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Abstract 

A new design optimization technique is presented to improve the analytical performance of the drilling process of graphene oxide nano-

composites. A detailed study was conducted for modeling-design-optimization of the drilling process using multiple nonlinear neuro-

regression analyses for this goal. The data were slected from a literature study for this objective. The accuracy of the predictions of the 

nine potential functional structures presented for modeling the data was tested using a hybrid neuro-regression-based technique. Model 

selections to determine the objective functions were made by controlling the R2 values, limit values, and statistical results, respectively. 

The selected models were used in the optimization studies of delamination and thrust force values with four different optimization 

algorithms. The results show that the R2
training and R2

 training-adjust values give good results in the nine models as objective functions. 

However, R2
testing values and statistical calculations were distinctive among all models. Furthermore, when the optimization results of 

the third-order polynomial and logarithmic models for both responses were compared to the reference study's results, it was observed 

that the current results were more closer to the test results. 

Keywords: Nano-composites, Drilling prosess, Neuro-regression modeling, Optimization. 

Nanokompozitlerin Delme Prosesinde Delaminasyon ve İtme 

Kuvvetinin Optimizasyonu 

Öz 

Grafenoksit nano-kompozitlerin delme işleminin analitik performansını geliştirmek için yeni bir tasarım optimizasyon tekniği 

sunulmuştur. Bu amaçla çoklu doğrusal olmayan nöro-regresyon analizleri kullanılarak delme sürecinin modelleme-tasarım-

optimizasyonu için detaylı bir çalışma yapılmıştır. Veriler bu amaç için bir literatür çalışmasından seçilmiştir. Verileri modellemek için 

sunulan dokuz potansiyel fonksiyonel yapının tahminlerinin doğruluğu, hibrit nöro-regresyon tabanlı bir teknik kullanılarak test 

edilmiştir. Amaç fonksiyonlarını belirlemek için yapılan model seçimleri sırasıyla R2 değerleri, sınır değerleri ve istatistiksel sonuçlar 

kontrol edilerek yapılmıştır. Seçilen modeller dört farklı optimizasyon algoritması ile delaminasyon ve itme kuvveti değerlerinin 

optimizasyon çalışmalarında kullanılmıştır. Sonuçlar, R2
eğitim ve R2 

eğitim-ayarlanmış değerlerinin amaç fonksiyonu olarak dokuz modelde iyi 

sonuçlar verdiğini göstermiştir. Ancak, R2
test değerleri ve istatistiksel hesaplamalar tüm modeller arasında ayırt edici olmuştur. Ayrıca 

her iki çıktı için üçüncü dereceden polinom ve logaritmik modellerin optimizasyon sonuçları referans çalışmanın sonuçlarıyla 

karşılaştırıldığında, mevcut sonuçların test sonuçlarına daha yakın olduğu görülmüştür. 

Anahtar Kelimeler: Nano kompozitler, Delme prosesi, Nöro-regresyon modellemesi, Optimizasyon. 
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1. Introduction 

In the twenty-first century, polymer composites have become 

the main structural materials in many industrial areas due to their 

lightness, high strength, good corrosion resistance, and strength 

that can be improved. Among the most significant advantages of 

these materials are their developable strength properties (Adeniyi, 

Ighalo, & Onifade, 2019; Equbal et al., 2020; Sharma, Bhandari, 

Aherwar, & Rimašauskienė, 2020; Suriani et al., 2021; Wang et 

al., 2021). In addition to the advantages, there are drawbacks 

associated with the manufacture and processing of these 

materials. This situation has prompted researchers to conduct in-

depth research on processing behaviours. Analytical and 

numerical models are presented to reveal more precise results 

(Anand, Alagumurthi, Elansezhian, Palanikumar, & 

Venkateshwaran, 2018; Ferreira et al., 2018; Papageorgiou, 

Kinloch, & Young, 2017; Saoudi, Zitoune, Mezlini, Gururaja, & 

Seitier, 2016). 

The use of nano-scale fillers in composites enables 

significant changes in polymer composites. At least one typical 

length scale on the order of nanometers exists in nano-scale fillers. 

