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Abstract 

In this study, the implementation of a 6 Degree of Freedom (DOF) Inertial Measurement Unit (IMU) via the Kalman Filter is aimed. 

High accuracy IMU units have been in practical use since the first space navigation practices. Today, the need for IMU’s have been 

widespread among every aspect of life. The IMU sensors are mostly solid-state devices and are manufactured with Micro 

Electromechanical System (MEMS) technologies. The sensor noise has to be eliminated. The most popular method is the Kalman 

Filtering. The aim of this study is to better explain the IMU concept and make a practical implementation of the Kalman Filtering which 

is somehow complicated. In this study, a low cost IMU MEMS sensor has been selected and Kalman Filtering has been applied for both 

one and multi-dimensional outputs. The steps are explicitly explained to help the reader better understand the process. The study may 

be easily tailored to other sensor systems where noise is a concern.   
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Kalman Algoritması ile Düşük Maliyetli 6-DOF IMU'nun Pratik Bir 

Uygulaması 
Öz 

Bu çalışmada, 6 Serbestlik Dereceli (DOF) Ataletsel Ölçüm Biriminin (IMU) Kalman Filtresi üzerinden uygulanması amaçlanmaktadır. 

Yüksek doğruluklu IMU birimleri, ilk uzay seyrüsefer uygulamalarından bu ana değin pratik kullanımda olmuştur. Günümüzde 

IMU'lara duyulan ihtiyaç hayatın her alanında yaygınlaşmıştır. IMU sensörleri çoğunlukla katı hal cihazlarıdır ve Mikro Elektromekanik 

Sistem (MEMS) teknolojileriyle üretilirler. Sensör gürültüsü ortadan kaldırılmalıdır. En popüler yöntem Kalman Filtresidir. Bu 

çalışmanın amacı, IMU kavramını daha iyi açıklamak ve nispeten karmaşık olan Kalman Filtrelemenin pratik bir uygulamasını 

yapmaktır. Bu çalışmada düşük maliyetli bir IMU MEMS sensörü seçilmiş ve hem tek hem de çok boyutlu çıktılar için Kalman 

Filtreleme uygulanmıştır. Adımlar, okuyucunun süreci daha iyi anlamasına yardımcı olmak için belirgin şekilde açıklanmıştır. Çalışma, 

gürültünün önemli olduğu diğer sensör sistemlerine kolaylıkla uyarlanabilir. 

 

Anahtar Kelimeler: Sensörler, Navigasyon, Gürültü, Kalman Filtreleme 
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1. Introduction 

In order to keep a platform steady, its current attitude has to 

be known. A device that measures the attitude of a platform is 

called the Inertial Measurement Unit (IMU). The IMU’s measure 

and signal-condition the linear and gyroscopic accelerations in 

order to acquire the attitude information. Such stabilization 

platforms are widely used in military, civilian and industrial 

fields.   

High-precision is obtained by using fiber-optical or lased 

based mechanical sensors. However, these types of systems are 

either very expensive or not miniaturized enough to fit in small 

volumes [1]. Recently, due to the advances in Micro 

Electromechanical System (MEMS) technologies, mass-

produced affordable solid-state sensors have been available 

widely. The disadvantage of these kids of sensors is that they are 

inherently noisy. The Kalman Filter is a very popular solution for 

noise removal. However, it is not very easy to implement and in 

most studies in the literature the details of the implementation are 

skipped, which makes it harder for the designer to apply the 

principles to a custom system. 

In this study, it is aimed to implement the Kalman Filter on 

a widely available and affordable IMU sensor. The sensor which 

measures raw linear and gyroscopic acceleration values works as 

a slave to a microcontroller that implements the digital Kalman 

Filtering algorithm. The procedure is explained in detail.  The 

algorithm is applied for one and multidimensional output data and 

the improved results are discussed at the conclusion. 

The MPU-60X0 Series is a popular low-cost 6-axis motion 

tracking device that includes a 3 axis gyroscope and 3 axis 

accelerometer in an IC package [2] (Fig. 1).  

