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Abstract
In this paper, we establish an Orlicz dual of the log-Aleksandrov–Fenchel inequality, by
introducing two new concepts of dual mixed volume measures, and using the newly es-
tablished Orlicz dual Aleksandrov–Fenchel inequality. The Orlicz dual log-Aleksandrov–
Fenchel inequality in special cases yields the classical dual Aleksandrov–Fenchel inequality
and some dual logarithmic Minkowski type inequalities, respectively. Moreover, the dual
log-Aleksandrov–Fenchel inequality is therefore also derived.
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1. Introduction
In 2016, Stancu [15] established the following logarithmic Minkowski inequality.
The logarithmic Minkowski inequality If K and L are convex bodies in Rn that

containing the origin in their interior, then∫
Sn−1

ln
(

hK

hL

)
dv1 ≥ 1

n
ln
(

V (K)
V (L)

)
. (1.1)

with equality if and only if K and L are homothetic, where dv1 is the mixed volume measure
dv1 = 1

nhKdSL, and dv̄1 = 1
V1(L,K)dv1 is its normalization, and V1(L, K) denotes the usual

mixed volume of L and K, defined by

V1(L, K) = 1
n

∫
Sn−1

hKdSL.

The functions hK and hL are the support functions. If K is a nonempty closed convex set
in Rn, then

hK = max{x · y : y ∈ K},

for x ∈ Rn, defines the support function hK of K.
Recently, the logarithmic Minkowski inequality and its dual form have attracted exten-

sive attention and research. The recent research can be found in the references [1–3, 5–7,
11–13,16,18–20,23,24]. In particularly, as a generalization of (1.1), the log-Aleksandrov–
Fenchel inequality has been established in [21].
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The dual mixed volume of star bodies K1, . . . , Kn, Ṽ (K1, . . . , Kn) defined by Lutwak
(see [8])

Ṽ (K1, . . . , Kn) = 1
n

∫
Sn−1

ρ(K1, u) · · · ρ(Kn, u)dS(u). (1.2)

Here, ρ(K, ·) denotes the radial function of star body K. The radial function of star body
K is defined by

ρ(K, u) = max{c ≥ 0 : cu ∈ K},

for u ∈ Sn−1. If ρ(K, ·) is positive and continuous, K will be called a star body. In the
following, let Sn denote the set of star bodies about the origin in Rn.

It is well known that in dual Brunn–Minkowski theory, dual Minkowski inequality and
dual Aleksandrov–Fenchel inequality appear at the same time. So a natural question is
raised: is there an Orlicz dual logarithmic Aleksandrov–Fenchel inequality relative to an
Orlicz logarithmic dual Minkowski inequality? The main purpose of this article is to answer
the above questions perfectly and obtain an Orlicz dual log-Aleksandrov–Fenchel inequal-
ity by introducing two new concepts of mixed dual volume measure and Orlicz multiple
dual mixed volume measure, and using the Orlicz dual Aleksandrov–Fenchel inequality
for the Orlicz multiple dual mixed volume. The dual logarithmic Aleksandrov–Fenchel
inequality is also derived here. Moreover, the Orlicz dual log-Aleksandrov–Fenchel in-
equality in special cases yields the classical dual Aleksandrov–Fenchel inequality and some
new logarithmic Minkowski type inequalities. Our main result is given in the following
inequality.

Orlicz dual of log-Aleksandrov–Fenchel inequality Let ϕ : (0, ∞) → (0, ∞) be
a convex and decreasing function such that limt→∞ ϕ(t) = 0 and limt→0 ϕ(t) = ∞. If
L1, K1, . . . , Kn ∈ Sn and 1 ≤ r ≤ n, then∫

Sn−1
ln
(

ϕ

(
ρ(K1, u)
ρ(L1, u)

))
dṼϕ(L1, K1, . . . , Kn)

≥ ln
(

ϕ

(∏r
i=1 Ṽ (Ki . . . , Ki, Kr+1, . . . , Kn)

