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Abstract: In non-life insurance mathematics, analyses and premium or reserve calculations are carried out in the 

presence of dependency between the claim variables in recent years. And, thus over- or underestimation of 

aggregate loss caused by the assumption of dependency between the claim severity and frequency are prevented. 

The Gaussian copula function, which is frequently used for dependency modeling, is integrated into the marginal 

generalized linear models to obtain a mixed copula-based regression model called "copula regression". In this 

study, a copula regression model is created using a bivariate Gaussian copula, Gamma and Poisson marginal 

generalized linear models for claim severity and frequency, respectively. An application is performed with a 

simulated data where there is a dependence between the claim severity and frequency using the R package 

“CopulaRegression”. The importance of the modeling of dependency between claims is investigated by the 

comparison of the independent and dependent models and the results of application show that the copula 

regression model in which dependency is considered has lower relative mean square errors compared the 

independent marginal generalized linear models. 

Keywords: Bivariate Gaussian Copula Function; Gamma GLM, Poisson GLM, Dependence, Mixed Copula 

Approach 

1.  Introduction 

Insurance is a multivariate system created under certain conditions and the complex structures caused 

by the multivariate situations in life and non-life insurance calculations are generally ignored with some 

basic assumptions. One of the main assumptions used in calculations is that the random variables are 

independently and identically distributed. Although the independence is a very basic assumption, it is 

not a very realistic one and it can cause over-or underestimation [1]. The two main components of the 

non-life insurance mathematics are the claim severity which represents the monetary losses of claims 

and the claim frequency expressing the numbers of claims. The calculations such as pricing and reserve 

are carried out under the assumption of independence for many years, but in recent years, the 

dependency between variables is included to obtain more accurate and realistic estimation, pricing and 

reserve calculations. In the presence of the dependence, various dependency structures are encountered. 

Therefore, in studies where the dependency is taken into consideration, first of all, it is necessary to 

decide the dependence structure, and to include the dependency in the calculations by modeling. 

In ratemaking studies, generally claim severity and frequency are modeled by generalized linear models 

(GLMs) separately, thereafter, expected values of claim severity and frequency are multiplied to 

calculate the aggregate loss under independence assumption [2, 3, 4]. To avoid the effects of 

independence assumption, some approaches were proposed to model the dependence. Copula which 

is the most used method for modeling dependence in financial and statistical studies is also introduced 

in actuarial studies. Firstly, copula was used to model dependency in contingent life insurance [5], and 

over time it was used for dependency modeling studies in non-life insurance mathematics [6, 7]. 

The dependence between claims can be modeled only with copula functions, or marginal GLMs can be 

included in the copula. Song [6] defined the mixed copula approach using GLMs and Gaussian copula 

Received: date:11.21.2021 

Accepted: date:15.06.2022 

Published: date:30.06.2022 



2 of 40 

function and proposed Vector GLM (VGLM) in order to model the dependency between mixed 

variables. The mixed copula approach lays the groundwork to model dependency between mixed 

variables such as continuous claim severity and discrete claim frequency. Kastenmeier [8] established a 

joint regression model for claim severity and frequency using the mixed copula approach. Song et al. 

[7] modeled dependency between continuous, discreteand mixed variables by using a joint regression 

analysis. Kolev and Paiva [9] gave some results about regression models based on copulas. Mixed 

copula model was proposed by Czado et al. [1] to model dependency between claim severity and 

frequency using Gaussian copula. The usage of copula-based regression models for mixed variables in 

medical was examined by De Leon and Wu [10]. 

Generally Gaussian bivariate copula function was used in mentioned studies. However, Krämer et al. 

[11] used the other parametric copulas such as Clayton, Gumbel and Frank copulas besides Gaussian 

copula and they referred the models contain GLMs and copula as the copula-based regression models. 

Krämer et al. [11] also modeled the dependency between claim components only using the copula and 

claims without GLMs and the approach is entitled as the copula-based models. Copula-based models 

are useful for modeling the dependence according to only the distribution of claim components without 

any explanatory variables. 

In addition to, copula-based models and copula-based regression models, there are some other 

approaches for dependency modeling. Gschlöβl and Czado [12] introduced a new approach to model 

dependency between claim severity and frequency by taking the claim frequency as an explanatory 

variable in the GLM modeling of total loss and Garrido et al. [13] also used same approach to model 

dependency in non-life insurance. A copula-based multivariate Tweedie regression model was 

proposed to model semi-continuous claims. [14]. A copula quantile regression approach was used to 

estimate the parameters of copula [15]. 

