

Electronic Letters on Science & Engineering 17(2) (2021)
 Available online at dergipark.org.tr/else

ISSN 1305-8614  2021 dergipark.org.tr/else All rights reserved.

53

An Implementation of Linear Regression using IP-Core and
FPGA-based Microcomputer Architecture

Abdelkader Lazzem1*, Halit Öztekin1, Souad Cheurfi 3

 1Department of Electrical-Electronics Engineering, Sakarya University of Applied Sciences, Sakarya,
Turkey

y190004033@subu.edu.tr, ORCID: 0000-0003-0136-356X,

halitoztekin@subu.edu.tr, ORCID: 0000-0001-8598-4763
2 Department of Computer Engineering, Sakarya University of Applied Sciences, Sakarya, Turkey

d190004008@subu.edu.tr, ORCID: 0000-0003-4053-3971

 Abstract: To generate more accurate results, machine learning approaches, particularly those based on neural
networks, require the usage of accurate real values. Linear regression is a machine learning technique that is commonly
used to identify the linear function that best fits a set of data. Due to current trends in systems need and the availability
of Field-Programmable Gate Array (FPGA), floating-point implementations are becoming more widespread, and
engineers are increasingly using FPGAs as a platform for floating-point implementations.This paper demonstrates the
FPGA-based half-precision floating-point (FPU-16) implementation by proposing two different ways of linear
regression implementation. The first way uses the assembler of BZK.SAU.FPGA-based microcomputer architecture.
The second way uses the IP-Core of Xilinx simulated and tested with Vivado Design Suite software. After
implementing both ways we have calculated the Mean Square Error MSE between the results and it was found to be
equal to 7.73 × 10ିସ.

 Keywords: Artificial Neural Network (AAN), Machine Learning (ML) , Half-precision Floating-point (FPU-16),
Linear Regression, Field-programmable gate array (FPGA), Assembler.

IP-Çekirdek ve FPGA-tabanlı Mikrobilgisayar Mimarisi kullanılarak

Doğrusal Regresyon Uygulaması

 Özet: Daha doğru sonuçlar elde etmek için, özellikle sinir ağlarına dayalı makine öğrenimi yaklaşımları, doğru
gerçek değerlerin kullanılmasını gerektirir.Doğrusal regresyon, bir veri kümesine en uygun doğrusal fonksiyonu
tanımlamak için yaygın olarak kullanılan bir makine öğrenimi tekniğidir.Sistem ihtiyacındaki mevcut eğilimler ve
Alanda Programlanabilir Kapı Dizisinin (FPGA) kullanılabilirliği nedeniyle, kayan nokta uygulamaları giderek
yaygınlaşıyor ve mühendisler kayan nokta uygulamaları için bir platform olarak FPGA'ları daha fazla kullanıyorlar.
Bu makalede, doğrusal regresyon uygulamasının iki farklı yolu önerilerek FPGA tabanlı yarı duyarlıklı kayan nokta
(FPU-16) uygulaması göstermektedir. İlk yol BZK.SAU.FPGA tabanlı mikrobilgisayar mimarisinin assembly dilini
kullanır. İkinci yol Vivadi Design Suite yazılımıyla simüle edilmiş ve test edilmiş Xilinx'in IP çekirdeğini kullanır.Her
iki yöntemi uyguladıktan sonra, aralarındaki Ortalama Kare Hata MSE'yi hesapladık ve sonucun 7.73 × 10ିସ olarak
bulduk.

 Anahtar Kelimeler: Yapay Sinir Ağı (YSA), Makine öğrenmesi (MÖ), Yar-hassas Kayan-Nokt (FPU-16), Doğrusal
Regresyon, Alanda programlanabilir kapı dizisi (APKD), Assembler.

Reference to this paper should be made as follows (bu makaleye aşağıdaki şekilde atıfta bulunulmalı):
Lazzem A., Öztekin H., Cheurfi S., ‘An Implementation of Linear Regression using IP-Core and FPGA-
based Microcomputer Architecture’, Elec Lett Sci Eng, vol. 17(2), (2021),53-62.

1. Introduction

 Since the invention of the first electronic component, electronics have continued to develop and
spread all over the world which has led to the emergence of technology and its development. In
view of current technological advances, the acceptance of Artificial Intelligence (AI) as an
important technology and Its use in large-scale projects is increasing day by day.The ability to use
micro-services containing AI greatly increases flexibility in implementing this technology in
existing projects. Therefore, the development of AI has made Machine Learning techniques
essential, which raises a question of how we can deploy these algorithms on embedded systems.

