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   Abstract: To generate more accurate results, machine learning approaches, particularly those based on neural 
networks, require the usage of accurate real values. Linear regression is a machine learning technique that is commonly 
used to identify the linear function that best fits a set of data. Due to current trends in systems need and the availability 
of Field-Programmable Gate Array (FPGA), floating-point implementations are becoming more widespread, and 
engineers are increasingly using FPGAs as a platform for floating-point implementations.This paper demonstrates the 
FPGA-based half-precision floating-point (FPU-16) implementation by proposing two different ways of linear 
regression implementation. The first way uses the assembler of BZK.SAU.FPGA-based microcomputer architecture. 
The second way uses the IP-Core of Xilinx simulated and tested with Vivado Design Suite software. After 
implementing both ways we have calculated the Mean Square Error MSE between the results and it was found to be 
equal to 7.73 × 10ିସ. 
 
  Keywords: Artificial Neural Network (AAN), Machine Learning (ML) , Half-precision Floating-point (FPU-16), 
Linear Regression, Field-programmable gate array (FPGA), Assembler. 

 
IP-Çekirdek ve FPGA-tabanlı Mikrobilgisayar Mimarisi kullanılarak 

Doğrusal Regresyon Uygulaması 
 
   Özet: Daha doğru sonuçlar elde etmek için, özellikle sinir ağlarına dayalı makine öğrenimi yaklaşımları, doğru 
gerçek değerlerin kullanılmasını gerektirir.Doğrusal regresyon, bir veri kümesine en uygun doğrusal fonksiyonu 
tanımlamak için yaygın olarak kullanılan bir makine öğrenimi tekniğidir.Sistem ihtiyacındaki mevcut eğilimler ve 
Alanda Programlanabilir Kapı Dizisinin  (FPGA) kullanılabilirliği nedeniyle, kayan nokta uygulamaları giderek 
yaygınlaşıyor ve mühendisler kayan nokta uygulamaları için bir platform olarak FPGA'ları daha fazla kullanıyorlar. 
Bu makalede, doğrusal regresyon uygulamasının iki farklı yolu önerilerek FPGA tabanlı yarı duyarlıklı kayan nokta 
(FPU-16) uygulaması göstermektedir. İlk yol BZK.SAU.FPGA tabanlı mikrobilgisayar mimarisinin assembly dilini 
kullanır. İkinci yol Vivadi Design Suite yazılımıyla simüle edilmiş ve test edilmiş Xilinx'in IP çekirdeğini kullanır.Her 
iki yöntemi uyguladıktan sonra, aralarındaki Ortalama Kare Hata MSE'yi hesapladık ve sonucun 7.73 × 10ିସ olarak 
bulduk. 
  
  Anahtar Kelimeler: Yapay Sinir Ağı (YSA), Makine öğrenmesi (MÖ), Yar-hassas Kayan-Nokt (FPU-16), Doğrusal 
Regresyon, Alanda programlanabilir kapı dizisi (APKD), Assembler. 
 

Reference to this paper should be made as follows (bu makaleye aşağıdaki şekilde atıfta bulunulmalı): 
Lazzem A., Öztekin H., Cheurfi S., ‘An Implementation of Linear Regression using IP-Core and FPGA-
based Microcomputer Architecture’, Elec Lett Sci Eng, vol. 17(2), (2021),53-62.  

 
1. Introduction 

 

   Since the invention of the first electronic component, electronics have continued to develop and 
spread all over the world which has led to the emergence of technology and its development. In 
view of current technological advances, the acceptance of Artificial Intelligence (AI) as an 
important technology and Its use in large-scale projects is increasing day by day.The ability to use 
micro-services containing AI greatly increases flexibility in implementing this technology in 
existing projects. Therefore, the development of AI has made Machine Learning techniques 
essential, which raises a question of how we can deploy these algorithms on embedded systems. 
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   In order to implement these algorithms on hardware, the researchers consider all options for 
creating devices with the required accuracy and efficiency, as well as a manageable power budget. 
The hardware implementations are used on hardware devices such as Application Specific 
Integrated Circuits (ASIC), Graphics processing unit (GPU), FPGA , Microcontrollers, and so 
on.where each has its own advantages and disadvantages. 
 