1
r

Ṽ (L1, K2, · · · , Kn)

))
. (1.3)

If φ is strictly convex, inequality holds if and only if L1, K1, . . . , Kr are all dilations of
each other. Here, dṼϕ(L1, K1 · · · , Kn) which we call Orlicz multiple dual mixed volume
probability measure of star bodies L1, K1, . . . , Kn, defined by

dṼϕ(L1, K1 · · · , Kn) = 1
nṼϕ(L1, K1 · · · , Kn)

ϕ

(
ρ(K1, u)
ρ(L1, u)

)
ρ(L1, u)ρ(K2, u) · · · ρ(Kn, u)dS(u),

(1.4)
and Ṽϕ(L1, K1, . . . , Kn) is the Orlicz multiple dual mixed volume of star bodies

L1, K1, . . . , Kn, defined by [22]

Ṽϕ(L1, K1, . . . , Kn) = 1
n

∫
Sn−1

ϕ

(
ρ(K1, u)
ρ(L1, u)

)
ρ(L1, u)ρ(K2, u) · · · ρ(Kn, u)dS(u). (1.5)

On the other hand, when ϕ(t) = 1/t, (1.3) becomes the following dual logarithmic
Aleksandrov–Fenchel inequality established in [20].

The dual logarithmic Aleksandrov–Fenchel inequality If L1, K1, . . . , Kn ∈ Sn

and 1 ≤ r ≤ n, then∫
Sn−1

ln
(

ρ(K1, u)
ρ(L1, u)

)
dṼ−1(L1, K1, . . . , Kn) ≤ ln

(∏r
i=1 Ṽ (Ki . . . , Ki, Kr+1, . . . , Kn)

1
r

Ṽ (L1, K2, · · · , Kn)

)
.

(1.6)
If φ is strictly convex, inequality holds if and only if L1, K1, . . . , Kr are all dilations of
each other, where dṼ−1(L1, K1 · · · , Kn) is as in (1.4).
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When L1 = K1, inequality (1.6) becomes the classical dual Aleksandrov–Fenchel in-
equality as follows: If K1, · · · , Kn ∈ Sn and 1 ≤ r ≤ n, then

Ṽ (K1, · · · , Kn) ≤
r∏

i=1
Ṽ (Ki . . . , Ki, Kr+1, . . . , Kn)

1
r ,

with equality if and only if K1, . . . , Kr are all dilations of each other (see [8]).
Moreover, as a special case of (1.3), the Orlicz dual logarithmic Minkowski inequality

has been established by Zhao [23].

2. Notations and preliminaries
The setting for this paper is n-dimensional Euclidean space Rn. A body in Rn is a

compact set equal to the closure of its interior. For a compact set K ⊂ Rn, we write V (K)
for the (n-dimensional) Lebesgue measure of K and call this the volume of K. The unit
ball in Rn and its surface are denoted by B and Sn−1, respectively. Let Kn denote the
class of nonempty compact convex subsets containing the origin in their interiors in Rn.
Let ϕ : (0, ∞) → (0, ∞) be a convex and decreasing function such that limt→∞ ϕ(t) = 0
and limt→0 ϕ(t) = ∞ and let C denote the class of the convex and decreasing functions
ϕ. Associated with a compact subset K of Rn, which is star-shaped with respect to the
origin and contains the origin, its radial function is ρ(K, ·) : Sn−1 → [0, ∞), defined by

ρ(K, u) = max{λ ≥ 0 : λu ∈ K}.

If ρ(K, ·) is positive and continuous, K will be called a star body. Let Sn denote the set of
star bodies about the origin in Rn. Two star bodies K and L are dilates if ρ(K, u)/ρ(L, u)
is independent of u ∈ Sn−1. Let δ̃ denote the radial Hausdorff metric, as follows, if
K, L ∈ Sn, then (see e.g. [14])

δ̃(K, L) = ∥ρ(K, u) − ρ(L, u)∥∞.