 

Figure 1. MPU60X0 Sensor Orientation of Axes of Motion and 

Polarity of Rotation 

 

The sensor features a user-programmable gyroscope full-

scale range of ±250, ±500, ±1000, and ±2000°/sec (dps) and a 

user-programmable accelerometer full-scale range of ±2g, ±4g, 

±8g, and ±16g. In the current design ±500 dps and ±8g ranges are 

selected which are feasible values for navigation applications. The 

sensor has a digital output and communication with all registers 

of the device is implemented using inter-inter-circuit (I2C) 

protocol at 400kHz. A microcontroller receives the data and signal 

processes it before forwarding to the navigation unit CPU. 

The study may be expressed in 2 steps: 

Step 1: The raw linear and gyroscopic sensor values are read 

from the sensor and are signal conditioned by the microcontroller 

thus yielding the attitude data. 

Step 2: The attitude data is further conditioned by Kalman 

Filter to decrease noise. 

The principal axes for an aircraft are defined as pitch, roll 

and yaw (Fig. 2). In this study, only the pitch and 

 

 
 

Figure 2. Principal axes for an aircraft 

roll axes are going to be acquired for better understanding of the 

process without making things too complicated.  

2. Implementation  

With the start of the system, the registers are set up for the 

chosen acceleration ranges. The gyroscopic acceleration values 

are taken at 250 Hz and 1 degree corresponds 65,5 therefore the 

raw pitch (θ) and roll (ϕ) angles are accumulated as: 

𝜃𝑔𝑦𝑟𝑜−𝑟𝑎𝑤 =
𝑔𝑦𝑟𝑜 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑥

250 ∗ 65,5
 

 

𝜙𝑔𝑦𝑟𝑜−𝑟𝑎𝑤 =
𝑔𝑦𝑟𝑜 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑦

250 ∗ 65,5
 

 

in degrees. This process is valid only if there is no change in the 

yaw (ψ) axis which is impossible for a 3-dimensional system. As 

the aim is measuring the inclination angles (θ and ϕ), the yaw-axis 

compensation is implemented as: 

 
𝜃𝑔𝑦𝑟𝑜−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝜙𝑟𝑎𝑤 ∗ sin (𝜓) 

 

𝜙𝑔𝑦𝑟𝑜−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = −𝜃𝑟𝑎𝑤 ∗ sin (𝜓) 

 

The compensated gyro values are quite accurate. However, 

they suffer from accumulation error as the number of samples 

increases. Therefore, linear acceleration values are needed for 

better results.  

 

𝜃𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = sin−1(
𝑎𝑦

√𝑎𝑥2 + 𝑎𝑦2 + 𝑎𝑧2

) 

𝜙𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = sin−1(
𝑎𝑥

√𝑎𝑥2 + 𝑎𝑦2 + 𝑎𝑧2

) 

 

where ax, ay and az are given as the acceleration data in the 

cartesian coordinate system, respectively. The problem with the 

linear acceleration values is that they are very prone to noise. 

Without filtering, it is impractical to use this data in any 

application A novel method was applied by combining the gyro 

and acceleration values in [3]. Here the final values are calculated 

by: 

 
𝜃 =  𝜃𝑔𝑦𝑟𝑜−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 ∗ 0,9996 + 𝜃𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 0,0004 
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𝜙 =  𝜙𝑔𝑦𝑟𝑜−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 ∗ 0,9996 +  𝜙𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 0,0004 

 

This is a very simple, yet efficient formulation for 

compensating the gyroscopic and linear acceleration 

measurement errors. However, it does not eliminate the noise. The 

next step is application of the Kalman Filter. 

 

3. Kalman Filter: 1-Dimensıonal (1-D) 

Case 

The Kalman Filter is selected because it efficiently estimates 

the state of a process, in a way that makes minimum the mean of 

the squared error (MSE). The filter supports estimates of past, 

present, future states of the output and filters the measurement and 

process noise. In the study, the method has been applied directly 

to the pitch and roll angles, independent from each other, which 

is a simple version of the Kalman Filter [4]. In the proceeding 

section the complementary Kalman Filtering method has been 

explained. 

The 1-D case is relatively simple. The iterative flowchart is 

shown in Fig. 3. 