In this study, it is examined how the estimates will change if the dependency between the claim severity 

and frequency is considered instead of the independence assumption, which is frequently used in non-

life insurance mathematics. Therefore, the dependency between the claim severity and frequency is 

modeled via copula regression model using the bivariate Gaussian copula function and the marginal 

gamma and Poisson GLMs. An application is performed with a data simulation where there is a 

dependence between the claim severity and frequency using the information of a real Turkey 

comprehensive insurance data with the R package “CopulaRegression”. The importance of including 

dependency in calculations is investigated by the comparison of the independent marginal generalized 

linear model and copula regression model under the assumptions obtained with the real Turkey data. 

The study can be a guide for researchers who are interested in pricing studies involving dependency in 

Turkey. 

The remainder of the paper is organized as follows. A general information about the bivariate Gaussian 

copula function and GLM, which are the components of the copula regression model is briefly given in 

the Section 2. Mixed copula approach and copula regression model are given in Section 3. In Section 4, 

using the R package “CopulaRegression” [16], joint cumulative distribution function (c.d.f.) and joint 

probability density function (p.d.f.) of claim severity and frequency are drawn and a simulation study 

is carried out. The concluding remarks are given in Section 5. 

2.  Methods 

Copula-based regression models are obtained by the combination of a bivariate copula function and 

two marginal GLMs [1, 6, 8, 11] In this study, a bivariate Gaussian copula function is integrated with 

marginal gamma and Poisson GLMs to create a copula regression model. Definitions and properties of 

the bivariate Gaussian copula function, gamma GLM and Poisson GLM are given briefly as follows for 

a better understanding of copula regression model. 

2.1. The Bivariate Gaussian Copula Function 

Copula which is introduced by Sklar [17] is used to model dependence among variables in many 

disciplines such as economy, finance, econometric, statistics and actuarial science. Copula can be 

defined as a function which link a multivariate distribution function to their marginal distributions 

which have standard uniform distributions [18]. Using Sklar’s Theorem, where θ is the copula 

parameter, a 𝑪(. , . |𝜽) bivariate parametric copula can be defined by Equation (1) as follows, 
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   𝐹𝑋𝑌(𝑥, 𝑦|𝜃) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)|𝜃) (1) 

where 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦) are the marginal distribution functions. Copulas can be defined by Kendall’s                      

𝜏 = 4 ∫ 𝐶(𝑥, 𝑦)
[0,1]2 𝑑𝐶(𝑥, 𝑦) − 1 ∈ [−1,1] instead θ, due to invariability under monotone transformations 

of marginal distributions [11]. 

Gaussian copula function is used in many studies due to the advantages of multivariate normal 

distribution [6, 19]. The relationship between θ and Kendall’s 𝜏 for Gaussian copula is 𝜏 =
2

𝜋
𝑎𝑟𝑐𝑠𝑖𝑛(𝜃). 

Let Φ(. ) and Φ2(. |Γ) denote the univariate and the bivariate standard normal distribution functions 

with Γ correlation matrix, respectively. A bivariate Gaussian copula 𝐶: 𝑰2 → 𝑰 is given as follows, 

 
𝐶(𝑢1, 𝑢2|𝚪) = Φ2(Φ−1(𝑢1), Φ−1(𝑢2)|𝚪) 

   𝐶(𝑢1, 𝑢2|𝜞) =
𝜕

𝜕𝑢1
∫ ∫

1

2𝜋√1−(𝜌12)2
𝑒𝑥𝑝 {−

𝑠2−2𝜌12𝑠𝑡+𝑡2

2(1−(𝜌12)2)
} 𝑑𝑠𝑑𝑡

𝛷−1(𝑢𝑖2)

−∞

𝛷−1(𝑢1)

−∞
 (2)  

where (𝑢1, 𝑢2) ∈ 𝑰2 , 𝑖 = 1, … , n is the number of observations and 𝚪 = [
1 𝜌12

𝜌12 1
] displays the 

correlation matrix. 