2.1. Lp-dual mixed volume

The dual mixed volume Ṽ−1(K, L) of star bodies K and L is defined by ([10])

Ṽ−1(K, L) = lim
ε→0+

V (K) − V (K+̂ε · L)
ε

, (2.1)

where +̂ is the harmonic addition. The following is a integral representation for the dual
mixed volume Ṽ−1(K, L):

Ṽ−1(K, L) = 1
n

∫
Sn−1

ρ(K, u)n+1ρ(L, u)−1dS(u). (2.2)

The dual Minkowski inequality for the dual mixed volume states that

Ṽ−1(K, L)n ≥ V (K)n+1V (L)−1,

with equality if and only if K and L are dilates. (see [9])
The dual Brunn–Minkowski inequality for the harmonic addition states that

V (K+̂L)−1/n ≥ V (K)−1/n + V (L)−1/n,

with equality if and only if K and L are dilates (This inequality is due to Firey [9]).
The Lp dual mixed volume Ṽ−p(K, L) of K and L is defined by [10]

Ṽ−p(K, L) = − p

n
lim

ε→0+

V (K+̂pε · L) − V (K)
ε

, (2.3)

where K, L ∈ Sn and p ≥ 1.
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The following is an integral representation for the Lp dual mixed volume: For K, L ∈ Sn

and p ≥ 1,
Ṽ−p(K, L) = 1

n

∫
Sn−1

ρ(K, u)n+pρ(L, u)−pdS(u). (2.4)

Lp-dual Minkowski and Brunn–Minkowski inequalities were established by Lutwak [10]:
If K, L ∈ Sn and p ≥ 1, then

Ṽ−p(K, L)n ≥ V (K)n+pV (L)−p,

with equality if and only if K and L are dilates, and
V (K+̂pL)−p/n ≥ V (K)−p/n + V (L)−p/n,

with equality if and only if K and L are dilates.

2.2. Mixed p-harmonic quermassintegral
In 1996, the Lp-harmonic radial addition for star bodies was defined by Lutwak [10]: If

K, L are star bodies, for p ≥ 1, the Lp-harmonic radial addition defined by
ρ(K+̂pL, x)−p = ρ(K, x)−p + ρ(L, x)−p, (2.5)

for x ∈ Rn. For convex bodies, Lp-harmonic addition was first investigated by Firey [4].
The operations of the Lp-radial addition, Lp-harmonic radial addition and the Lp-dual
Minkowski, Brunn-Minkwski inequalities are fundamental notions and inequalities from
the Lp-dual Brunn–Minkowski theory.

From (2.5), it is easy to see that if K, L ∈ Sn, 0 ≤ i < n and p ≥ 1, then

− p

n − i
lim

ε→0+

W̃i(K+̂pε · L) − W̃i(L)
ε

= 1
n

∫
Sn−1

ρ(K.u)n−i+pρ(L.u)−pdS(u). (2.6)

Let K, L ∈ Sn, 0 ≤ i < n and p ≥ 1, the mixed p-harmonic quermassintegral of star K

and L, denoted by W̃−p,i(K, L), defined by (see [17])

W̃−p,i(K, L) = 1
n

∫
Sn−1

ρ(K, u)n−i+pρ(L, u)−pdS(u). (2.7)

Obviously, when K = L, the p-harmonic quermassintegral W̃−p,i(K, L) becomes the dual
quermassintegral W̃i(K). The Minkowski and Brunn–Minkowski inequalities for the mixed
p-harmonic quermassintegral are following (see [17]): If K, L ∈ Sn, 0 ≤ i < n and p ≥ 1,
then

W̃−p,i(K, L)n−i ≥ W̃i(K)n−i+pW̃i(L)−p, (2.8)
with equality if and only if K and L are dilates. If K, L ∈ Sn, 0 ≤ i < n and p ≥ 1, then

W̃i(K+̂pL)−p/(n−i) ≥ W̃i(K)−p/(n−i) + W̃i(L)−p/(n−i), (2.9)
with equality if and only if K and L are dilates.