Abdulkader Lazzem et al / Elec Lett Sci Eng 17(2) (2021) 53-62

54

 In order to implement these algorithms on hardware, the researchers consider all options for
creating devices with the required accuracy and efficiency, as well as a manageable power budget.
The hardware implementations are used on hardware devices such as Application Specific
Integrated Circuits (ASIC), Graphics processing unit (GPU), FPGA , Microcontrollers, and so
on.where each has its own advantages and disadvantages.

 Many studies on the hardware implementation of AI algorithms have been published in this area.
Manar Abu Talib et al. [1] have discussed literature reviews covering related works. They
summarized the results of the collected research papers in a pie chart, as is shown in Fig. 1.

Fig. 1.Comparison between hardware devices [1].

 From the pie chart, we can observe that most of the research was performed on FPGA. Because
of its very suitable architecture which offers the ability to implement these kinds of algorithms,
higher energy efficiency compared to the other devices, rapidity, and lower energy consumption.
Ferreira et al [5] presented a fixed-point arithmetic linear regression algorithm implementation by
using FPGA. VHSIC Hardware Description Language (VHDL) was the hardware design language
used and implemented on the Altera DE2-115 development board. They used 8 training data points
as samples and only one clock cycle was needed to implement their proposed algorithm. Lopes et
al [12] proposed an FPGA -based fully parallel Support vector machine SVM using Stochastic
Gradient Descent as a training method. where it increased the speed of implementation in
comparison with relative software implementations and hardware implementations and requiring
fewer hardware resources.Grout et al [13] presented an implementation of a 3-D multiple linear
regression algorithm in hardware using FPGA. The algorithm was modeled and checked by using
Python, NumPy and Matplotlib then converted to VHDL and implemented on Xilinx Spartan-
3AN.

 BZK.SAU.FPGA microcomputer architecture was proposed by Halit Öztekin [7] one of the
authors of this paper and it has been used at the Computer Engineering Department of Sakarya and
Yozgat Bozok Universities in Turkey since 2011. It also began to be used by Sakarya University
of Applied Sciences during this year 2021. It was designed as a reconfigurable hardware
educational tool to enhance the students' learning experience in hardware architecture . It is an
FPGA-based modular logic gate architecture [6] based on the modularity of computer architecture.
It has the property of reconfigurability without causing any downside to the system operation.

 In this study, we will implement FPGA-based linear regression which represents one of the
machine learning algorithms that uses FPU-16 in two different ways ; by using BZK.SAU.FPGA-

FPGA: 66.7%

GPU:22.5%

Compaison Studies : 6.9%

ASIC : 2.9% Others: Raspberry pi: 1.0%

COLLECTED RESEARCH PAPERS

FPGA GPU Compaison studies ASIC others:Raspberry pi

Abdulkader Lazzem et al / Elec Lett Sci Eng 17(2) (2021) 53-62

55

based microcomputer architecture, by using IP-Core of Xilinx simulated and tested on Vivado
software.

 This study aims to illustrate the usability of BZK.SAU.FPGA microcomputer architecture in
such applications by comparing its obtained results with the same application, but using another
commonly used hardware architecture. where we can take advantage of its properties, especially
that it is intended for educational purposes.

 The rest of this paper is organized as follows. in Section 2,3,4 linear regression algorithm,
Floating-Point Numbers, and BZK.SAU.FPGA are described respectively. In Section 5 the used
Methodology is explained. In Section 6 the implementation of both proposed ways is presented.
In section 7 evaluation of the Implementation of both ways is presented. In Section 8 the obtained
Results are shown and discussed. In Section 9 the conclusion of this study is given.

2. Linear Regression

 Linear regression is a supervised learning algorithm used in Machine Learning that involves
finding the best function to define the linear relationship between an output variable y and an input
variable x. According to the number of variables of x, the linear regression is divided into two
types. With a single input, it's called a simple regression, and with more than one input, it's called
a multiple regression [8]. The modeling of this algorithm graphically is a question of finding the
best possible line that can explain a model (x, y). The advantage of the linear regression algorithm
is its ease of interpretation and ease of calculation.