These materials can be examined under three basic classes as 

zero-dimensional spherical, 1-dimensional fibrous, and 2-

dimensional layered (Idumah & Obele, 2021; Pramanik et al., 

2021). In this classification, graphene is classified as 2-

dimensional, while carbon fibers and nanotubes are classified as 

1-dimensional. In recent years, graphene has high elasticity 

(∼1TPa), large specific surface area (2600 m2/g), high electron 

mobility at room temperature (260,000 cm2/Vs), high thermal 

conductivity (5100 W/mK), good electrical conductivity, it has 

found a place in many applications due to its attractive features 

(Hareesha, Yogesha, Naik, & Saravanabavan, 2021; 

Papageorgiou et al., 2017). Also, graphene oxide-based 

composites are promising possibilities for a variety of industrial 

applications, including aircraft components and electronics like 

supercapacitors, transistors, electrophoresis, and gas sensors, 

among others (Kim et al., 2021; Roshan, Sheikhi, Haghighi, & 

Padidar, 2019).The development of graphene-based composite 

materials with desirable characteristics is also a hot topic of study 

(Hou, Gao, Wang, Blackwood, & Teo, 2020; Lawal, 2020; W. Yu, 

Sisi, Haiyan, & Jie, 2020). Due to the increasing interest in the 

study of its mechanical properties, it is very popular both in 

different fields of industry and in academic studies, alongside 

growing commercialization studies have progressed quite rapidly 

(Papageorgiou, Li, Liu, Kinloch, & Young, 2020; Sanes, Sánchez, 

Pamies, Avilés, & Bermúdez, 2020; Soleymani Eil Bakhtiari et 

al., 2020). 

Although it is seen that better properties are not obtained 

thanks to the use of graphene oxide in the composite structure 

compared to graphene, it is preferred because it can be obtained 

more easily and in high volumes during the preparation process 

of nano-composites, and it is easy to disperse in water and other 

solvents (Hou et al., 2020). Appropriate processing methods 

should also be chosen for the creation of final products with 

distinguishing characteristics such as low weight, high strength, 

and excellent hardness. In the manufacturing industry, it is used 

as secondary processes in grinding, honing, and lapping processes 

to achieve the desired quality, especially in drilling and turning-

milling processes to obtain the final product. Although the drilling 

process appears to be one of the basic routine operations, it is 

critical in terms of assembling the parts within the desired 

tolerances and achieving the desired high quality (Srinivasan, 

Thirumurugaveerakumar, Nagarajan, Raffic, & Babu, 2021; 

Thakur & Singh, 2021). 

Among the machining operations performed after the 

production of composite materials, the drilling required for 

bolting, riveting, and screwing operations is performed using 

conventional machining techniques used for metallic materials 

(Saoudi et al., 2016). Drilling operations performed with 

computer-controlled or conventional drilling machines cause 

damages such as matrix cracks, fiber breaks, delamination, heat-

induced distortions, and abrasion (Caggiano, 2018; R. Yu & 

Pandolfi, 2008). 

In drill and end mill applications, where drilling operations 

are frequently performed, the selection of inserts also gains 

importance. Delamination is the most destructive damage 

situation, as it directly affects the final product's properties such 

as durability, load-carrying capacity, and hardness (Khan & Kim, 

2011). For the proper performance of drilling operations, it is 

critical to reveal the limits of machinability and to perform 

parametric optimization. There are few studies on the 

machinability of nanocomposites and the optimization of 

processing performance in the literature. According to the current 

research, it is revealed that feed rate, delamination (Fd) and thrust 

force (Th) are the most important outputs to reach the optimum 

values of the drilling process. It is critical to determine the 

appropriate parameters so that the final product is free of damage, 

errors, and falls within the desired tolerances. The Fd factor (Fd) 

is often used to calculated using Eq. 1. The maximum diameter of 

the damaged area (Dmax) is used in the equation to represent the 

nominal hole diameter (D) (Kumar, Verma, & Debnath, 2020). 

Fd=Dmax/D  (1) 

The optimization approach for delamination research of 

nanocomposites begins with mathematical modeling. As a result, 

researchers use regression analysis (RA), response surface 

methodology (RSM), artificial neural networks (ANN), ANN and 

combined compromise solution, a hybrid module of the combined 

compromise solution, and the principle component analysis 

method to try to distinguish mathematical models (Alavitabari, 

Mohamadi, Javadi, & Garmabi, 2021; Kumar & Verma, 2021a, 

2021b, 2021c). The obtained mathematical model also 

corresponds to the predicted objective function of the 

optimization problem for nanocomposites delamination study.  

When all of these studies are examined in terms of modeling-

design-optimization, it is discovered that the developed models 

have no limitation control. 

The optimization process begins after obtaining sufficient 

mathematical models. Particle Swarm (PS), Simulated Annealing 

(SA) and Genetic Algorithm (GA) are generally used to optimize 

the parameters of analytical systems. Moghri et al. (2014) used 

GA to optimize the process parameters to minimize surface 

roughness in the drilling process of nanocomposite (Moghri, 

Madic, Omidi, & Farahnakian, 2014). After the optimization 

studies, the minimum surface roughness values were obtained at 

the low feed rate and medium spindle speed level. Kumar et al. 

