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Abstract: In this paper, some properties of the atoms in the lattice of a 
family τ(X) of all topologies on a finite set X are proved. In addition, a 
geometric method is given to find the number of the atomic and the anti-
atomic topologies, and it is observed that the number of elements of τ(X) 
satisfies the following expression; 

n(2n-2) < |τ(X)| < (2n-2) (n-1) 

where n = |X| (cardinality of X). 
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Topolojiler Latisinin Atom ve Anti-Atomları Üzerine 

Özet: Bu çalışmada, bir sonlu X kümesi üzerine kurulan bütün topolojilerin τ(X) 
ailesinin latisindeki atomların bazı özellikleri ispat edildi. Ayrıca, topolojilerin atom ve 
anti-atom sayılarını bullmak için bir geometric yöntem verildi ve τ(X) ailesinin 
elemanlarının sayısı, |τ(X)| için 

n(2n-2) < |τ(X)| < (2n-2) (n-1)

ifadesinin sağlandığı gözlemlendi. 

Anahtar Kelimeler: Topolojilerin latisi, atomlar, anti-atomlar 

1. Introduction 
We recall that the definition of a topology on a set X is a collection τ of subsets of X 

(called ‘open’) such that 
φ, X ∈ τ 
A, B ∈ τ implies A∩B ∈ τ 
Ai∈ τ, i ∈ I (an arbitrary index set ) implies ∪Ai∈ τ. 
Thus the open subsets in a topology always include the empty φ and the set X itself and 

are closed under the formation of finite intersections and arbitrary unions. The family of all 
topologies would consist of all such collections τ on all possible sets X. However, this family is 
enormous – so big in fact that it is not a set. If it were, it could be equipped with a topology (in 
many different ways) and would therefore have to be member of itself, which is not permitted in 
set theory. We will avoid this logical problem by restricting our attention to the family τ(X) of all 
topologies on a fixed set X, which is a proper set.  

It is appropriate to recall that topologies τ1 and τ2 on a set X are said to homeomorphic if 
there is a bijection i : (X, τ1) → (X, τ2) which is continuous and whose inverse is also continuous 
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((X, τ) denotes the set X is equipped with the topology τ ). This bicontinuity is equivalent to 
saying that the map i sets up a one-to-one equivalence between these subsets of X that are 
open in the topology τ1 and those subsets of X that are open in the topology τ2. 
 

2.  Lattice Structure 
2.1. The Lattice τ(X) 
Let us recall that a lattice ([1],[2]) is a partially-ordered set in which each pair of 

elements {a,b} has a least upper bound, denoted a∨b, a greatest lower bound, denoted a∧b. 
These Lattice operations are idempotent, commutative and associative that is, they satisfy the 
relations  

Idempotency        : a∨a = a   a∧a = a 
Commutativety     : a∨b = b∨a   a∧b = b∧a 
Associativity         : (a∨b)∨c = a∨(b∨c)  (a∧b)∧c = a∧(b∧c). 

Each of the operations ∧ and ∨ makes the lattice into a semi-group (there are no inverses). 
A natural partial ordering is associated with any lattice via the definition 

a ≤ b if and only if a∧b = a   (1) 
and the first step in placing a lattice structure on τ(X) is to note the well known partial ordering of 
topologies defined by  

τ1 ≤ τ2  if τ1 ⊂ τ2    (2) 
where the set inclusion sign ⊂ includes the possibility of equality; the notation τ1 < τ2 will be 
employed whenever it is important to emphasize that τ1 ≠ τ2. If τ1 and τ2 are a pair of topologies 
satisfying (2) (so that every τ1-open set is also τ2-open) then τ1 is said to be weaker / coarser 
than τ2, and τ2 is stronger / finer than τ1. The weakest / coarsest topology is {φ,X} and the 
strongest / finest topology is P(X) –the set of all subsets of X. These extreme topologies will 
sometimes be denoted by 0 and 1 respectively. 