 In this research, we will use simple linear regression. So, the function to look for is on the form:
𝑦 = 𝑎2 + 𝑥 𝑎1 , where a1 and a2 respectively represents the coefficients of the slope and the
value at index 0 to be estimated [11]. Since we are going to use several sets (x, y) as data to estimate
the values of the coefficients, the function becomes in a matrix form:

 𝑌 = ൭

𝑦ଵ

⋮
𝑦௡

൱ = ൭
1 𝑥ଵ

⋮ ⋮
1 𝑥௡

൱ ቀ
𝑎ଵ

𝑎ଶ
ቁ (1)

 The fundamental basis for the solution of linear systems is the concept of Matrices and Vectors
in Linear Algebra. The most significant expression used to calculate the results of Linear
Regression is one of the optimization techniques known as the Least-Square approximation. To
obtain optimized results, the coefficient values must be changed to obtain the closest values to the
original outputs. We use the ordinary least squares method for this. The matrix expression for
least-square solution to find the value of a1 and a2 is shown in the equation below. The suggested
technique for implementing this function on FPGA is shown in the methodology section.

 ቀ
𝑎ଵ

𝑎ଶ
ቁ = (𝑋் 𝑋)ିଵ 𝑋்𝑌 (2)

3. Floating-Point Numbers

 A floating-point is a method of encoding and storing real numbers in electronic devices. It allows
representing approximately a part of the real numbers that can be small or too large [2]. Floating-
point numbers have the advantage of maintaining precision over a large dynamic range, while
fixed-point numbers lose precision [3]. Floating-point numbers are composed of three parts: the

Abdulkader Lazzem et al / Elec Lett Sci Eng 17(2) (2021) 53-62

56

sign, the exponent, and the mantissa. Two standard formats were released to represent this type of
number: IEEE 754 (the most used format), and IEEE 854.

 The IEEE 754 standard format [4] has basic and interchange formats . The basic formats are
three binary formats (Single precision (32 bits), Double precision (64 bits),Quadruple precision
(128 bits)). And two decimal formats(64 and 128 bits). The interchange formats are divided into
binary interchange formats of range 16, 32, 64, and 128 bits. The decimal interchange formats are
defined for any multiple of 32 bits of at least 32 bits . In the study, the preferred format is IEEE
754 FPU-16 as shown in Fig. 2. below. That is because we are going to use BZK.SAU.FPGA
which has 16-bits registers microcomputer architecture.In order to use another format in this
architecture, either hardware additions or software improvements should be made in accordance
with this hardware.

Fig. 2. IEEE 754 FPU-16 Format .

4. BZK.SAU.FPGA

 BZK.SAU.FPGA microcomputer architecture is a modular logic gate-based architecture
designed in the FPGA development environment [6]. Based on the modularity of computer
architecture, BZK.SAU.FPGA can show its superiority when it comes to the User-system
relationship, it provides the users with the reconfigurability required to add their own designs
instead of a component in the system without causing any negative effect to the system operation.
The Computer Engineering Department at Sakarya and Yozgat Bozok Universities in Turkey have
been using BZK.SAU.FPGA since 2011 which is a 16-bit microcomputer architecture that is
designed on altera FPGA board accordingly with a Computer Architecture Simulator named
BZK.SAU[7]. Table 1. shows a summary of the characteristics of BZK.SAU.FPGA
microcomputer architecture.

TABLE 1. Characteristics of BZK.SAU.FPGA Microcomputer Architecture [10].

Built in media Altera DE2-70 FPGA
Built in Schematic design

Keyboard Full stroke “clicky”.. keys
Text modes (display) 24 lines × 40 columns

Graphics modes (display) 320 × 384
COLO rsc Monochrome in VGA mode

RAM 64 KB
ROM 4 MB

Memory endianness Big-Endian
CPU design CISC

CPU architecture Von-neumann (SISD)
Address and data bus 16-bit

The number of GPRs/data and address registers 16
Control unit Hardware control

The processing of instructions Non-pipeline
ALU 16 bit (only integers)

Data representation 2's complement
OS Single user-single task

Written in language BZK.SAU assembly language
File system FAT

Abdulkader Lazzem et al / Elec Lett Sci Eng 17(2) (2021) 53-62

57

Fig. 3. Block Diagram of BZK.SAU.FPGA. Microcomputer Architecture [7].