(2020) performed regression analysis to reduce Fd and Th during 

drilling of graphene oxide/carbon fiber reinforced polymer 

nanocomposites and examined the parameter effects of weight % 

of graphene-oxide (GO), spindle speeds (S), and feed rate (F). 

They suggested a parametric set as S = 2400 rpm, F = 80 mm/min 

and wt.%GO = 1% with their optimization study with SA 

algorithm. At these parameters, they found that delamination was 

improved as 0.903% and Th  was 4.517% (Kumar et al., 2020). 
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Kharwar and Verma (2021) studied the optimization of surface 

roughness, cutting force, and material removal rate values with 

the Gray wolf algorithm in the drilling process of nanocarbon 

polymer composites. They obtained 2.5, 6.5 and 5.9% 

improvement in surface roughness, cutting force, and material 

removal rate values with optimum parameters, respectively 

(Kharwar & Verma, 2021). Kesarwani et.al (2021), milling 

experiments of carbon nano tube (CNT)/Epoxy nanocomposites 

used a hybrid methodology of Gray theory and the Ant Lion 

Optimizer algorithm. They found that the feed rate and %CNT 

were the most effective factors on their milling performance 

(Kesarwani, Pratap, Kumar, Verma, & Singh, 2021). 

When these literature studies for optimization purposes are 

analyzed, it is clear that some methodologies are insufficient: 

• In the optimization process, some standard procedures 

(e.g., sequential quadratic, Lagrange, derivative-based methods) 

were applied. They are, however, insufficiently resilient for exact 

outcomes, particularly in the optimization of engineering systems 

with several local extremes. 

• As an objective function for optimization procedures, all 

studies on drilling process modeling and optimization use only 

one or two different regression models. The fundamental 

difficulty is the additional calculation of the model's R2 value for 

experimental research. A high R2 value, on the other hand, does 

not describe all of the physical phenomena that occur during the 

engineering process. The R2 number represents how close the 

fitted model's results are to the experimental data. To put it another 

way, a high or low R2 number for real-world systems does not 

always imply a good fit. Aside from this, the model describes the 

experimental data, not the fundamental behavior of the events. As 

a result, additional drilling process modeling experiments with 

various regression types must be attempted. 

• Furthermore, the model function should be bounded, 

which is a crucial aspect. Boundedness is essential in the realistic 

modeling of engineering systems since all engineering parameters 

are finite. As a result, before beginning the optimization process, 

ensure that the selected models are also bounded for engineering 

parameter intervals. 

• The algorithms reliability, sensitivity, and robustness are 

not taken into account in the published studies on drilling process 

optimization. However, revealing the basic behaviors of 

stochastic search systems is crucial. 

For these reasons, we have developed a modeling-design-

optimization technique for optimizing drilling input parameters of 

nanocomposites. This method was developed based on a literature 

review (Kumar et al., 2020), which found that the Box-Behnken 

design and regression analysis were used to achieve the mimimum 

values of Fd and Th. Modeling and optimization work was carried 

out in 3 steps. (i) A thorough investigation of several nonlinear 

neuro-regression analyses for the immobility percentage problem 

(output), including linear, quadratic, trigonometric, and 

logarithmic forms, was conducted. (ii) The proposed models' 

boundedness was examined to ensure that they could generate 

realistic values. (iii) stochastic optimization techniques (DE, NM, 

RS, and SA) were applied methodically to the various direct 

search methods. 

 

 

2. Material and Method 

2.1. Modeling and Statistical analysis 

In the modeling phase, a hybrid method combining the 

benefits of regression analysis and artificial neural networks was 

used to test the accuracy of the predictions. In this method, all of 

the data is divided into two sets, each containing 80% and 20% of 

the total data, with the first portion used for training and the 

second for testing. The goal of the training process is to minimize 

the difference between the experimental and predicted values by 

adjusting the regression models and their coefficients, which are 

listed in Table 1. 

Table 1. Multiple regression model forms. 