2.3. Orlicz multiple dual mixed volumes
The Orlicz multiple mixed volume was introduced as follows: For ϕ ∈ C, the Orlicz

multiple dual mixed volume of star bodies K1, · · · , Kn, Ln, denoted by [22]

Ṽϕ(L1, K1, . . . , Kn) = 1
n

∫
Sn−1

ϕ

(
ρ(K1, u)
ρ(L1, u)

)
ρ(L1, u)ρ(K2, u) · · · ρ(Kn, u)dS(u). (2.10)

Putting L1 = K1 in (2.10), the Orlicz multiple dual mixed volume Ṽϕ(L1, K1, · · · , Kn)
becomes the usual dual mixed volume Ṽ (K1, · · · , Kn). Putting K1 = L and L1 = K2 =
· · · = Kn = K in (2.10), Ṽϕ(L1, K1, · · · , Kn) becomes the Orlicz dual mixed volume
Ṽϕ(K, L). Putting K1 = L and L1 = K2 = · · · = Kn−i = K and Kn−i+1 = · · · =
Kn = B in (3.1), Ṽϕ(L1, K1, · · · , Kn) becomes i-th Orlicz dual mixed quermassintegral
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W̃ϕ,i(K, L). When ϕ(t) = t−p and p ≥ 1, W̃ϕ,i(K, L) becomes the harmonic dual mixed
p-quermassintegral, W̃−p,i(K, L).

Orlicz dual Aleksandrov–Fenchel inequality for Orlicz multiple dual mixed
volumes: If L1, K1, · · · , Kn ∈ Sn, ϕ ∈ C and 1 ≤ r ≤ n, then

Ṽϕ(L1, K1, K2, · · · , Kn) ≥ Ṽ (L1, K2, · · · , Kn) · ϕ

(∏r
i=1 Ṽ (Ki . . . , Ki, Kr+1, . . . , Kn)

1
r

Ṽ (L1, K2 . . . , Kn)

)
.

(2.11)
If ϕ is strictly convex, equality holds if and only if L1, K1, . . . , Kr are all dilates of each
other.

When ϕ(t) = t−p, p = 1 and K1 = L1, the dual Orlicz-Aleksandrov–Fenchel inequality
becomes Lutwak’s dual Aleksandrov–Fenchel inequality. If K1, · · · , Kn ∈ Sn and 1 ≤ r ≤
n, then

Ṽ (K1, · · · , Kn) ≤
r∏

i=1
Ṽ (Ki . . . , Ki, Kr+1, . . . , Kn)

1
r , (2.12)

with equality if and only if K1, . . . , Kr are all dilates of each other. In fact inequality
(2.11) yields also the following result. If K, L ∈ Sn, 0 ≤ i < n and ϕ ∈ C, then

W̃ϕ,i(K, L) ≥ W̃i(K)ϕ

( W̃i(L)
W̃i(K)

)1/(n−i) . (2.13)

If ϕ is strictly convex, equality holds if and only if K and L are dilates. Here W̃i(K) is
the usual dual quermassintegral of K, and W̃ϕ,i(K, L) is the Orlicz dual mixed quermass-
integral of K and L, defined by

W̃ϕ,i(K, L) = 1
n

∫
Sn−1

ϕ

(
ρ(L, u)
ρ(K, u)

)
ρ(K, u)n−idS(u). (2.14)

3. Orlicz dual logarithmic Aleksandrov–Fenchel inequality
In the section, in order to derive the Orlicz dual log-Aleksandrov–Fenchel inequality,

we need to define some new dual mixed volume measures.
If L1, K2, . . . , Kn ∈ Sn, the dual mixed volume of star bodies L1, K2, . . . , Kn,

Ṽ (L1, K2, . . . , Kn) defined by

Ṽ (L1, K2, . . . , Kn) = 1
n

∫
Sn−1

ρ(L1, u)ρ(K2, u) · · · ρ(Kn, u)dS(u). (3.1)

From (3.1), we introduce the dual mixed volume measure of star bodies L1, K2, . . . , Kn.