5. Methodology

 In our study , we create the linear regression model which is used for training datasets by
implementing the matrix of least-square solution that helps to find the coefficients of the linear
regression function.The first step was by importing the data (x, y) that describe our model and
dividing it into two groups inputs and outputs. The next step was the calculation of the least-square
coefficients (equation 2). This step was carried out by computing in floating-point terms the matrix
transpose, inverse, and multiplication. This is achieved using the steps given below :

 𝑋் = ൬
1 … 1
𝑥ଵ ⋯ 𝑥௡

൰ (3)

 𝑋் 𝑋 = ൬
1 … 1
𝑥ଵ ⋯ 𝑥௡

൰ ൭
1 𝑥ଵ

⋮ ⋮
1 𝑥௡

൱ (4)

 𝑋் 𝑋 = ൬
∑ 1௡

ଵ ∑ 𝑥௜
௡
ଵ

∑ 𝑥௜
௡
ଵ ∑ 𝑥௜

ଶ௡
ଵ

൰ (5)

 𝑋்𝑋 = ൬
𝑛 ∑ 𝑥௜

௡
ଵ

∑ 𝑥௜
௡
ଵ ∑ 𝑥௜

ଶ௡
ଵ

൰ (6)

The matrix inverse was calculated by using 2x2 matrix inverse technique :

 (𝑋்𝑋)ିଵ =
ଵ

௡ ∑ ௫೔
మ೙

భ ି(∑ ௫೔
೙
భ)మ

൬
∑ 𝑥௜

ଶ௡
ଵ − ∑ 𝑥௜

௡
ଵ

− ∑ 𝑥௜
௡
ଵ 𝑛

൰ (7)

 𝑋் 𝑌 = ൬
1 … 1
𝑥ଵ ⋯ 𝑥௡

൰ ൭

𝑦ଵ

⋮
𝑦ଶ

൱ (8)

Abdulkader Lazzem et al / Elec Lett Sci Eng 17(2) (2021) 53-62

58

 𝑋் 𝑌 = ൬
∑ 𝑦௜

௡
ଵ

∑ 𝑥௜𝑦௜
௡
ଵ

൰ (9)

In the end we have:

 ቀ
𝑎ଶ

𝑎ଵ
ቁ =

ଵ

௡ ∑ ௫೔
మ೙

భ ି(∑ ௫೔
೙
భ)మ

൬
∑ 𝑥௜

ଶ௡
ଵ − ∑ 𝑥௜

௡
ଵ

− ∑ 𝑥௜
௡
ଵ 𝑛

൰ ൬
∑ 𝑦௜

௡
ଵ

∑ 𝑥௜𝑦௜
௡
ଵ

൰ (10)

Where :

 𝑎
ଶୀ

భ

೙ ∑ ೣ೔
మ೙

భ ష(∑ ೣ೔
೔
భ)మ

 ∗(∑ ௫೔
మ೙

భ ∑ ௬೔
೙
భ ି∑ ௫೔

೙
భ ∑ ௫೔௬೔

೙
భ)

 (11)

 𝑎

ଵୀ
భ

೙ ∑ ೣ೔
మ೙

భ ష(∑ ೣ೔
೔
భ)మ

 ∗(ି ∑ ௫೔
೙
భ ∑ ௬೔

೙
భ ା௡ ∑ ௫೔௬೔

೙
భ)

 (12)

which will be implemented in both IP-Core and FPGA-based Microcomputer Architecture.

6. Implementation

 As we can see in equations 11 and 12, the a1 and a2 coefficients depend on the input and output
data and the number of data values that are corresponding to the iteration number. For the input
data, two summations are required, one for the values themselves and the other one for the squared
values. For the output data, one summation is required for the values themselves. For the input and
output data, there is one summation that is required for the multiplication of input and output
values. As seen also, equations 11 and 12 depend on other operations like the division and
multiplication of the precedent summations. To implement equations 11 and 12 and find their
corresponding coefficients using single-precision floating-point on FPGA. The proposed two
different ways are as follow :

6.1. IP-Core of Xilinx

 Firstly, we used xilinx® Floating-Point Operator core v7.1 which is provided by Vivado Design
Suite software. This core provides means to perform floating-point arithmetic on an FPGA which
can be customized for multiple arithmetic operations with different word lengths, latency, and
interface. We customized the IP-core to perform a FPU-16 with the needed arithmetic operations
to implement equations 11 and 12. In Fig. 4. An example of implementing linear regression
function by using Floating-Point Operator core v7.1 is given.