Model Name 
Nomen

clature 
Formula 

Multiple linear L 𝑌 = ∑ (𝑎𝑖𝑥𝑖)3
𝑖=1 + 𝑐  

Second order 

multiple non-linear 
SON 

𝑌 =  ∑ ∑ (𝑎𝑗𝑥𝑗𝑥𝑘) +3
𝑗=1

3
𝑘=1

∑ (𝑎𝑖𝑥𝑖) + 3
𝑖=1  𝑐  

Third order 

multiple non-linear 
TON 

𝑌 =
 ∑ ∑ ∑ (𝛽𝑙𝑥𝑙𝑥𝑚𝑥𝑝)3

𝑝=1 +3
𝑚=1

3
𝑙=1

∑ ∑ (𝑎𝑗𝑥𝑗𝑥𝑘)3
𝑗=1 +3

𝑘=1

∑ (𝑎𝑖𝑥𝑖)
3
𝑖=1 + 𝑐   

First order 

trigonometric 

multiple non-linear 

FOTN 
𝑌 = ∑ (𝑎𝑖𝑆𝑖𝑛[𝑥𝑖] +

3

𝑖=1

𝑎𝑖𝐶𝑜𝑠[𝑥𝑖]) + 𝑐  

Second order 

trigonometric 

multiple non-linear 

SOTN 

𝑌 = ∑ (𝑎𝑖𝑆𝑖𝑛[𝑥𝑖] +
3

𝑖=1

𝑎𝑖𝐶𝑜𝑠[𝑥𝑖]) +

∑ (𝛽𝑗𝑆𝑖𝑛2[𝑥𝑗] +
3

𝑗=1

𝛽𝑗𝐶𝑜𝑠2[𝑥𝑗]) + 𝑐  

Third order 

trigonometric 

multiple non-linear 

TOTN 

𝑌 = ∑ (𝑎𝑖𝑆𝑖𝑛[𝑥𝑖] +
3

𝑖=1

𝑎𝑖𝐶𝑜𝑠[𝑥𝑖]) +

∑ (𝛽𝑗𝑆𝑖𝑛2[𝑥𝑗] +
3

𝑗=1

𝛽𝑗𝐶𝑜𝑠2[𝑥𝑗]) +

∑ (𝛾𝑘𝑆𝑖𝑛3[𝑥𝑘] +
3

𝑘=1

𝛾𝑘𝐶𝑜𝑠3[𝑥𝑘]) + 𝑐  

First order 

logarithmic 

multiple non-linear 

FOLN 𝑌 = ∑ (𝑎𝑖𝐿𝑜𝑔[𝑥𝑖])
3

𝑖=1
+ 𝑐  

Second order 

logarithmic 

multiple non-linear 

SOLN 

𝑌 =

∑ ∑ (𝑎𝑗𝐿𝑜𝑔[𝑥𝑗𝑥𝑘])
3

𝑗=1
3
𝑘=1 +

∑ (𝑎𝑖𝐿𝑜𝑔[𝑥𝑖])
3

𝑖=1
+ 𝑐  

Third order 

logarithmic 

multiple non-linear 

TOLN 

𝑌 =
∑ ∑ ∑ (𝛽𝑙𝐿𝑜𝑔[𝑥𝑙𝑥𝑚𝑥𝑝])3

𝑝=1
3
𝑚=1

3
𝑙=1 +

∑ ∑ (𝑎𝑗𝐿𝑜𝑔[𝑥𝑗𝑥𝑘])
3

𝑗=1
3
𝑘=1 +

∑ (𝑎𝑖𝐿𝑜𝑔[𝑥𝑖])
3

𝑖=1
+ 𝑐  

To determine the relationships between neuro-regression 

models and experimental data, statistical analyses of coefficient 

of determination (R2), mean square error (RMSE), mean absolute 

error (MAE), and model efficiency (ME) for each model were 

used. Furthermore, the lowest and highest values were calculated 

while adhering to the experimental parameter limits using the 

prepared models. 
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Root mean square error: 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑋𝐴,𝑖 − 𝑋𝑃,𝑖)

2𝑛
𝑖=1   (2) 

Coefficient of determination: 𝑅2 = 1 −
∑ (𝑋𝐴,𝑖−𝑋𝑃,𝑖)2𝑛

𝑖=1

∑ 𝑋𝑃,𝑖
2𝑛

𝑖=1

  (3) 

Mean absolute error: 𝑀𝐴𝐸 =
1

𝑛
∑ (𝑋𝐴,𝑖 − 𝑋𝑃,𝑖)

𝑛
𝑖=1   (4) 

Model efficiency: 𝑀𝐸 = 1 −
∑ (𝑋𝐴,𝑖−𝑋𝑃,𝑖)2𝑛

𝑖=1

∑ (𝑋𝐴,𝑖−�̅�𝑃,𝑖)2𝑛
𝑖=1

   (5) 

where, XA is actual data and XP is predicted data. 