2.2. Generalized Linear Model 

GLM is a generalized form of a linear model which models the relationship between a response variable 

and explanatory variables. GLM consists of a density function of the response variable from the 

exponential family, a linear component and a link function [20]. In GLM, response variable 𝑦 follows 

an exponential family distribution such as Poisson, binomial, negative binomial, normal, gamma, 

inverse Gaussian, etc. Linear component is an instrument that represents the relationship between the 

response variable and explanatory variables. The linear component for ith observation 𝜂𝑖 = 𝑿𝒊
′𝜷 =

∑ 𝛽𝑗
𝑝
𝑗=1 𝑥𝑖𝑗  where 𝑿𝒊 = (𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑝)

′
 and 𝜷 = (𝛽1, 𝛽2, … , 𝛽𝑝)

′
for 𝑖 = 1,2, … , 𝑛 , 𝑗 = 1,2, … , 𝑝 . The 

number of explanatory variables is 𝑝 − 1,  the first term of  𝑿𝒊 is model constant and equal to 1 for all 

observations. Monotone and differentiable link function links the expected value of the response 

variable and the linear component. According to distribution of the response variable, link function is 

determined as identity, logarithmic, power, square root and logit. For 𝐸(𝑦𝑖) = 𝜇𝑖, the general form of 

the link function is 𝑔(𝜇𝑖) = 𝜂𝑖 . observation 𝜂𝑖 = 𝑿𝒊
′𝜷 = ∑ 𝛽𝑗

𝑝
𝑗=1 𝑥𝑖𝑗  where 𝑿𝒊 = (𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑝)

′
 and 

𝜷 = (𝛽1, 𝛽2, … , 𝛽𝑝)
′
 for 𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, … , 𝑝. The number of explanatory variables is 𝑝 − 1,  the 

first term of  𝑿𝒊 is model constant and equal to 1 for all observations. Monotone and differentiable link 

function links the expected value of the response variable and the linear component. According to 

distribution of the response variable, link function is determined as identity, logarithmic, power, square 

root and logit. For 𝐸(𝑦𝑖) = 𝜇𝑖, the general form of the link function is 𝑔(𝜇𝑖) = 𝜂𝑖. 

GLMs for gamma and Poisson distributed response variables are called as gamma and Poisson GLMs, 

respectively.  Logarithmic link function is widely used for both GLMs. Let 𝑋~𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜈2)  and  

𝑌~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) , the p.d.f.s of X and Y are given in Equations (3) and (4) according to the mean 

parametrization. Here, 𝜇 and 𝜆 are the mean parameters, while 𝜈2 is the dispersion parameter. 

   𝑓𝑋(𝑥|𝜇, 𝜈2) =
1

𝛤(
1

𝜈2)
(

1

𝜇𝜈2)

1

𝜈2
𝑦

(
1

𝜈2)−1
𝑒𝑥𝑝 (−

𝑥

𝜇𝜈2) ,     𝑥 ≥ 0  (3) 

 

   𝑓𝑌(𝑦|𝜆) =
𝜆𝑦𝑒−𝜆

𝑦!
,     𝑦 = 0,1,2,3, …  (4) 

Gamma and Poisson GLMS with logarithmic link function are given by Equations (5) and (6), 

respectively as follows. Here, 𝒛𝟏
′ 𝜖𝑅𝑝  and 𝒛𝟐

′ 𝜖𝑅𝑞  are the explanatory variable vectors of the claim 

severity X with p parameters and the claim frequency Y with q parameters. 𝜶 and 𝜷 are the parameter 

vectors of the random variables X and Y. 𝑙𝑛(𝑒) is the offset term, where 𝑒 is the exposure to risk. 

   𝑔(𝑥 ) = 𝑙𝑛(𝜇) = 𝒛𝟏
′ 𝜶 (5) 
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   𝑔(𝑦 ) = 𝑙𝑛(𝜆) = 𝑙𝑛(𝑒)+𝒛𝟐
′ 𝜷 (6) 

3. Copula Regression Model 

A mixed copula-based regression model called “copula regression” can be obtained by a bivariate 

copula function and two marginal GLMs. For the purpose of modeling dependency between claim 

components, claim severity and frequency are modeled via gamma and Poisson GLMs, respectively. 

Then the marginal GLMs and a bivariate copula function are combined to define “copula regression 

model”. Generally, Gaussian copula function is used in this combination due to the advantages of the 

Gaussian distribution [1, 6, 8]. However, Krämer et al. [11] used Clayton, Gumbel and Frank copulas 

besides Gaussian copula. The integration of bivariate Gaussian copula and the marginal GLMs is briefly 

summarized by Figure 1. 