Lattice operations on τ(X) can be defined by  
τ1 ∧ τ2 := τ1 ∩ τ2 = { A⊂X : A is open in both τ1 and τ2 } 
τ1 ∨ τ2 := Coarsest topology containing τ1∪τ2 = { A⊂X : A is open in τ1 or τ2 } 
It is a standard exercise to show that these operations are compatible with the partial 

ordering in the sense that 
(i). τ1 ∧ τ2 is the finest topology that is coarser than both τ1 and τ2, 
(ii). τ1 ∨ τ2 is the coarsest topology that is finer than both τ1 and τ2. 

It is instructive to study a few simple examples where X is a finite set. The simplest is when the 
single topology {φ,{a}}. 

If X = {a,b} there are four topologies arranged in the following lattice: 

 
where a line drawn upwards from τ1 to τ2 means that; 

(i). τ1 is strictly coarser than τ2, 
(ii). there is no intermediate topology which is strictly finer than τ1 and strictly coarser 

than τ2.
The first really interesting example is when X is a set {a,b,c} of cardinality three. The 

lattice diagram for this case is shown below using a notation which has been chosen for 
maximum topographical simplicity. For example, ab(ab)(bc) means the topology whose open 
sets other than φ and X are the subsets {a}, {b}, {a,b} and {b,c}. 
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The lattice of all topologies on X possesses interesting properties; a useful review article 

is [3]. Some examples are given below. 
(i). τ(X) is complete. Hence the lattice contains the meets and joins of arbitrary sets of 

elements, not merely finite ones (which is all that is guaranteed by the algebraic axioms of a 
lattice).  

(ii). τ(X) is complemented. Thus, given any topology τ, there exists some other topology 
τ′ such that 

τ ∧ τ′ = 0  and  τ ∨ τ′ = 1. 
However, the complements in τ(X) are not unique. In fact, when X is infinite, each 

topology τ other than {φ,X} and P(X) has at least |X| different complements τ′. 
 

2.2. The atoms of the lattice τ(X) 
2.2.1. Definition. An atom in the lattice τ(X) is a non zero topology τA for which 

τA ∧ τ = τA  or  τA∧ τ = 0  for each τ∈ τ(X). 
For A⊂X, τA is an atom if τ ≤ τA implies that τ = 0 or τ = τA. This implies that the atoms 

are the elements immediately above the zero element in the lattice diagram. That is, for each 
A⊂X, τA > 0 is no intermediate topology. Hence τA ={φ,X,A} is an atom. In the example X = 
{a,b,c}, the atoms are the six topologies a, (ac), c, (bc), b and (ab). 

Now we give some properties of the atoms. 
 
2.2.2. Theorem. If τ is a non zero topology of a finite family τ(X), there exists an atom τA with 
τA≤τ. 
 
Proof. If τ is an atom, take τA = τ. If not, then it follows from Definition 2.2.1 that there exist a 
non zero topology τ1, different from τ with τ1≤τ. If τ1 is not an atom, me continue in this way to 
obtain a sequence of distinct non zero topologies ... ≤ τ3 ≤ τ2 ≤ τ1 ≤ τ, which, because τ(X) is 
finite, must terminate in an atom τA. 
 
2.2.3. Theorem. If τA, , , ,..., , are atoms in a finite family τ(X), then τ1Bτ 2Bτ 3Bτ rBτ A ≤ ( ∨ 

∨ ... ∨ ) if and only if τ
1Bτ

2Bτ rBτ A = , for some i with 1 ≤ i≤ r. iBτ
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Proof. If τA ≤ ( ∨ ∨ ... ∨ ), then τ1Bτ 2Bτ rBτ A ∧( ∨ ∨ ... ∨ ) = τ1Bτ 2Bτ rBτ A. Thus (τA 1Bτ )∨ ... 

∨(τA∧ ) = τrBτ A. Since each  is an atom, (τiBτ A∧ ) = or (τiBτ iBτ A∧ ) = 0 by Definition 2.2.1. 

Not all the topologies τ
iBτ

A∧  can be 0, for this would imply τiBτ A = 0. Hence there is some i with 1 

≤ i≤ r, for which (τA∧ ) = . But τiBτ iBτ A is also an atom and so τA = (τA∧ ) = . iBτ iBτ
The implication the other way is straightforward. 