Following this, the stage of selecting the regression model 

was carried out. This process is done in three basic steps. (i) R2 

values are calculated for each model, and those less than 0.9 are 

eliminated. (ii) To determine whether the model is realistic, the 

predicted cutoff values of the candidate models should differ by 

at most 20% from the actual results. Models that fail to meet these 

values are eliminated. (iii) RMSE and MA should be close to zero, 

and ME should be close to one, from the statistical results of the 

models that passed the previous stages. 

2.2. Optimization 

In essence, structural optimization can be defined as 

achieving the optimal designs by minimizing the stated single or 

multi-objective that corresponds to all constraints. There are two 

types of optimization techniques: traditional and nontraditional. 

Traditional optimization approaches, such as restricted variation 

and Lagrange multipliers, only work for continuous and 

differentiable functions. Because of the peculiarity of engineering 

design challenges, typical optimization approaches cannot be 

employed. In these situations, stochastic optimization approaches 

like GA, PS, and SA algorithms are advantageous. However, the 

exact solution cannot be reached due to stochastic methods, hence 

employing many methods with diverse phenomenological bases 

for the same optimization issue boosts the result's trustworthiness 

(Aydin & Artem, 2011). 

Some difficulties in mathematical optimization problems can 

be listed in four main items: (i) multiple nonlinear objective 

functions, (ii) objective functions having many local extremum 

points, (iii) mixed-integer(discrete)- continuous nature of the 

design variables, and (iv) nonlinear constraints. The issue posed 

in the first three problems is one of the optimization scenarios 

covered in this paper. Four different optimization methods (DE, 

NM, SA, and RS) were used to solve the optimization difficulties. 

Detail description of all algorithms can also be found in (Erten, 

Deveci, & Artem, 2020). 

2.2.1. Differential Evolution algorithm 

The Differential Evolution algorithm is an evolutionary 

method that allows for alternate solutions for complex machining 

processes such as slicing, milling, grinding, and wear and drilling. 

Initialization, mutation, crossover, and selection are the four key 

steps. Because of the algorithm's stochastic nature, changing the 

variables (scaling factor, crossover, and population size) can vary 

the optimum outcome. It should be emphasized that the DE 

algorithm is computationally expensive because it continuously 

analyzes a population of solutions rather than a single solution at 

each iteration. It finds the global optimum of the objective 

function in a generally resilient and efficient manner. However, 

finding the global optimum is not assured (Savran & Aydin, 

2018). 

 

2.2.2 Nelder-Mead algorithm 

The Nelder–Mead (NM) algorithm is a traditional local 

search strategy created for unconstrained optimization problems 

in the first place (Nelder & Mead, 1965). It is noteworthy to note 

that, although NM is not a global optimization algorithm, it tends 

to function effectively for situations with few local minima in 

practice. The NM possibilities are controlled by four main 

parameters, similar to the DE algorithm: reflection, expansion, 

contraction, and shrinkage.  

The prominent characteristic of the NM algorithm is that it 

produces satisfactory results after the first few iterations. 

Furthermore, only one or two function evaluations are required 

for each iteration, which is exceedingly infrequent in practice. The 

simplex can change its orientation, size, and shape to adapt to the 

local contour of the objective function to prevent expensive or 

time-consuming multiple function evaluations. NM also has much 

flexibility when it comes to investigating complicated search 

spaces (Ozturk, Aydin, & Celik, 2018).  

2.2.3 Random Search algorithm 

The Random Search (RS) algorithm is based on a stochastic 

approach, often known as the Monte Carlo Method. Because of 

the algorithm's stochastic character, it differs from deterministic 

methods like Branch-Bound and Interval Analysis. The main 

advantages of RS are that(i) it can easily be combined with proper 

search procedures when the absolute maximum of a multimodal 

function is required. (ii) It can be used to find the global optimum 

for non-convex, non-differentiable objective functions in 

continuous and/or discrete domains. (iii) It is simple to apply to 

complex optimization problems. (iv) The RS algorithm is 

relatively robust and provides essential information quickly for 

ill-defined functions (Karnopp, 1963; Zabinsky, 2009). 

2.2.4 Simulated Annealing algorithm 

The Simulated Annealing algorithm simulates the metal 

annealing process. It usually allows the structure to escape a local 

minimum and investigate the global optimum point. Each 

iteration in the first step generates. a new point at random. The 

method terminates if the ending requirements are met, and the 

distance between the new point and the current point is calculated 

using Boltzmann's probability distribution. The energy of a 

system in thermal equilibrium at temperature "T" is implied by 

the distribution. The probability distribution of Boltzmann can be 

represented as follows (Rao, 2019): 

P(E) = e -E/(kT)  (6) 

Where, P(E) is the probability of reaching the energy level E, 

k is the Boltzmann constant, and T is the temperature. SA may 

address mixed-integer, continuous, and/or discrete types of 

optimization problems in addition to deterministic or classical 

optimization techniques. Table 2. also shows the DE, NM, RS, 

and SA optimization method parameters. 
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Table 2. Corresponding options for the DE, NM, RS, and SA 

optimization algorithms. 