   Many studies on the hardware implementation of AI algorithms have been published in this area. 
Manar Abu Talib et al. [1] have discussed literature reviews covering related works. They 
summarized the results of the collected research papers in a pie chart, as is shown in Fig. 1. 
 

 

Fig. 1.Comparison between hardware devices [1]. 
 

   From the pie chart, we can observe that most of the research was performed on FPGA. Because 
of its very suitable architecture which offers the ability to implement these kinds of algorithms, 
higher energy efficiency compared to the other devices, rapidity, and lower energy consumption. 
Ferreira et al [5] presented a fixed-point arithmetic linear regression algorithm implementation by 
using FPGA. VHSIC Hardware Description Language (VHDL) was the hardware design language 
used and implemented on the Altera DE2-115 development board. They used 8 training data points 
as samples and only one clock cycle was needed to implement their proposed algorithm. Lopes et 
al [12] proposed an FPGA -based fully parallel Support vector machine SVM using Stochastic 
Gradient Descent as a training method. where it increased the speed of implementation in 
comparison with relative software implementations and hardware implementations and requiring 
fewer hardware resources.Grout et al [13] presented an implementation of a 3-D multiple linear 
regression algorithm in hardware using FPGA. The algorithm was modeled and checked by using 
Python, NumPy and Matplotlib then converted to VHDL and implemented on Xilinx Spartan-
3AN. 
 
   BZK.SAU.FPGA microcomputer architecture was proposed by Halit Öztekin [7]  one of the 
authors of this paper and it has been used at the Computer Engineering Department of Sakarya and 
Yozgat Bozok Universities in Turkey since 2011. It also began to be used by Sakarya University 
of Applied Sciences during this year 2021. It was designed as a reconfigurable hardware 
educational tool to enhance the students' learning experience in hardware architecture . It is an 
FPGA-based modular logic gate architecture [6] based on the modularity of computer architecture. 
It has the property of reconfigurability without causing any downside to the system operation. 
 
   In this study, we will implement FPGA-based linear regression which represents one of the 
machine learning algorithms that uses FPU-16 in two different ways ; by using BZK.SAU.FPGA-
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based microcomputer architecture, by using IP-Core of Xilinx simulated and tested on Vivado 
software. 
 
   This study aims to illustrate the usability of BZK.SAU.FPGA microcomputer architecture in 
such applications by comparing its obtained results with the same application, but using another 
commonly used hardware architecture. where we can take advantage of its properties, especially 
that it is intended for educational purposes. 
 
   The rest of this paper is organized as follows. in Section 2,3,4  linear regression algorithm, 
Floating-Point Numbers, and BZK.SAU.FPGA are described respectively. In Section 5 the used 
Methodology is explained. In Section 6 the implementation of both proposed ways is presented. 
In section 7 evaluation of the Implementation of both ways is presented. In Section 8 the obtained 
Results are shown and discussed. In Section 9 the conclusion of this study is given. 
 

2. Linear Regression 
 
   Linear regression is a supervised learning algorithm used  in  Machine Learning that involves  
finding the best function to define the linear relationship between an output variable y and an input 
variable x. According to the number of variables of x, the linear regression is divided into two 
types. With a single input, it's called a simple regression, and with more than one input, it's called 
a multiple regression [8]. The modeling of this algorithm graphically is a question of finding the 
best possible line that can explain a model (x, y). The advantage of the linear regression algorithm 
is its ease of interpretation and ease of calculation. 
 