 

 

Figure 3. 1-D Kalman Filtering Process 

The Kalman Gain (KG) is calculated by: 

 

𝐾𝐺 =
𝐸𝐸𝑆𝑇

𝐸𝐸𝑆𝑇 + 𝐸𝑀𝐸𝐴

 

 

where, 𝐸𝐸𝑆𝑇  is the estimation error and 𝐸𝑀𝐸𝐴 is the measurement 

error. Next the current estimate is calculated as: 

 

𝐸𝑆𝑇𝑡 = 𝐸𝑆𝑇𝑡−1 + 𝐾𝐺[𝑀𝐸𝐴 − 𝐸𝑆𝑇𝑡−1] 
 

where 𝐸𝑆𝑇𝑡 and 𝐸𝑆𝑇𝑡−1 are the current and past estimates and 

𝑀𝐸𝐴 is the measured value. Finally, the estimation error is 

updated as: 

 

𝐸𝐸𝑆𝑇 𝑡
= [1 − 𝐾𝐺]𝐸𝐸𝑆𝑇𝑡−1

 

 

and the process continues iteratively. The 1-D filter has been 

applied at the pitch angle output of 8000 samples and the result is 

shown int Fig. 4. It can be clearly seen that the output has 

improved. 

 

 
 

Figure 4. Pitch angle after 1-D Kalman Filter applied 

4. Kalman Filter: Multi Dimensional Case 
 

In order to make more accurate estimates, the number of 

input variables may be increased. This leads to more realistic 

modelling of the dynamic system. The Kalman filter may be 

regarded similar to the hidden Markov model, with the difference 

that the hidden state variables are continuous space as opposed to 

a discrete state space as for the hidden Markov model [5]. The 

details of the algorithm is well defined in the literature and only 

brief information will be given here. 

 

 
 

Figure 5. The Kalman Filter Algorithm [5] 

 

In Fig. 5, the abbreviations may be listed as: 

 Fk, the state-transition model; 

 Hk, the observation model; 

 Qk, the covariance of the process noise; 

 Rk, the covariance of the observation noise; 

 and Bk, the control-input model, for each time-step, k 

 

It is assumed that the true state at time k is derived from the 

state at (k − 1) discrete-time interval according to: 

 

𝑿𝒌 = 𝑭𝒌𝑿𝒌−𝟏 + 𝑩𝒌𝑼𝒌 + 𝒘𝒌 

 

where; 

 Bk is the control-input model and 

 wk is the process noise.   

 

during time interval k, a measurement zk of the true state Xk is 

implemented: 

 

𝒛𝒌 = 𝑯𝒌𝑿𝒌 + 𝒗𝒌 

where; 
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 Hk is the observation model and 

 vk is the observation noise. 

Most real-time systems produce many sequential 

measurements in order to obtain the state of a system, rather than 

taking a single measurement. These many measurements are then 

combined to produce the state of the system at the desired time 

instant. 

For example, consider the problem of pinpointing the attitude 

of an IMU inside a vechile. The IMU can be fitted with a Global 

Positioning System unit that can provide position estimation 

within a few metres. GPS forecasts are noisy; the readings can 

jump around quickly, although they are always within a few 

meters of the actual position. The position of the vechile can also 

be predicted by monitoring the acceleration and rate gyro, 

integrating speed and direction with respect to time.  

The Kalman filter has been operating in two separate phases: 

prediction and update. In the estimation phase, the old location of 

the vechile changes according to Newton's laws of motion. Not 

only will a position estimate be calculated, but a new covariance 

is also calculated. Next, in the update phase, a measurement of the 

vechile's position is acquired from the Global Positioning System. 

With this measurement some uncertainty is introduced, and the 

ratio of its coincidence to the covariance of the estimate from the 

previous phase determines the amount of effect of the new 

measurement to the updated estimate. Ideally, as the longline 

estimates move away from the true position, the GPS 

measurements pull the position estimates towards the true 

position in a way that is neither fast-paced nor noisy. 

 

5. Conclusion 

In this study, the measurements of a low-cost IMU have been 

signal-conditioned to remove the effects of instantaneous and 

accumulative errors. The output has been further improved by 

eliminating measurement noise with 1-dimensional Kalman 

Filter. In the next section multi-dimensional Kalman Filter is 

explained briefly and it has been shown that the same procedure 

may be applied for sensor fusion using matrices (12-13).  

The method may be applied for many similar applications for 

getting better results where noise and measurement errors are 

eliminated as much as possible. 
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