Options  DE NM RS SA 

Cross. Over fractions 0.5 - - - 

Random. Seed 1 5 - 2 

Scaling. Factor 0.6 - - - 

Tolerance 0.001 0.001 - 0.001 

Contract. Ratio - 0.5 - - 

Expand. Ratio - 2.0 - - 

Reflect. Ratio - 1.0 - - 

Shrink Ratio - 0.5 - - 

Level. Iterations - - - 50 

Perturbation. Scale - - - 1.0 

2.3 Problem definition 

The optimal design of a nanocomposite drilling process in 

light of the methods described as: (i) The data shown in Table 3 

were selected from the reference study (Kumar et al., 2020). They 

modeled the input parameters of the biosensors with Box-

Behnken design and regression analysis. (ii) 9 candidate 

functional structures are proposed for modeling the data of the 

drilling process and evaluated for their suitability in terms of 

limitation of functions, R2
training, and R2

testing values. (iii) 

Optimization scenarios are presented by using suitable models 

obtained for Fd and Th. Finally, these problems are solved by four 

different direct search methods.  

The objective functions in this optimization problem describe 

the values of Fd and Th in the nanocomposite drilling process. 

The search space is continuous, and all design variables are 

considered to be real numbers. In this case, 800 < drill speed (rpm) 

< 2400, 80 < feed (mm/min) < 240, and 1 < GO(wt%) < 3. The 

primary goal is to minimize the Fd and Th values as much as 

possible. This method can also be used to find the bounds of the 

goal function mathematically. 

 

Table 3. Box-Behnken experimental design for independent 

variables corresponding observed response (Kumar et al., 

2020). 

 Parameters Responses 

Exp. 

No 

Drill Speed 
(rpm) 

Feed rate 
(mm/min) 

GO 
(wt.%) 

Fd Th (N) 

1 800 80 2 1.037 64.98 

2 2400 80 2 1.020 53.94 

3 800 240 2 1.103 100.81 

4 2400 240 2 1.051 61.59 

5 800 160 1 1.053 74.07 

6 2400 160 1 1.030 57.17 

7 800 160 3 1.076 95.00 

8 2400 160 3 1.042 61.29 

9 1600 80 1 1.019 54.00 

10 1600 240 1 1.061 68.65 

11 1600 80 3 1.037 60.84 

12 1600 240 3 1.094 83.63 

13 1600 160 2 1.071 67.27 

14 1600 160 2 1.057 70.00 

15 1600 160 2 1.050 72.00 

3. Results and Discussion 

The reference study (Kumar et al., 2020) used Box-Behnken 

design and regression analysis to model the input parameters in 

the drilling process. Then, using the nonlinear regression models 

they obtained as an objective function in the SE algorithm, they 

reached 1.01921 for Fd and 31.4487 for Th. Both values were 

obtained at 2400 rpm, 80 mm/min, and 1 wt.% GO parameters. A 

confirmatory test was performed with these proposed parameters. 

In this test sample, they found the Fd and Th values as 1.0192 and 

31.4487, respectively. 

In the present study, 9 different regression models (see 

Appendices 1 and 2) with 3 parameters have been tested, and the 

results are listed in Table 4 and 5. 

Table 4. Results of Neuro-Regression models for delamination. 

Models R2
training R2

training-adjust R2
testing RMSE  MAE  ME Max  Min  

L 0.9998 0.9998 0.8205 0.0107 0.0085 0.7929 1.1024 1.0056 

SON 0.9999 0.9998 0.9059 0.009 0.0076 0.8523 1.1108 1.0127 

TON 0.9999 0.9998 0.951 0.0081 0.0055 0.8813 1.2028 0.9116 

FOT 0.9996 0.9995 0.3471 0.0195 0.016 0.3133 1.0818 1.0214 

SOTN 0.9998 0.9995 -0.1951 0.0108 0.0079 0.7868 1.3224 0.9218 

TOTN 0.9999 1 -14.8442 0.0038 0.0016 0.9714 1.3876 0.5377 

FOL 0.9998 0.9998 0.7823 0.0111 0.0089 0.7751 1.0981 1.0055 

SOLN 0.9999 0.9998 0.8918 0.0089 0.0073 0.8553 1.1096 1.0116 

TOLN 0.9999 0.9998 0.9337 0.0079 0.0053 0.887 1.1978 0.9953 
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Table 5. Results of Neuro-Regression models for thrust force. 