Abdulkader Lazzem et al / Elec Lett Sci Eng 17(2) (2021) 53-62

59

Fig. 4. An Example of Implementing Linear Regression by Using IP-Core of Xilinx.

6.2. BZK.SAU.FPGA- Based Microcomputer Architecture

 In the second proposed way, we used the BZK.SAU.FPGA-based microcomputer architecture,
which uses a bunch of assembly language instructions to implement the linear regression function.
Table 2. shows the main instructions used for the implementation of the FPU-16 unit by
BZK.SAU.FPGA.

TABLE 2. Instructions Used in The Implementation of Fpu-16 Unit Using BZK.SAU.FPGA [9] .

Mnemonic Description Mnemonic Description
LDA AC←M[AR] SHR AC← AC ≫ 1

STA M[AR] ← AC SHL AC← AC ≪ 1

BZR PC← EA ,if Zero_flag=1 INC AC← AC + 1

BRA PC← EA NEG AC← A C + 1
BMI PC← EA ,if Zero_flag=1 (negative) MUL AC← AC × DR

XOR AC←AC ⨁ DR DIV AC← AC ÷ DR

OR AC←AC v DR JMP AC← EA , M[SP] ← AR

AND AC←AC ^ DR RTS PC← M[SP]

SUB AC← AC - DR ADD AC← AC + DR

EA(effective Adress): PC← PC + Offset .

7. Evaluation

 In order to evaluate our implementation of the linear regression function using FPU-16 in both
proposed ways. The data of the increasing linear regression proposed by Ferreira et al [5] is used
see Table 3.

TABLE 3. Data Of The Linear Regression.

𝒙𝒊 -1.1 0.1 1.2 2.3 3.1 4.1 4.8 5.7

𝒚𝒊 -1.7 2.4 5.0 7.3 10.9 12.5 16.2 19.7

Abdulkader Lazzem et al / Elec Lett Sci Eng 17(2) (2021) 53-62

60

 From Table 3 we can observe eight decimal training data points that are applied to both proposed
ways. These decimal values are converted to FPU-16 format before using them in equations 11
and 12 to get the a1 and a2 coefficients. For the IP-Core of Xilinx, we used Vivado software for
the evaluation. The Altera DE2-70 Cyclone II-EP235F672C6 chip is used in the evaluation of
BZK.SAU.FPGA.

8. Results And Discussion

After implementing the Linear Regression by using IP-Core and FPGA-based microcomputer
architecture and finding their resulting coefficients for each iteration we have summarized the
results in Tables 4. and 5.

TABLE 4. The Coefficients Values Obtained From IP-Core of Xilinx.

iteration NO. a1 a2
1. 1.546 0
2. 2.01 0.3384
3. 3 0.638
4. 2.906 0.717
5. 3.075 0.834
6. 2.914 1.018
7. 2.975 1.305
8. 3.022 1.416

TABLE 5. The Coefficients Values Obtained From BZK.SAU.FPGA.

iteration NO. 𝑎ଵ 𝑎ଶ

1. 1.551 0
2. 2.004 0.3384
3. 2.996 0.6367
4. 2.908 0.718
5. 3.076 0.8345
6. 2.91 1.017
7. 2.969 1.195
8. 3.012 1.41

 From Tables 4 and 5 we can observe that the obtained results from BZK.SAU.FPGA is so close
to the ones obtained from the IP-core of Xilinx despite it being made as an educational tool which
proves its usability in such applications.

 To evaluate our results we have used MATLAB software to plot the training data points and
resulting linear regression function 𝑦=𝑎2+ 𝑥 𝑎1 graphs as given in Table 6. below .

TABLE 6. The Resulting Linear Regression Functions.

IP-Core of Xilinx BZK.SAU.FPGA
y1=0 +x * 1.546 y1= 0 + x * 1.551

y2=0.3384 +x * 2.01 y2= 0.3384+ x * 2.004
y3=0.638 +x * 3 y3=0.6367+ x * 2.996

y4=0.717 +x* 2.906 y4=0.718+ x * 2.908
y5=0.834 +x * 2.075 y5=0.8345+ x * 3.076

y6=1.018 +x * 2.914 y6=1.017+ x * 2.91
y7=1.305+x * 2.975 y7=1.195+x* 2.969
y8=1.416 +x * 3.022 y8=1.41+x*3.012

Abdulkader Lazzem et al / Elec Lett Sci Eng 17(2) (2021) 53-62

61

(a) (b)

 Fig. 5. The Training Data Points And Resulting Linear Regression Functions Graph.(a) IP-Core of
Xilinx,(b) BZK.SAU.FPGA.