   In this research, we will use simple linear regression. So, the function to look for is on the form:                 
𝑦 = 𝑎2 + 𝑥 𝑎1 , where a1 and a2 respectively represents  the coefficients of the slope and the 
value at index 0 to be estimated [11]. Since we are going to use several sets (x, y) as data to estimate 
the values of the coefficients, the function becomes in a matrix form: 

 

                                                       𝑌 = ൭

𝑦ଵ

⋮
𝑦௡

൱ = ൭
1 𝑥ଵ

⋮ ⋮
1 𝑥௡

൱ ቀ
𝑎ଵ

𝑎ଶ
ቁ            (1) 

   The fundamental basis for the solution of linear systems is the concept of Matrices and Vectors 
in Linear Algebra. The most significant expression used to calculate the results of Linear 
Regression is one of the optimization techniques known as the Least-Square approximation. To 
obtain optimized results, the coefficient values must be changed to obtain the closest values to the 
original outputs. We use the ordinary least squares method for this. The matrix expression for 
least-square solution to find the value of a1 and a2 is shown in the equation below. The suggested 
technique for implementing this function on FPGA is shown in the methodology section. 

 

                                              ቀ
𝑎ଵ

𝑎ଶ
ቁ = (𝑋் 𝑋)ିଵ 𝑋்𝑌                  (2) 

 
 

3. Floating-Point Numbers 
 
   A floating-point is a method of encoding and storing real numbers in electronic devices. It allows 
representing approximately a part of the real numbers that can be small or too large [2]. Floating-
point numbers have the advantage of maintaining precision over a large dynamic range, while 
fixed-point numbers lose precision [3]. Floating-point numbers are composed of three parts: the 
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sign, the exponent, and the mantissa. Two standard formats were released to represent this type of 
number:  IEEE 754 (the most used format), and  IEEE 854. 
 
   The IEEE 754 standard format [4] has basic  and  interchange formats . The basic formats are 
three binary formats ( Single precision (32 bits), Double precision (64 bits),Quadruple precision 
(128 bits )). And two decimal formats( 64 and 128 bits). The interchange formats are divided into 
binary interchange formats of range 16, 32, 64, and 128 bits. The decimal interchange formats are 
defined for any multiple of 32 bits of at least 32 bits . In the study, the preferred format is IEEE 
754 FPU-16  as shown  in Fig. 2.  below. That is because we are going to use BZK.SAU.FPGA 
which  has 16-bits registers microcomputer architecture.In order to use another format in this 
architecture, either hardware additions or software improvements should be made in accordance 
with this hardware. 
 

 
Fig. 2. IEEE 754  FPU-16 Format . 

 

4. BZK.SAU.FPGA 

   BZK.SAU.FPGA microcomputer architecture is a modular logic gate-based architecture 
designed in the FPGA development environment [6]. Based on the modularity of computer 
architecture, BZK.SAU.FPGA can show its superiority when it comes to the User-system 
relationship, it provides the users with the reconfigurability required to add their own designs 
instead of a component in the system without causing any negative effect to the system operation. 
The Computer Engineering Department at Sakarya and Yozgat Bozok Universities in Turkey have 
been using BZK.SAU.FPGA since 2011 which is a 16-bit microcomputer architecture that is 
designed on altera FPGA board accordingly with a Computer Architecture Simulator named 
BZK.SAU[7]. Table 1. shows a summary of the characteristics of BZK.SAU.FPGA 
microcomputer architecture. 
 

TABLE 1.  Characteristics of BZK.SAU.FPGA Microcomputer Architecture [10]. 