Models R2
training R2

training-adjust R2
testing RMSE  MAE  ME Max  Min  

L 0.9946  0.9940 0.8820 5.0261 4.2431 0.8678 99.0654 39.7621 

SON 0.9974 0.9964 0.9897 3.4868 2.2551 0.9363 107.441 46.1271 

TON 0.9998 0.9996  0.9928 0.9033 0.4902 0.9957 136.063 30.061 

FOT 0.9729 0.9666 0.2029 11.3169 8.385 0.33 86.9422 49.7221 

SOTN 0.9955 0.9818 -2.4567 4.5713 3.1682 0.8906 203.298 3.1434 10-11 

TOTN 0.9998 1 -4.8119 0.8402 0.3419 0.9963 141.777 1.2 10-9 

FOL 0.9951 0.9945 0.9148 4.8052 4.1217 0.8792 97.9161 39.9752 

SOLN 0.9976 0.9967 0.9829 3.3479 2.0821 0.9413 106.787 45.7063 

TOLN 0.9998 0.9996 0.9925 0.8980 0.4784 0.9957 129.332 30.0514 

 

When Table 4 is examined, 9 different regression models 

prepared for modeling the delamination process are seen. When 

the R2 values, limit values and statistical calculation results 

(RMSE, ME, MAE) of these models were evaluated for model 

selection, it was seen that the R2
training and R2

training-adjust values in 

the 9 models were very high (<0.999). When the R2
testing values 

were examined, it was determined that the SON, TON, and TOLN 

models were above the limit value for model selection and below 

the other models. When the limit values, which is the second 

criterion, are examined in all three models, it is seen that they are 

met. When the statistical results, which is the last criterion, were 

examined, acceptable results were obtained for all three models. 

It will be used as the objective function in all three regression 

models for optimization studies. 

When analyzed for Table 5, R2
training and R2

training adjust values 

are very high for each model. The SON, TON, FOL, SOLN, and 

TOLN models meet the criteria when the R2
testing values are 

analyzed, however the other models do not. The SON, TON, FOL, 

SOLN, and TOLN models all matched the criteria when the limit 

values were evaluated. When examining the statistical findings, it 

is clear that the TON and TOLN models produce better results. In 

the light of these evaluations, TON and TOLN models will be 

used as objective functions in the optimization study. The results 

of the optimization studies performed with four different 

optimization methods, in which all the models selected for both 

outputs are used as objective functions, are given in Table 6 and 

7. In addition, the optimization result of the reference study is also 

given in these tables. 

Table 6. Optimization results of delamination. 

 
Objective 

Functions 
Constraints 

Opt. 

Algorithm 
Delamination Suggested Design 

Current 

study 

SON 

800 < X1 < 2400 

80 < X2 < 240  

1 < X3 < 3 

DE 

1.0127 X1= 2400, X2= 80, X3=1 RS 

NM 

SA 1.0178 X1= 800, X2= 80, X3=1 

TON DE 
0.8437 X1= 2348.24, X2= 240, X3=1 

SA 

RS 0.6807 X1= 2400, X2= 80, X3=3 

NM 
0.9116 

X1= 800, X2= 182.75, 

X3=2.3288 

TOLN DE 

0.7623 X1= 2400, X2= 80, X3=1 SA 

RS 

NM 
0.9953 

X1= 2029.19, X2= 240, 

X3=2.5808 

Reference SON SA 1.0192 X1= 2400, X2= 80, X3=1 
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Table 7. Optimization results of thrust force. 

 
Objective 

Functions 

Constraints Opt. 

Algorithm 
Thrust force (Th) Suggested Design 

Current 

study  

TON 

800 < X1 < 2400 

 80 < X2 < 240  

1 < X3 < 3 

DE 

30.061 X1= 2400, X2= 80, X3=1 
SA 

NM 

RS 

TOLN DE 

30.0514 X1= 2400, X2= 80, X3=1 SA 

NM 

RS 47.152 X1= 800, X2= 80, X3=3 

Reference SON SA 31.4487 X1= 2400, X2= 80, X3=1 

 

Table 6 illustrates the results of the optimization and design 

parameters for the Fd values in the nanocomposite drilling process 

using the regression models that were chosen. In addition, the 

table also includes the optimization values from the referenced 

publication for comparison. Table 6 shows that the TON model 

with the RS algorithm provided the lowest Fd value of 0.6807. 