 
2.2.4. Theorem. If , ,..., are all the atoms of a finite family τ(X), then τ = 0 if and 

only if τ∧ = 0 for all i such that 1 ≤ i≤ n. 
1Aτ 2Aτ nAτ

iAτ
 
Proof. Suppose τ∧  = 0 for each i. If τ is non zero, it follow from Theorem 2.2.2 that there is 

an atom  with ≤ τ. Hence  = τ∧  = 0, which is a contradiction, and so τ = 0. 
iAτ

jAτ jAτ jAτ jAτ
The converse implication is trivial. 

 
2.2.5. Theorem. Each member τ of a finite family τ(X) can be written as a join of atoms 

τ = ∨ ∨ ... ∨ . αAτ βAτ ωAτ
Moreover, this expression is unique up to the order of the atoms. 

 
Proof. Let , , ... ,  be all the atoms less than or equal to τ in the partial order. It 

follow from the fact τ
αAτ βAτ ωAτ

1 ≤ τ3 and τ2 ≤ τ3 implies τ1 ∨ τ2 ≤ τ3 that the join  
τA = ∨ ∨ ... ∨ ≤ τ. αAτ βAτ ωAτ

We will show that τ ∧  = 0 which, by τ'
Aτ 1≤  = 0, is equivalent to τ'

2τ  ≤ τA. We have  

τ ∧ = ∧ ∧ ... ∧  '
Aτ αAτ βAτ ωAτ

If τB is an atom in the join τA, say τB = , it follows that τ∧ ∧τB αAτ
'
Aτ BB = 0, since 

∧ = 0. If τ'
αAτ αAτ B is an atom that is not in τA, then τ∧ ∧τ'

Aτ B = 0 also, because τ∧τB BB = 0. 

Therefore, by Theorem 2.2.4, τ∧ = 0, which is equivalent to τ'
Aτ  ≤ τA. The antisymmetry of the 

partial order relation implies that τ = τA. 
To show uniqueness, suppose that τ can be written as the join of two sets of atoms 

τ = ∨ ... ∨ = ∨ ... ∨ . αAτ ωAτ aAτ zAτ

Now, ≤ τ; thus, by Theorem 2.2.3,  is equal to one of the atoms on the right-

hand side, ,..., . Repeating this argument, we see that the two sets of atoms are the 

same, except possibly for their order. 

αAτ αBτ

aAτ zAτ

 
2.2.6. Result. Every topology τ in the family τ(X) is uniquely determined by the atoms τA = 
{φ,X,A} for each A⊂X in the sense that 

τ = ∨{τA : τA ≤ τ}. 
Note that τA ≤ τ is precisely equivalent to the statement that the subset A is open in the 

topology τ, that is, A∈τ. Hence the lattice τ(X) is atomic. 
The lattice τ(X) is also anti-atomic. That is, there exist topologies τA with the properties 

that  
(i) τA < 1 with no intermediate topologies,  
(ii) every topology is uniquely determined by the anti-atoms that lie above it. 
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In the example X = {a,b,c}, the anti-atoms are the topologies ab(ab)(bc), ab(ab)(ac), 
ac(ab)ac), ac(ab)(bc), bc(ab)(bc) and bc(ac)(bc). 

 
2.3. On the cardinality of τ(X) and the number of the atomic and the anti- atomic 
topologies 

For finite X, the number of the atomic topologies is clearly only , and the 
number of the atomic topologies is equal to the number of the anti-atomic topologies for |X| = 1-
3. This is not when |X|>3. In general, the anti-atoms are topologies of the from 

22|X| −

τA = {A⊂X : x∉A or A∈U } 
where U is any ultra-filter not equal to the principal ultra-filter of all subsets of X containing the 
point x∈X. For details see [3] or [4]. 