 

Figure 1. Copula regression model 

Copula regression model is comprised of marginal GLMs and a bivariate Gaussian copula function as 

summarized by Figure 1 using the mixed copula approach proposed by Song [6]. The mixed copula 

approach is used to model the dependency between mixed variables such as continuous claim severity 

and discrete claim frequency. For a bivariate Gaussian copula function with the correlation matrix 𝚪, 

copula regression model can be shown as follows by Equation (7). 

   𝐶(𝐺𝑎𝑚𝑚𝑎 𝐺𝐿𝑀, 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝐺𝐿𝑀│𝜞) (7) 

The mixed copula approach, allows the usage of copula functions which, are used with only the 

continuous random variables, also together with discrete random variables. According to the Sklar’s 

Theorem [16], the joint c.d.f. of mixed variables X and Y is written by Equation (8). The joint p.d.f. of 

mixed variables X and Y is obtained by mixed copula approach [6] by Equation (9). 

   𝐹𝑋𝑌(𝑥, 𝑦) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 ) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)|𝜞) (8) 

   𝑓𝑋𝑌(𝑥, 𝑦) =
𝜕

𝜕𝑥
𝑃(𝑋 ≤ 𝑥, 𝑌 = 𝑦 ) (9) 

For a Gaussian bivariate function, using Radon-Nikodym derivative and the information of 
𝜕

𝜕𝑥
𝐶(𝑢1, 𝑢2) =  𝐶1′(𝑢1, 𝑢2|𝚪) =  Φ (

Φ−1(𝑢2)−𝜌12Φ−1(𝑢1)

√(1−(𝜌12)2)
) ∶= 𝐷𝜌12

(𝑢1, 𝑢2), the p.d.f. of mixed variables X and 

Y can be expanded by Equation (10) as follows where 𝐹𝑋(𝑥) = 𝑢1  and 𝐹𝑌(𝑦) = 𝑢2 [1, 6, 8]. 

   𝑓𝑋𝑌(𝑥, 𝑦) =
𝜕

𝜕𝑥
𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 ) −

𝜕

𝜕𝑥
𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 − 1 )  

   =
𝜕

𝜕𝑥
𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)|𝚪) −

𝜕

𝜕𝑥
𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦 − 1)|𝚪)  

 

 

   𝑓𝑋𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥)[𝐷𝜌12
(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) − 𝐷𝜌12

(𝐹𝑋(𝑥), 𝐹𝑌(𝑦 − 1))] (10) 

The parameter vector of a copula regression is 𝜸 = (𝜶, 𝜷, 𝜏) where 𝜶 and 𝜷 are the parameter vectors 

of gamma and Poisson GLMs and 𝜏 is the Gaussian copula parameter. The parameter estimation is 

carried out by maximum-likelihood techniques.  

Krämer et al. [11] were defined the relative MSE as 𝑀𝑆𝐸𝑟𝑒𝑙 ≔ 𝐸 (
1

𝑘
∑ (

𝜸𝒊−𝛾�̂�

𝜸𝒊
)

2
𝑘
𝑖=1 ) for the parameter 

vector 𝜸 ∈ 𝑅𝑘, where 𝛾�̂� is the estimate of the parameter. To evaluate the performance of dependent 

model (copula regression) and independent model (marginal GLMs), the relative MSEs of the estimators 

Marginal 
GLM for 

Claim 
Severity

Bivariate

Gaussian

Copula 

Marginal 
GLM for 

Claim 
Frequency

Copula 
Regression

Model
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of parameters of GLMs 𝜶 ∈ 𝑹𝑝 and 𝜷 ∈ 𝑹𝑞, and also the relative MSE of the estimator of the parameter 

of Gaussian copula 𝜏 is calculated. 

4.  Application 

Analyses are performed in R using the R package “CopulaRegression” [16] which presents a bivariate, 

copula-based model for the joint distribution of a pair continuous and discrete random variables. The 

R packages “MASS” [21] and “VineCopula” [22] are also used, since they work based on 

“CopulaRegression” package. The pair of continuous and discrete random variables is composed as a 

couple of claim severity and frequency. The claim severity and frequency are modeled by marginal 

gamma and Poisson GLMs, respectively. The marginal GLMS are linked by the bivariate Gaussian 

copula function to model dependence between claim severity and frequency.  