Built in media Altera DE2-70 FPGA 
Built in Schematic design 

Keyboard Full stroke “clicky”.. keys 
Text modes (display) 24 lines × 40 columns 

Graphics modes (display) 320 × 384 
COLO rsc Monochrome in VGA mode 

RAM 64 KB 
ROM 4 MB 

Memory endianness Big-Endian 
CPU design CISC 

CPU architecture Von-neumann (SISD) 
Address and data bus 16-bit 

The number of GPRs/data and address registers 16 
Control unit Hardware control 

The processing of instructions Non-pipeline 
ALU 16 bit (only integers) 

Data representation 2's complement 
OS Single user-single task 

Written in language BZK.SAU assembly language 
File system FAT 
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Fig. 3. Block Diagram of BZK.SAU.FPGA. Microcomputer Architecture [7]. 
 

5. Methodology 

   In our study , we create the linear regression model which is used for training datasets by 
implementing  the matrix of least-square solution that helps to find the coefficients of the linear 
regression function.The first step was by importing the data (x, y) that describe our model and 
dividing it into two groups inputs and outputs. The next step was the calculation of the least-square 
coefficients (equation 2). This step was carried out by computing in floating-point terms the matrix 
transpose, inverse, and multiplication. This is achieved using the steps given below : 
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The matrix inverse was calculated by using 2x2 matrix inverse technique : 
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In the end we have: 
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which will be implemented in both  IP-Core and FPGA-based Microcomputer Architecture. 
 

6. Implementation 
 

   As we can see in equations 11 and 12, the a1 and a2 coefficients depend on the input and output 
data and the number of data values that are corresponding to the iteration number. For the input 
data, two summations are required, one for the values themselves and the other one for the squared 
values. For the output data, one summation is required for the values themselves. For the input and 
output data, there is one summation that is required for the multiplication of input and output 
values. As seen also, equations 11 and 12 depend on other operations like the division and 
multiplication of the precedent summations. To implement equations 11 and 12 and find their 
corresponding coefficients using single-precision floating-point on FPGA. The proposed two 
different ways are as follow : 

 

6.1. IP-Core of Xilinx 

   Firstly, we used xilinx® Floating-Point Operator core v7.1 which is provided by Vivado Design 
Suite software. This core provides means to perform floating-point arithmetic on an FPGA which 
can be customized for multiple arithmetic operations with different word lengths, latency, and 
interface. We customized the IP-core to perform a FPU-16 with the needed arithmetic operations 
to implement equations 11 and 12. In Fig. 4. An example of implementing linear regression 
function by using Floating-Point Operator core v7.1 is given. 
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Fig. 4. An Example of  Implementing  Linear Regression by Using IP-Core of Xilinx. 
 

 
6.2. BZK.SAU.FPGA- Based  Microcomputer Architecture 

 

   In the second proposed way, we used the BZK.SAU.FPGA-based microcomputer architecture, 
which uses a bunch of assembly language instructions to implement the linear regression function. 
Table 2. shows the main instructions used for the implementation of the FPU-16 unit by 
BZK.SAU.FPGA. 

 

TABLE 2. Instructions Used in The Implementation of  Fpu-16 Unit Using BZK.SAU.FPGA [9] . 

Mnemonic Description  Mnemonic Description 
LDA AC←M[AR] SHR AC← AC ≫ 1 

STA M[AR] ← AC SHL AC← AC ≪ 1 

BZR PC← EA ,if Zero_flag=1 INC AC← AC + 1 

BRA PC← EA NEG AC← A C + 1 
BMI PC← EA ,if Zero_flag=1 (negative) MUL AC← AC × DR 

XOR AC←AC ⨁ DR DIV AC← AC ÷ DR 

OR AC←AC v DR  JMP AC← EA , M[SP] ← AR 

AND AC←AC ^ DR RTS PC← M[SP] 

SUB AC← AC - DR ADD AC← AC + DR 

EA(effective Adress): PC← PC  + Offset . 

 
 

7. Evaluation 

   In order to evaluate our implementation of the linear regression function using FPU-16 in both 
proposed ways. The data of the increasing linear regression proposed by Ferreira et al [5]  is used 
see Table 3.  

 
TABLE 3.  Data Of The Linear Regression. 