It is evidently of some interest to know how many topologies can be placed on any 

given X. Note first that |P(X)| = 2|X| and |P(P(X))| = . Now, each topology τ is member of 

P(X) and hence τ(X)⊂P(PX)). Thus |τ(X)| ≤ |P(P(X))| = . For infinite X, the number of the 
atomic topologies is clearly only 2

|X|22
|X|22

|X| (the cardinality of the set P(X) of all subsets of X ) but in [5], 

Fröhlich showed that the cardinality of the set of anti-atoms is . Hence the cardinality of C 

is equal to its set- theoretic maximum . 

|X|22
|X|22

The size of τ(X) that have been computed for finite X are listed in Table 1 taken from [5]. 
|X|   |τ(X)| 

 
 1 1 
 2 4 
 3 29 
 4 355 
 5 6942 
 6 209527 

 7 9535241 
Table 1 

The value of |τ(X)| for an arbitrary finite set X does not seem to have been worked out 
explicitly although it is known that if n = |X| 

2n ≤ |τ(X)| ≤ 2n(n-1)    (3) 
Now we give a method to establish the atomic and the anti-atomic topologies of the 

lattice τ(X) of an arbitrary finite set X. 
Let X be a set {a,b,c} of cardinality three. Each element of X can be written as a vertex 

of the following triangle: 

 
We know that the atomic topologies are a, b, c, (ab), (ac), and (bc). Note that a, b, and c 

are the vertices of the triangle and (ab), (ac), and (bc) are the edges of the triangle. Hence the 
atomic topologies of the lattice τ(X) of the set X = {a,b,c} can be represented as the vertices and 
the edges of a triangle. 

Now, we find the complements of the atomic topologies. The complements of the atom 

τA are some topologies  which are satisfied conditions τ'
Aτ A ∧ = 0 and τ'

Aτ A ∨ = 1. For the 
atom a, the complements are bc(bc)(ac) and bc(bc)(ab). 

'
Aτ

Thus the complements of the atom a can be written as a join of the vertices (except a ) 
and the edges of a triangle in sense bellow: 
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Similarly, the complements of the atom b are ac(ac)(ab) and ac(ac)(bc), and the 

complements of the atom c are ab(ab)(ac) and ab(ab)(bc). Note that the complements of each 
atom (ab), (ac) and (bc) are two of the above six complements. 

Then the complements of the atoms a, b, c, (ab), (ac), and (bc) are the topologies 
ab(ab)(ac), ab(ab)(ac), ac(ac)(ab), ac(ac)(bc), bc(bc)(bc), and bc(bc)(ac). Note that these 
topologies are the anti-atoms of the lattice τ(X). Thus, it is needed to find the complements of 
the atoms a, b and c (vertices of a triangle) to obtain the anti-atomic topologies of the lattice 
τ(X). 

Let X be a set {a,b,c,d} of cardinality four. We consider that X is a rectangle with the 
vertices a, b, c and d as bellow: 

 
In this rectangle, there are four vertices, six edges and four triangle. That is, there are 

fourteen atomic topologies of the lattice τ(X). These atomic topologies are a, b, c, d, (ab), (ac), 
(ad), (bc), (bd), (cd), (abc), (abd), (acd) and (bcd). 

The complements of the atomic topology a can be written as bellow: 

 
Then there are three complements of the atom a. Similarly, the complements of the 

atoms b, c, and d can be also found. Thus, there are twelve anti-atomic topologies of the lattice 
τ(X). 

If we continue in this way, then we obtain the following theorem. 
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2.3.1. Theorem. Let X be a finite set {a,b,...,z} of cardinality n. We consider that X is a polygon 
with vertices n. Then, 

(i). If A is a set of all the atomic topologies of the lattice τ(X), the number of the atomic 
topologies is 

|A| = |vertices| + |edges| + |triangles| + ... + |polygons with vertices n-1| = 2n-2, 

(ii). The number of the anti-atomic topologies is | | = n(n-1) where n = |X|. 'A
 
Proof. It follows by induction over n. 

 
2.3.2. Theorem. For the family τ(X) of all topologies on a finite set X of cardinality n ≥ 3 , n.|A|< 
|τ(X)| <|A|(n-1) that is  

n.(2n-2) < |τ(X)| < (2n-2)(n-1). 
Proof. By a simple induction, for n = 3, we obtain that 18 < |τ(X)| < 36 or 18 < 29 < 36 (see 
Table 1). For n = 4, we have 56 < 355 < 2744. If we continue by induction, we obtain n.(2n-2) < 
|τ(X)| < (2n-2)(n-1). 
 
2.3.2. Remark. The reader may check that our expression in Theorem 2.3.2 is a better 
approach than the expression (3). 
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