An insurance system is designed using the comprehensive insurance data in Erdemir and Sucu [23] to 

compare the copula regression and the independent models. The data taken from a Turkish non-life 

insurance company for year 2017 contains the information about the claim severity, claim frequency 

and some risk factors related the policyholders and the vehicles; such as age of policyholder (21,…,80), 

gender (male, female), type of vehicle (automobile, pickup, rent a car, taxi), age of vehicle (0,…,17), 

usage (private, leasing, commercial), residence (metropolis, little town), engine capacity of vehicle 

(small, medium, large), type of fuel (benzine, diesel) and status of the policy (new, renewal) of 2820 

observations. The descriptive statistics of the comprehensive insurance data is given by Table 1. 

Table 1. Descriptive statistics of comprehensive insurance data 

Variables Minimum Maximum Mean Median Variance 

Claim Severity (X)  51.24 35477.00 1759.4936 2933.58735 8605934.753 

Claim Frequency (Y)  1 4 1.7034 0.4678 0.2190 

 

By the reason of, the package “CopulaRegression” is designed to generate its own dependent data, the 

information of the data is only used to make some assumptions of simulation study. The dispersion 

parameter of the gamma distribution is assumed constant as 𝜈2=0.5 for an easy calculation and the 

method of moments is used to determine the parameters of the gamma and Poisson distributions. The 

mean parameters of gamma and Poisson distributions are found as 𝜇=1760 and 𝜆=1.18, respectively 

[23].  

First, the graphs of joint c.d.f. and p.d.f. of claim severity and frequency are plotted considering the 

dependency between the claim variables using the mixed copula approach and also drawn under the 

independence assumption to compare the dependent and independent models. “CopulaRegression” 

package use the Kendall’s 𝜏 correlation coefficient instead of 𝜌 Spearman correlation coefficient in 

some analysis. These two coefficients can be easily converted into each other through the copula 

parameter. The copula parameter is the correlation coefficient for the Gaussian copula function, hence 

Kendall’s 𝜏 can be directly associated dependency with 𝜏 =
2

𝜋
𝑎𝑟𝑐𝑠𝑖𝑛(𝜌). Kendall’s 𝜏 is taken 0 for 

independent model, since 
2

𝜋
𝑎𝑟𝑐𝑠𝑖𝑛(0) = 0. For the copula regression, the values of 𝜏 are chosen as 0.3 

and 0.9 for the low and high degrees, respectively. The graphs of the joint c.d.f. and p.d.f. are given in 

Figures 2 and 3. The effect of considering the dependency between claim components and also the effect 

of 𝜏 on dependence modeling are investigated.  

  

Figure 2. Joint c.d.f. of claim severity and frequency 
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Since the graphs given in Figure 2 are the graphs of cumulative distribution, it is an expected result to 

obtain increasing curves for both 𝜏 values. The probability values for the dependent model which are 

displayed by red lines are smaller for both 𝜏  values. The effect of dependence cannot be directly 

analyzed since the probabilities are expressed cumulatively, however, a little fluctuation is observed for 

highly dependent model when 𝜏=0.9. 

 
Figure 3. Joint p.d.f. of claim severity and frequency 

 

Right skewness is observed in Figure 3, since gamma distribution assumption is used for claim severity. 

The effect of considering the dependency between claim components on aggregate loss is observed 

clearly and it is noticed that the p.d.f. is very sensitive to dependency for higher value of 𝜏. A hillier 

distribution is obtained with the dependent model. For 𝜏=0.3, that is, when the dependency level is low, 

both the graphs of c.d.f. and p.d.f. are similar in the two models according to the Figures 2 and 3. 

However, when the dependency level is high, the graphs differ for the dependent and independent 

models. 

