 

2012; Zandi et al., 2012). Natural compounds originated from plants, such as flavonoids and 

xanthones, as well as other chemical components with antibacterial, antiviral, and anti-

inflammatory properties, might interact well with SARS-CoV-2 targets. As a consequence, 

herbal drugs containing these compounds as key ingredients might be beneficial in the 

treatment of SARS-CoV-2 infections.  

Shikonin is a key naphthoquinone natural substance obtained from Onosma species' 

roots (Ozgen et al., 2011; Sut et al., 2017). Shikonin has a diverse set of pharmacological 

properties, including anti-cancer, anti-oxidant, antibacterial, and anti-inflammatory 

properties. Shikonin has been reported to have antiviral effect against the adenovirus and 

human immunodeficiency virus-1 (HIV-1) (Andújar et al., 2013; Chen et al., 2003). These 

properties of the shikonin compound have increased the interest in this compound and its 

derivatives. Therefore, our current study was designed considering that shikonin and its 

derivatives may have a potential effect on SARS-CoV-2 virus. For this purpose, the potential 

effects of shikonin and its derivatives on the SARS-CoV-2 Main Protease enzyme were 

investigated using molecular docking and molecular mechanics techniques.  

Molecular docking simulations showed that the best scoring compound was 

Deoxyshikonin. Although deoxyshikonin scored lower than Remdesivir, it scored better than 

the other positive control compounds hydroxychloroquine and favipiravir. Deoxyshikonin 

made hydrogen bonding with amino acid residues LEU141, GLY143, GLU166, and GLN189 at 

the active site of the Mpro enzyme (Figure 2 and 3). In the molecular mechanical calculations 

for the Deoxyshikonin compound, it was determined that the free binding energy for the Mpro 

enzyme was -44.37 kcal/mol (Table 2). 3-hydroxy-isovaleryl shikonin compound, another high-

scoring compound against SARS-CoV-2 Mpro enzyme, was found in hydrogen bond interaction 

with ASN142, GLU166, GLN189, and GLN19 residues in the active site of the enzyme, similar 

to the deoxyshikonin compound (Figure 2). The 3-hydroxy-isovaleryl shikonin compound was 

determined as the compound with the highest free binding energy value (59.02 kcal/mol) 

among the shikonin derivatives, whose possible inhibition effects against the Mpro enzyme 

were investigated. The free binding energies of Propionyl shikonin and Acetyl shikonin 
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compounds, whose docking scores against the SARS-CoV-2 Mpro enzyme were very close to 

each other, were similarly close. While the propionyl shikonin compound hydrogen bonded 

with the amino acid residues LEU141 and GLN189, Acetyl shikonin hydrogen bonded with the 

residues of GLU166 and THR190 in the catalytic active site of the Mpro enzyme (Figure 2). 

Propionyl shikonin and Acetyl shikonin both outperformed the positive control compounds 

hydroxychloroquine and favipiravir. Considering the free binding energies and docking scores 

of these two compounds, it can be said that they have a potent affinity for the SARS-CoV-2 

Mpro enzyme. Other shikonin derivatives other than the best-scoring deoxyshikonin, 3-

hydroxy-isovaleryl shikonin, propionyl shikonin, and acetyl shikonin compounds against Mpro 

enzyme also showed very high affinity for Mpro enzyme regarding their docking scores and 

binding free energies.  

Novel therapies for treating the early stages of COVID-19 induced by SARS-CoV-2 are 

urgently needed. Mpro is one of the antiviral targets that might be used to treat SARS-CoV-2. 

Natural resources abound, which may be used to find pharmacologically important natural 

compounds. In this study, to find possible inhibitors of SARS-CoV-2 Mpro from existing natural 

product databases, we used a variety of computational techniques, including molecular 

docking and MM-GBSA. The molecules deoxyshikonin, 3-hydroxy-isovaleryl shikonin, 

propionyl shikonin, and acetyl shikonin exhibit great binding affinities for the Mpro enzyme, 

according to our findings. Furthermore, it was discovered that the other shikonin compounds 

displayed potential anti-Mpro enzyme activity. Shikonin derivatives may be strong anti-SARS-

CoV-2 drugs, according to docking simulations and molecular mechanics. 
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Figure 2. 2D ligand interaction diagrams of deoxyshikonin (A), 3-hydroxy-isovaleryl shikonin 

(B), propionyl shikonin (C), and acetyl shikonin (D). 

 

Figure 3. 3D surfaced and 3D detailed binding mode of deoxyshikonin compound. Ligand 

binding sites of the Mpro enzyme are represented as solid surfaces. 
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