 After that , the Mean Square Error (MSE) was calculated for the results of both the
BZK.SAU.FPGA-based microcomputer architecture and IP-Core of Xilinx by using
the MATLAB software and we obtained the result of 7.73 × 10ିସ.

9. Conclusion

 Our goal in this study is to be able to clearly understand the implementation of FPGA- based
half-precision floating-point, as it is becoming increasingly important to apply the arithmetic
operations in a more accurate and fast way as the technology is still getting developed fast. To do
that we have proposed two different ways of implementing FPGA-based FPU-16. Assembler of
BZK.SAU.FPGA-based microcomputer architecture was used for the first way .and for the second
way IP-Core of Xilinx is used which is simulated and tested using Vivado software. After
implementing both ways we have calculated the Mean Square Error MSE between them and
obtained the result of 7.73 × 10ିସ.

References

[1] TALIB, Manar Abu, MAJZOUB, Sohaib, NASIR, Qassim, et al. A systematic literature review
on hardware implementation of artificial intelligence algorithms. The Journal of Supercomputing,
2021, vol. 77, p. 1897-1938.

[2] PURNIMA, Shrivastava, MUKESH, Tiwari, JAIKARAN, Singh, et al. VHDL Environment
for Floating point Arithmetic Logic Unit-ALU Design and Simulation. Research Journal of
Engineering Sciences. ISSN, 2012, vol. 2278, p. 9472.

[3] GUMBER, Karan et THANGJAM, Sharmelee. Performance analysis of floating point adder
using vhdl on reconfigurable hardware. International Journal of Computer Applications, 2012, vol.
46, no 9, p. 1-5.

[4] IEEE Standard for Floating-Point Arithmetic," in IEEE Std 754-2019 (Revision of IEEE 754-
2008) , vol., no., pp.1-84, 22 July 2019.

Abdulkader Lazzem et al / Elec Lett Sci Eng 17(2) (2021) 53-62

62

[5] W. de Assis Pedrobon Ferreira, I. Grout and A. C. Rodrigues da Silva, "FPGA hardware
linear regression implementation using fixed-point arithmetic," 2019 32nd Symposium on
Integrated Circuits and Systems Design (SBCCI), 2019, pp. 1-6.

[6] H. Öztekin , A. Gülbağ and F. Temurtaş , "Assembler Design for BZK.SAU.FPGA Micro
Computer Architecture", Electronic Letters on Science and Engineering, vol. 13, no. 1, pp. 1-9,
Jul. 2017.

[7] H.Öztekin, F. Temurtas and A. Gulbag, "BZK.SAU.FPGA10.0: Microprocessor architecture
design on reconfigurable hardware as an educational tool," 2011 IEEE Symposium on Computers
& Informatics, 2011, pp. 385-389.

[8] Kavitha S, Varuna S and Ramya R, "A comparative analysis on linear regression and support
vector regression," 2016 Online International Conference on Green Engineering and Technologies
(IC-GET), 2016, pp. 1-5.

[9] H.Öztekin, F. Temurtas and A. Gulbag, "BZK.SAU: Implementing a hardware and software-
based Computer Architecture simulator for educational purpose," 2010 International Conference
On Computer Design and Applications, 2010, pp. V4-90-V4-97.

[10] H. Öztekin; Temurtas, F; Gulbag, A; (2018). On the improvement of the teaching quality and
learning effectiveness in the computer organization course through FPGA and modular centered
microcomputer design. Computer Applications In Engineering Education, 26, 1840-1825

[11] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression
Analysis (4th ed.). Wiley & Sons, 2006.

[12] F. F. Lopes, J. C. Ferreira, and M. A. C. Fernandes, “Parallel Implementation on FPGA of
Support Vector Machines Using Stochastic Gradient Descent,” Electronics, vol. 8, no. 6, p. 631,
Jun. 2019.

[13] I. Grout, W. d. A. P. Ferreira and A. C. R. d. Silva, "Implementation of 3-D Multiple Linear
Regression in Hardware using the Xilinx Spartan-3AN FPGA," 2019 16th International
Conference on Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON), 2019, pp. 171-174,