Definition 3.1. (Dual mixed volume measure) For L1, K2, · · · , Kn ∈ Sn, the dual mixed
volume measure of L1, K2, . . . , Kn, denoted by dṽ(L1, K2, . . . , Kn), defined by

dṽ(L1, K2, . . . , Kn) = 1
n

ρ(L1, u)ρ(K2, u) · · · ρ(Kn, u)dS(u). (3.2)

From definition 3.1, we get the following dual mixed volume probability measure.

dṼ (L1, K2, . . . , Kn) = 1
Ṽ (L1, K2, . . . , Kn)

dṽ(L1, K2, . . . , Kn). (3.3)

For ϕ ∈ C, Orlicz multiple dual mixed volume of L1, K1 · · · , Kn, denoted by
Ṽϕ(L1, K1, · · · , Kn), defined by

Ṽϕ(L1, K1, · · · , Kn) = 1
n

∫
Sn−1

ϕ

(
ρ(K1, u)
ρ(L1, u)

)
ρ(L1, u)ρ(K2, u) · · · ρ(Kn, u)dS(u). (3.4)

From (3.4), we introduce Orlicz multiple dual mixed volume measure of star bodies
L1, K1 · · · , Kn as follows.
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Definition 3.2. (Orlicz multiple dual mixed volume measure) For L1, K1, · · · , Kn ∈
Sn and ϕ ∈ C, the Orlicz dual mixed volume measure of L1, K1 . . . , Kn, denoted by
dṽϕ(L1, K1 · · · , Kn, Ln), defined by

dṽϕ(L1, K1 · · · , Kn) = 1
n

ϕ

(
ρ(K1, u)
ρ(L1, u)

)
ρ(L1, u)ρ(K2, u) · · · ρ(Kn, u)dS(u). (3.5)

From definition 3.2, Orlicz multiple dual mixed volume probability measure is defined
by

dṼϕ(L1, K1 · · · , Kn) = 1
Ṽϕ(L1, K1 · · · , Kn)

dṽϕ(L1, K1 · · · , Kn). (3.6)

Theorem 3.3 (Orlicz dual of log-Aleksandrov–Fenchel inequality). If L1, K1, . . . , Kn ∈
Sn, 1 ≤ r ≤ n and ϕ ∈ C, then∫

Sn−1
ln
(

ϕ

(
ρ(K1, u)
ρ(L1, u)

))
dṼϕ(L1, K1, . . . , Kn) ≥ ln

(
Ṽϕ(L1, K1, . . . , Kn)
Ṽ (L1, K2, . . . , Kn)

)

≥ ln
(

ϕ

(∏r
i=1 Ṽ (Ki . . . , Ki, Kr+1, . . . , Kn)

1
r

Ṽ (L1, K2, · · · , Kn)

))
.

(3.7)
The left inequality of (3.7) with equality if and only if L1 and K1 are dilates, and the
right inequality if and only if L1, K1, . . . , Kr are all dilations of each other, if φ is strictly
convex.

Proof. From (3.2) ang (3.5), we have∫
Sn−1

ϕ

(
ρ(K1, u)
ρ(L1, u)

)
ln
(

ρ(K1, u)
ρ(L1, u)

)
dṽ(L1, K2, . . . , Ln)

=
∫

Sn−1
ln
(

ρ(K1, u)
ρ(L1, u)

)
dṽϕ(L1, K1, . . . , Kn). (3.8)

From (3.4) and in view of the Lebesgues dominated convergence theorem, we obtain∫
Sn−1

ϕ

(
ρ(K1, u)
ρ(L1, u)

) q
q+n

dṽ(L1, K2 . . . , Kn) → Ṽϕ(L1, K1, . . . , Kn)

as q → ∞, and∫
Sn−1

ϕ

(
ρ(K1, u)
ρ(L1, u)

) q
q+n

ln
(

ρ(K1, u)
ρ(L1, u)