 

Figure 4. Joint c.d.f. of claim severity and frequency using different Kendall’s 𝜏 

 

Five different values of the Kendall’s τ (0.1, 0.3, 0.5, 0.7, 0.9) are taken for Gaussian copula function and 

to analyze the effects of Kendall’s τ on joint c.d.f. and p.d.f., the graphs are redrawn by different τ values, 

the graphs are given by Figure 4 and Figure 5 as follows. The effect of τ cannot be directly observed in 

Figure 4 as in Figure 2, due to the cumulative structure. However, according to Figure 5, as the τ value 

increases, the fluctuations in the probability value of the aggregate loss increase. The total loss is more 

sensitive to higher τ values. It can be deduced that it is important to include dependency in the 

calculations. 
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Figure 5. Joint p.d.f. of claim severity and frequency using different Kendall’s 𝜏 

 

Joint c.d.f. and p.d.f. are drawn independently of the possible explanatory variables. Explanatory 

variables can be included by the copula regression model using marginal GLMs. In the R package 

“CopulaRegression”, copreg () function fits a joint, bivariate regression model for a gamma GLM and a 

(zero-truncated) Poisson GLM. On the purpose of fitting model, the package simulates the joint 

regression data under some assumption about the distributions and copula function. Then using the 

simulated data, the copula regression model is created. An insurance system is designed using the 

comprehensive insurance data in Erdemir and Sucu [23] and a little simulation study with R=50 trials is 

performed using the R package. The system with n=1000 policy groups with only the automobile type 

of vehicle is considered and the groups contain insured with gamma-distributed claim severity with the 

parameters (𝜇=1760, 𝜈2=0.5) and Poisson distributed claim frequency with the parameter (𝜆=1.18). It is 

assumed that all policy groups contain the same number of policyholders. The claim severity and 

frequency are modeled by gamma and Poisson GLMs, respectively. Gender, residence and engine 

power of vehicle are determined as the explanatory variables for GLM modeling and all explanatory 

variables are assumed as categorical variables. Gender (male-female) and residence (metropolis, little 

town) are two-category variables, hence they are modeled by only one dummy variables. On the other 

hand, since the engine capacity of vehicle (low, medium, high) is three-category variable, it is modeled 

with two dummy variables. Same explanatory variables are used for gamma and Poisson GLMs. 

Marginal GLMs are designed with an intercept term, hence the first column of the design matrices 

contains 1’s as 𝑍1 ≔ 𝑍2 ≔ (1, 𝑧12, … , 𝑧1𝑛) ≔ (1, 𝑧22, … , 𝑧2𝑛)𝜖𝑅1000𝑥5. The second and third columns are 

dummy variables corresponding to female and metropolis, respectively. The last two columns are the 

two dummy variables corresponding to low and high the engine capacity of vehicle. All dummy 

variables are generated randomly such as 0 or 1.  

For the copula regression model, three different values are determined for 𝜏  as 0.1, 0.5 and 0.9 to 

represent the low, moderate and high levels of dependency, while 𝜏 is taken as 0 for independent 

model. Under these assumptions, the gamma distributed claim severity and the Poisson distributed 

claim frequency dependent on each other are generated by the R package. The dependent data changes 

according to the value of 𝜏 in R, hence the values of relative MSE change for independent model for 

different 𝜏 values.  

The simulation study is performed for the comparison of the relative MSEs found with copula regression 

and independent model. A Monte Carlo simulation is carried out by R=50 trials and                          

𝑀𝑆�̂�𝑟𝑒𝑙
(𝑟)

≔ 𝐸 (
1

𝑘
∑ (

𝜸𝒊−𝛾�̂�
(𝒓)

𝜸𝒊
)

2
𝑘
𝑖=1 ) is calculated in the rth step. The mean of all simulations is obtained with 

𝑀𝑆𝐸̅̅ ̅̅ ̅̅
𝑟𝑒𝑙 ≔

∑ 𝑀𝑆�̂�𝑟𝑒𝑙
(𝑟)𝑅

𝑟=1

𝑅
 and the mean relative MSEs of �̂�, �̂� and 𝜏 are calculated and given in Table 1 as 

follows. The variance can be calculated with the formula 
∑ (𝑀𝑆𝐸𝑟𝑒𝑙(𝑖)−𝑀𝑆𝐸̅̅ ̅̅ ̅̅ 𝑟𝑒𝑙)

2𝑅
𝑖=1

𝑅(𝑅−1)
. 
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Table 1. Relative MSEs of �̂�, �̂� and 𝜏 with copula regression and independent models (𝜏=0, 0.1, 0.5, 0.9) 