Then, it was seen that it was estimated as 0.7623 with the DE, SA, 

and RS algorithms with the TOLN model. The obtained data from 

the validation test in the reference publication was compared to 

the optimization results obtained in the current study. As a result 

of this comparison, the results obtained with the same parameters 

were obtained as 1.0127 in the SON model with the DE, RS, and 

NM algorithms, and as 0.7623 in the TOLN model with the DE, 

SA, and RS algorithms. When the SON and TOLN models are 

compared, and the model results are compared to the validation 

test results, it is clear that the SON model's optimization outcomes 

are quite near to the real values. While the reference paper used 

an optimization study to estimate the test value as close as 

0.903%, the current study estimated accuracy as close as 0.267%. 

It is calculated that there is a 3.382-fold difference between the 

two estimates. 

Table 7 shows the optimization results and design parameters 

of the Th values in the nanocomposite drilling process with 

selected regression models. In addition, the optimization values 

of the referenced publication are added to the table for 

comparison. The lowest value was obtained at 30.0514 with the 

TOLN model, DE, SA, and NM algorithms. Then, in the TON 

model, it was found to be 30.061 with all optimization algorithms. 

When the results of the confirmatory test performed in the 

reference publication were compared with the optimization 

estimates in the current study, the results obtained with the same 

parameters were estimated with 0.1098% accuracy in the TON 

model, with an accuracy of 0.1098%, and in the TOLN model 

with the DE, SA, and NM algorithms, with an accuracy of 

0.0779%. When the TOLN model and the optimization results 

from the TON and reference study were compared, it was 

calculated that the accuracy value of the TOLN model was 

1.4094, 57.9845 times closer than the TON model and reference 

study. 

4. Conclusion 

Graphene oxide-based composites are promising candidates 

for a wide range of industrial applications, particularly for aircraft 

components, particularly electronics such as supercapacitors, 

transistors, electrophoresis, gas sensors, and so on. In the final 

product use of these composites, better surface quality and more 

precise tolerances are required. It is clear that optimizing the 

design parameters of the drilling process, which is often preferred, 

is the most accurate approach. Better surface quality and tighter 

mechanical tolerances are required in the end product when using 

these composites. For this reason, it is evident that optimizing the 

drilling process' design parameters, which is generally selected, is 

the most accurate way. These approaches make solving the 

mathematical optimization challenge in the design process more 

complicated. In order to eliminate these problems, the modeling-

design-optimization process was applied to optimize the Fd and 

Th values of nanocomposites. For this purpose, firstly, linear, 

polynomial, trigonometric and logarithmic models were 

established. After the model selection phase, optimization studies 

were carried out using 4 different algorithms (DE, NM, SA, RS) 

with the selected models. The following are some of the study's 

major outcomes: 

• All nine different models prepared for both Fd and Th are 

suitable in terms of R2
training and R2

 training-adjust values. 

• It is seen that the results of the models in terms of R2
testing 

values for Fd only provide limit values for the SON, TON, and 

TOLN models. In addition, an examination was carried out in 

terms of the stability of the predictions of the models within the 

limit values, and it is seen that these 3 models give results within 

the limit values. Furthermore, the fact that the RMSE and MAE 

values in the statistical findings are close to zero, and the ME 

value is close to 1, demonstrates the model's comparability with 

true values. These three models performed admirably in this 

regard. 

• When the R2
training and R2

 training-adjust values of the 9 models 

created for the Th value are compared, they are all extremely near 

to 1. The SON, TON, FOL, SOLN, and TOLN models all match 

the criteria according to the R2
testing results. These models' limit 

values are also between the limit values. The TON and TOLN 

models, on the other hand, have better statistical values than the 

SON, FOL, and SOLN models. 

• In studies conducted for both Fd and Th, it is seen that 

logarithmic functions give results with very high values. It is 

predicted that it can be used as an alternative to polynomial 

models. 

• The results of trigonometric functions could not meet the 

standards in both Fd and Th experiments. Within these results, it 

was seen that the trigonometric functions related to the drilling 

process were not usable. 
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• When the optimization results are examined, the use of 4 

different algorithms has revealed that the process can be defined 

with different approaches. From the optimization result in the 

reference paper, approximately 3.382 times for the Fd value and 

57.984 times closer to the real result for the Th value were 

obtained. 

• This is the first time, to our knowledge, that a comprehensive 

modeling study for the optimal design of the nanocomposite 

drilling process has been conducted. 
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