)
dṽ(L1, K2, . . . , Kn)

→
∫

Sn−1
ln
(

ρ(K1, u)
ρ(L1, u)

)
dṽϕ(L1, K1, . . . , Kn)

as q → ∞.
Consider the function gL1,K1,...,Kn : [1, ∞] → R, defined by

gL1,K1,...,Kn(q) = 1
Ṽϕ(L1, K1, . . . , Kn)

∫
Sn−1

ϕ

(
ρ(K1, u)
ρ(L1, u)

) q
q+n

dṽ(L1, K2, . . . , Kn). (3.9)

By calculating the derivative and limit of this function, we have
dgL1,K1,...,Kn(q)

dq
= n

(q + n)2 · 1
Ṽϕ(L1, K1, . . . , Kn)

×
∫

Sn−1
ϕ

(
ρ(K1, u)
ρ(L1, u)

) q
q+n

ln
(

ϕ

(
ρ(K1, u)
ρ(L1, u)

))
dṽ(L1, K2, . . . , Kn).

(3.10)
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and
lim

q→∞
gL1,K1,...,Kn(q) = 1. (3.11)

From (3.9), (3.10) and (3.11), and by using L’Hôpital’s rule, we have

lim
q→∞

ln (gL1,K1,...,Kn(q))q+n = − n

Ṽϕ(L1, K1, . . . , Kn)

× lim
q→∞

∫
Sn−1

ϕ

(
ρ(K1,u)
ρ(L1,u)

) q
q+n

ln
(

ϕ

(
ρ(K1,u)
ρ(L1,u)

))
dṽ(L1,K2,...,Kn)

gL1,K1,...,Kn (q)

= − n

Ṽϕ(L1, K1, . . . , Kn)

×
∫

Sn−1
ϕ
(

ρ(K1,u)
ρ(L1,u)

)
ln
(
ϕ
(

ρ(K1,u)
ρ(L1,u)

))
dṽ(L1, K2, . . . , Kn).

Hence

exp
(

− n

Ṽϕ(L1, K1, . . . , Kn)

∫
Sn−1

ϕ

(
ρ(K1, u)
ρ(L1, u)

)
ln
(

ϕ

(
ρ(K1, u)
ρ(L1, u)

))
dṽ(L1, K2, . . . , Kn)

)
= lim

q→∞
(gL1,K1,...,Kn)q+n

= lim
q→∞

(
1

Ṽϕ(L1, K1, . . . , Kn)

∫
Sn−1

ϕ

(
ρ(K1, u)
ρ(L1, u)

) q
q+n

dṽ(L1, K2, . . . , Kn)
)q+n

.

(3.12)
On the other hand, from Hölder’s inequality(∫

Sn−1
ϕ

(
ρ(K1, u)
ρ(L1, u)

) q
q+n

dṽ(L1, K2, . . . , Kn)
)(q+n)/q (∫

Sn−1
dṽ(L1, K2, . . . , Kn)

)−n/q

≤
∫

Sn−1
ϕ

(
ρ(K1, u)
ρ(L1, u)

)
dṽ(L1, K2, . . . , Kn)

= Ṽϕ(L1, K1, . . . , Kn). (3.13)
From the equality condition of Hölder’s inequality, it follows that the equality in (3.13)
holds if and only if ρ(K1, u) and ρ(L1, u) are proportional. This yields that equality in
(3.13) holds if and only if K1 and L1 are dilates. Namely(

1
Ṽϕ(L1, K1, . . . , Kn)

∫
Sn−1

ϕ

(
ρ(K1, u)
ρ(L1, u)

) q
q+n

dṽ(L1, K2, . . . , Kn)
)q+n

≤
(

Ṽ (L1, K2, . . . , Kn)
Ṽϕ(L1, K1, . . . , Kn)

)n

,

with equality if and only if K1 and L1 are dilates. Hence

exp
(

− n

Ṽϕ(L1, K1, . . . , Kn)

∫
Sn−1

ϕ

(
ρ(K1, u)
ρ(L1, u)