 Copula Regression Model Independent Model 

𝑀𝑆𝐸̅̅ ̅̅ ̅̅
𝑟𝑒𝑙(�̂�) (𝜏=0.1) 0.005721400 0.00600650 

𝑀𝑆𝐸̅̅ ̅̅ ̅̅
𝑟𝑒𝑙(�̂�) (𝜏=0.5) 0.004993235 0.00583436 

𝑀𝑆𝐸̅̅ ̅̅ ̅̅
𝑟𝑒𝑙(�̂�) (𝜏=0.9) 0.000778456 0.00515738 

𝑀𝑆𝐸̅̅ ̅̅ ̅̅
𝑟𝑒𝑙(�̂� ) (𝜏=0.1) 0.018385800 0.02009030 

𝑀𝑆𝐸̅̅ ̅̅ ̅̅
𝑟𝑒𝑙 (�̂� ̂) (𝜏=0.5) 0.001899537 0.00184171 

𝑀𝑆𝐸̅̅ ̅̅ ̅̅
𝑟𝑒𝑙 (�̂� ̂) (𝜏=0.9) 0.004126288 0.04266449 

𝑀𝑆𝐸̅̅ ̅̅ ̅̅
𝑟𝑒𝑙(�̂�) (𝜏=0.1) 0.505447100 0.54062490 

𝑀𝑆𝐸̅̅ ̅̅ ̅̅
𝑟𝑒𝑙(�̂�) (𝜏=0.5) 2.14184E-05 5.7223E-05 

𝑀𝑆𝐸̅̅ ̅̅ ̅̅
𝑟𝑒𝑙(�̂�) (𝜏=0.9) 1.40001E-06 0.00012083 

 

Smaller values of relative MSE of parameter estimators are displayed bold in Table 1. It is noticed that, 

in the presence of dependence between of the claim severity and frequency, smaller errors are calculated 

using the copula regression model.  

 

AIC values of copula regression and independent models are also calculated to compare the models 

using 𝐴𝐼𝐶 = −2𝑙(�̂�) + 2𝑑𝑓  where 𝑙(𝜸) = ∑ 𝑙𝑛𝑓𝑋𝑌
𝑛
𝑖=1 (𝑥, 𝑦) and the results of the comparison of AICs 

are given in Table 2. 

 Table 2. AIC values of copula regression and independent models 

 Copula Regression Model Independent Model 

AIC (𝜏=0.1) 9946.862 10021.906 

AIC (𝜏=0.5) 9251.730 9942.6440 

AIC (𝜏=0.9) 6467.568 10029.176 

 

For all 𝜏 values, in that for low, moderate and high degree of dependence, smaller AIC values are 

calculated for the copula regression models compared to the independent models.  

5.  Concluding Remarks 

In non-life insurance mathematics, the dependence between claim severity and frequency has been 

modeled and included in the calculations in recent years. Copula-based models are converted into 

copula-based regression models with GLMs. The effects of the possible explanatory variables are also 

included in dependency modeling via copula-based models called “copula regression models”. Copula 

regression models can be obtained with a mixed copula approach for continuous and discrete variables. 

Due to the mixed copula approach, the copula function, which can only be used with continuous 

variables, can be used with both discrete and continuous variables. It provides a flexible calculation in 

the branch that includes both discrete and continuous variables such as non-life insurance mathematics.  

In this study, the dependency between the claim severity and frequency is modeled via copula 

regression model using the bivariate Gaussian copula function and the marginal gamma and Poisson 

GLMs. The effects of considering the dependency between claim variables are investigated by the 

comparison of the independent model and the copula regression model. The joint c.d.f. and p.d.f of 

claim severity and frequency are plotted for both models considering different dependency degrees. 

The importance of modeling dependency claim components is observed clearly with especially the 

graph of p.d.f. of aggregate loss. In addition, an insurance system is designed under some assumptions 

using the information of a real Turkish comprehensive insurance data. The relative MSEs are calculated 

for copula regression and independent models using different 𝜏  values. It is noticed that, copula 

regression models have smaller relative errors. Furthermore, AIC values are calculated for both models 

and the values support the result found with relative MSE values. In the light of these results, 

researchers studying on pricing or reserve in the non-life insurance mathematics can make more 

accurate calculations, including the dependence between the claim frequency and severity. With more 

accurate pricing policies, companies prevent problems with the ability to meet solvency margin. Since 
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the assumptions of application are based on real Turkish comprehensive data, this study can be a good 

guide for pricing studies for Turkey where the dependency between claim components is considered. 
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