𝒙𝒊 -1.1 0.1 1.2 2.3 3.1 4.1 4.8 5.7 

𝒚𝒊 -1.7 2.4 5.0 7.3 10.9 12.5 16.2 19.7 
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   From Table 3  we can observe eight decimal training data points that are applied to both proposed 
ways. These decimal values are converted to FPU-16 format before using them in equations 11 
and 12 to get the a1 and a2 coefficients. For the IP-Core of Xilinx, we used Vivado software for 
the evaluation.  The Altera DE2-70 Cyclone II-EP235F672C6 chip is used in the evaluation of 
BZK.SAU.FPGA. 
 

 

8. Results And Discussion 

After implementing the Linear Regression by using IP-Core and FPGA-based microcomputer 
architecture and finding their resulting coefficients for each iteration we have summarized the 
results in Tables 4. and 5. 

 
TABLE 4. The Coefficients Values Obtained From IP-Core of Xilinx. 

iteration NO. a1 a2 
1. 1.546 0 
2. 2.01 0.3384 
3. 3 0.638 
4. 2.906 0.717 
5. 3.075 0.834 
6. 2.914 1.018 
7. 2.975 1.305 
8. 3.022 1.416 

 
 

TABLE 5. The Coefficients Values Obtained From BZK.SAU.FPGA. 

iteration NO. 𝑎ଵ 𝑎ଶ 

1. 1.551 0 
2. 2.004 0.3384 
3. 2.996 0.6367 
4. 2.908 0.718 
5. 3.076 0.8345 
6. 2.91 1.017 
7. 2.969 1.195 
8. 3.012 1.41 

 
   From Tables 4 and 5 we can observe that the obtained results from  BZK.SAU.FPGA is so close 
to the ones obtained from the IP-core of Xilinx despite it being made as an educational tool which 
proves its usability in such applications. 

  

   To evaluate our results we have used MATLAB software to plot the training data points and 
resulting linear regression function 𝑦=𝑎2+ 𝑥 𝑎1 graphs as given in  Table 6.  below . 

 

TABLE 6. The Resulting Linear Regression Functions. 

IP-Core of Xilinx BZK.SAU.FPGA 
y1=0 +x * 1.546 y1= 0 + x * 1.551 

y2=0.3384 +x * 2.01 y2= 0.3384+ x * 2.004 
y3=0.638 +x * 3 y3=0.6367+ x * 2.996 

y4=0.717 +x* 2.906 y4=0.718+ x * 2.908 
y5=0.834 +x * 2.075 y5=0.8345+ x * 3.076 

y6=1.018 +x * 2.914 y6=1.017+ x * 2.91 
y7=1.305+x *  2.975 y7=1.195+x* 2.969 
y8=1.416 +x * 3.022 y8=1.41+x*3.012 
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(a)                                                                        (b)                                                             

           Fig. 5. The Training Data Points And Resulting Linear Regression Functions Graph.(a) IP-Core of 
Xilinx,(b) BZK.SAU.FPGA. 

 

   After that , the Mean Square Error (MSE) was calculated for the results of both the 
BZK.SAU.FPGA-based microcomputer architecture and IP-Core of Xilinx by using 
the  MATLAB software and we obtained the result  of 7.73 × 10ିସ. 

 
9. Conclusion 

 
   Our goal in this study is to be able to clearly understand the implementation of FPGA- based 
half-precision floating-point, as it is becoming increasingly important to apply the arithmetic 
operations in a more accurate and fast way as the technology is still getting developed fast. To do 
that we have proposed two different ways of implementing FPGA-based FPU-16. Assembler of 
BZK.SAU.FPGA-based microcomputer architecture was used for the first way .and for the second 
way IP-Core of Xilinx is used which is simulated and tested using Vivado software. After 
implementing both ways we have calculated the Mean Square Error MSE between them and 
obtained the result of  7.73 × 10ିସ. 
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