)
ln
(

ϕ

(
ρ(K1, u)
ρ(L1, u)

))
dṽ(L1, K2, . . . , Kn)

)

≤
(

Ṽ (L1, K2, . . . , Kn)
Ṽϕ(L1, K1, . . . , Kn)

)n

,

with equality if and only if K1 and L1 are dilates. That is
1

Ṽϕ(L1, K1, . . . , Kn)

∫
Sn−1

ϕ

(
ρ(K1, u)
ρ(L1, u)

)
ln
(

ϕ

(
ρ(K1, u)
ρ(L1, u)

))
dṽ(L1, K2, . . . , Kn)

≥ ln
(

Ṽϕ(L1, K1, . . . , Kn)
Ṽ (L1, K2, . . . , Kn)

)
,
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with equality if and only if K1 and L1 are dilates. Therefore∫
Sn−1

ln
(

ϕ

(
ρ(K1, u)
ρ(L1, u)

))
dṼϕ(L1, K1, . . . , Kn) ≥ ln

(
Ṽϕ(L1, K1, . . . , Kn)
Ṽ (L1, K2, . . . , Kn)

)
, (3.14)

with equality if and only if K1 and L1 are dilates. The completes proof of the left inequality
of (3.7).

Further, by using the Orlicz dual Aleksandrov–Fenchel inequality (2.11), we obtain∫
Sn−1

ln
(

ϕ

(
ρ(K1, u)
ρ(L1, u)

))
dṼϕ(L1, K1, . . . , Kn)

≥ ln
(

ϕ

(∏r
i=1 Ṽ (Ki . . . , Ki, Kr+1, . . . , Kn)

1
r

Ṽ (L1, K2, · · · , Kn)

))
.

If φ is strictly convex, the equality holds if and only if L1, K1, . . . , Kr are all dilations of
each other.

This completes the proof. □

Corollary 3.4. If K and L are star bodies in Rn, and 0 ≤ i < n and ϕ ∈ C, then∫
Sn−1

ln
(

ρ(K, u)
ρ(L, u)

)
dW̃ϕ,i(L, K) ≥ ln

(
W̃ϕ,i(L, K)

W̃i(L)

)
≥ 1

n − i
ln

ϕ

(
W̃i(K)
W̃i(L)

)1/(n−i) .

(3.15)
if φ is strictly convex, equality holds if and only if K and L are dilates, and where

dw̃ϕ,i(L, K) = dṽϕ(L, K, L, . . . , L︸ ︷︷ ︸
n−1−i

, B, . . . , B︸ ︷︷ ︸
i

) = 1
n

ϕ

(
ρ(K, u)
ρ(L, u)

)
ρ(L, u)n−idS(u), (3.16)

and
dW̃ϕ,i(L, K) = 1

W̃ϕ,i(L, K)
dw̃ϕ,i(L, K), (3.17)

denotes its normalization.

Proof. This follows immediately from Theorem 3.3. □

Corollary 3.5. If K and L are star bodies in Rn, and 0 ≤ i < n and p ≥ 1, then∫
Sn−1

ln
(

ρ(K, u)
ρ(L, u)

)
dW̃−p,i(L, K) ≥ 1

p
ln
(

W̃−p,i(L, K)
W̃i(L)

)
≥ 1

n − i
ln
(

W̃i(K)
W̃i(L)

)
. (3.18)

each equality holds if and only if K and L are dilates, and where

dw̃−p,i(L, K) = dṽ−p(L, K, L, . . . , L︸ ︷︷ ︸
n−1−i

, B, . . . , B︸ ︷︷ ︸
i

) = 1
n

ρ(K, u)−pρ(L, u)n+pdS(u), (3.19)

and
dW̃−p,i(L, K) = 1

W̃−p,i(L, K)
dw̃−p,i(L, K), (3.20)

denotes its normalization.

Proof. This follows immediately from Corollary 3.4 with ϕ(t) = t−p and p ≥ 1. □
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